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Echolocating bats possess remarkable capability of multitarget spatial localization and micromotion sensing in a full field of view
(FFOV) even in cluttered environments. Artificial technologies with such capability are highly desirable for various fields.
However, current techniques such as visual sensing and laser scanning suffer from numerous fundamental problems. Here, we
develop a bioinspired concept of millimeter-wave (mmWave) full-field micromotion sensing, creating a unique mmWave Bat
(“mmWBat”), which can map and quantify tiny motions spanning macroscopic to μm length scales of full-field targets
simultaneously and accurately. In mmWBat, we show that the micromotions can be measured via the interferometric phase
evolution tracking from range-angle joint dimension, integrating with full-field localization and tricky clutter elimination. With
our approach, we demonstrate the capacity to solve challenges in three disparate applications: multiperson vital sign monitoring,
full-field mechanical vibration measurement, and multiple sound source localization and reconstruction (radiofrequency
microphone). Our work could potentially revolutionize full-field micromotion monitoring in a wide spectrum of applications,
while may inspiring novel biomimetic wireless sensing systems.

1. Introduction

Bats are arguably the most unusual mammal with a remark-
able capability of ultrasonic echolocation, enabling them to
perceive the environment and preys in complete darkness
[1]. With large and complex-shaped ears and sophisticated
neural processing, echolocating bats exhibit accurate three-
dimensional localization of multiple targets in the full field
of view (FFOV) [2–5]. Furthermore, although the neural pro-
cessing mechanism remains somewhat unclear, bats are par-
ticularly notable for perception of small motions (e.g.,
insects’ fluttering wings and frogs’ dynamically inflated vocal
sac) using short-duration broadband frequency-modulated
(FM) calls, which is critical to distinguish and capture preys
especially in noisy or cluttered environments [6–9]. It is
worth noting that tiny motions are widespread from the nat-
ural world to engineering, including heartbeat and bridge
vibrations, which carry a wealth of meaningful physical
information [10–12]. The accurate and robust perception of

tiny motions is significant in a variety of fields, such as
healthcare monitoring [13, 14], human-computer interaction
[15], Internet of Things [16], and structural health monitor-
ing [17]. Particularly, imaging and quantifying micromotions
in a two-/three-dimensional (2D/3D) space is highly desir-
able for numerous applications from biology to engineering
[18–22], and motivating multiple artificial technologies
[23–25].

However, current artificial approaches are mainly based
on contact sensors (e.g., wearable devices and accelerome-
ters), camera sensing, and laser scanning, each of which suf-
fers from fundamental problems. A network with a mount of
accelerometers is generally time consuming and costly and
commonly has low accuracy for displacement measurement,
while the contact manner has many limitations in practical
applications. Camera-based solutions have rich spatial infor-
mation but suffer low accuracy and high computing load due
to sophisticated processing of image stream data. Typically,
camera systems also remain challenging with poor lighting
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conditions and highly dynamic motion visualization. Laser-
based approaches, such as the laser Doppler vibrometer,
commonly require scanning to achieve planar or spatial
micromotion information, which limits measurement syn-
chronization. In addition, they suffer the drawbacks of high
cost, large volume, highly specialized setups, and stringent
operating environment requirements. Distinct with the com-
mon range and velocity detection [26], emerging radar-based
radiofrequency (RF) methods can potentially sense and mea-
sure micromotions [27–29]. However, they are limited to
monitoring only one target or several targets far apart in
one-dimensional space, while struggling with tricky clutter
interferences [30, 31].

Here, inspired by echolocating bats in terms of micromo-
tion spatial localization and sensing, we have developed a
concept of millimeter-wave (mmWave) full-field micromo-
tion sensing (MFMS), a method for noncontact imaging
and monitoring tiny motions in FFOV. We refer to this con-
cept as mmWave Bat (mmWBat), which transmits and
receives mmWave signals instead of ultrasonic wave signals,
allowing artificial system miniaturization and has a large
monitoring range. In mmWBat, multiple transmitter and
receiver antennas are arranged for measuring azimuth and
elevation, mimicking the two powerful ears of bats, which is
quite distinct from the existing approaches of radar-based
micromotion sensing (the micromotion is commonly mea-
sured within the range profile). By emitting and receiving
linear-frequency-modulated continuous wave (LFMCW)
across multiple sweeps, we establish the fundamental princi-
ple of interferometric phase evolution tracking from range-
angle joint dimension, enabling the mmWBat to map and
quantify micromotions in FFOV simultaneously and accu-
rately. To illustrate the versatility and appealing advantages
of the mmWBat, we demonstrate three disparate applications
from biology to engineering: multiperson vital sign monitor-
ing, full-field mechanical vibration measurement, and multi-
ple sound source localization and recovery (termed RF
microphone). Our work provides a revolutionary approach
for full-field micromotion monitoring in various fields, while
offering new perspectives for mmWave sensing as well as
potentially inspiring novel biomimetic wireless sensing sys-
tems based on an understanding of the perception mecha-
nisms used by echolocating mammals.

2. Concept and Implementation of mmWBat

Figure 1 presents a comparison of the echolocating bat
(Figures 1(a) and 1(b)) and mmWBat systems (Figures 1(c)
and 1(d)) for micromotion sensing in FFOV. The gleaning
bat emits a series of ultrasonic calls by its larynx, listens to
the echoes by two ears, and processes the contained informa-
tion of prey and environment via a sophisticated neural sys-
tem. The bat’s sonar system is generally equipped with two
large and complex-shaped ears (pinnae and tragi), enabling
excellent multitarget spatial localization [4, 5]. Although the
echolocating calls can be diverse among different species
and tasks, the short-duration, high-frequency, and broad-
band calls are validated to have great benefits for accurate
target localization and classification [7, 32]. The biosonar

system of bats is exceptionally sensitive of preys with motions
from large to tiny movement, allowing effectively foraging in
cluttered environments. Large motions can provide cues with
obvious Doppler frequency modulation; however, some spe-
cies of bats (e.g., the common big-eared bat, Micronycteris
microtis) have been demonstrated with outstanding capabil-
ity of micromotion perception in clutter related to informa-
tive phase variations, suggesting the neural processing
mechanism is just beginning to be understood [6, 7, 9, 33].

Figures 1(c) and 1(d) illustrate the schematic of our bio-
logically inspired mmWBat system, which can distinguish
and simultaneously monitor tiny motions of multiple targets
in a 2D/3D space. To achieve a long detection range andmin-
iaturize the artificial system, our mmWBat system transmits
and receives mmWave signals instead of ultrasonic wave sig-
nals. The system consists of a mmWave transceiver with an
antenna array, an analogue-to-digital converter (ADC), and
a processor, which mimic the biological sonar’s emitting
and receiving components, neural coding and processing,
respectively. A more detailed structure of the mmWBat
appears in Supplementary Fig. 1. The antenna array consist-
ing of multiple receiver antennas distributed horizontally and
vertically with a certain aperture is configured for mimicking
the two large and powerful ears of bats, enabling azimuth and
elevation localization. For practical implementation, the
multiple-input multiple-output (MIMO) antenna array can
be employed to achieve high angular resolution with a small
real aperture. Similarly, the mmWBat transmits short-dura-
tion, broadband LFMCW mmWave signals with multiple
sweeps, which can achieve better range resolution and track-
ing sensitivity. Note that although bats always shorten their
FM calls to avoid overlap of the receiving echoes [34–36],
the artificial mmWBat needs to mix the LFMCW broadcasts
and the receiving echoes for interference and modulation due
to the ultrafast electromagnetic wave propagation speed (i.e.,
light speed), allowing range detection and sensitive tiny
motion perception. Furthermore, the coherence maintenance
of the mmWBat system is critical for micromotion perceiv-
ing, as the capability of temporal coincidence between sound
production and echo reception in the bat’s central auditory
system, which can be performed by sharing the clock
between the ramp generator and ADC or sampling the base-
band signal and ramp signal synchronously.

Here, we demonstrate the proposed fundamental princi-
ple of MFMS with the mmWBat system. Figures 2(a) and
2(b) show the schematic of data flow across multiple sweeps
with multiple receiver channels and multitarget mapping of
the mmWBat. By performing beat frequency estimation of
the baseband signal of a certain channel, the mmWBat can
commonly achieve the range profile. Although the angular
resolution mechanism with digital beamforming depending
on an antenna array is well understood, the micromotion
quantifying in angle dimension has not been exploited and
is considered challenging because of ultrahigh angular reso-
lution requirements, as well as insensitivity to tiny motions.
In MFMS, we propose to extract the micromotion informa-
tion of full-field targets via interferometric phase evolution
tracking from the range-angle joint dimension. For ease of
illustration, we first consider the single-target scenario.
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According to the LFMCW ranging principle, the target’s
reflection produces a beat signal component and the compo-
nent corresponding to the ith chirp can be simply formulated
as SBðiT + tÞ = AðtÞ exp ½jð2πf bt + φR + φiÞ�, where AðtÞ is
the amplitude of the signal and f b and φR are the beat fre-
quency and fixed phase shift corresponding to the distance
between the target and the antenna, respectively. φi is the
modulated phase which is sensitive to tiny motions. Ignoring
the amplitude variation along fast time and performing the
beat frequency demodulation, we can represent this compo-
nent with the phasor A exp ½jðφR + φiÞ� (see Supplementary
Note 1). Generally, we assume the multiple receiver antennas
(or equivalent virtual antenna array) of the mmWave sensing
system construct a uniformly spaced linear array. According
to the geometric relationship of the propagation paths
between different antennas (see Supplementary Fig. 2a), the
phasor representation of multichannel downconverted base-
band signals for the ith chirp can be approximated and sim-
plified (see Supplementary Note 1) as
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whereM is the total number of equivalent receiver antennas,
d is the distance between adjacent receiver antennas, θ is the

incident angle (i.e., the azimuth or elevation angle of the tar-
get in FFOV), and λc is the wavelength corresponding to the
central ramp frequency. It is observed that for the angle-
dimensional multichannel phasor signal of each sweep, its
frequency is equivalent to d sin θ/λc and its phase is equiva-
lent to φR + φi. Therefore, we show that the key phase evolu-
tion (i.e., φi, i = 1, 2,⋯) information corresponding to the
micromotion displacement in range dimension can be
reserved and equally transferred to angle dimension. As a
result, for mmWave micromotion sensing, we can ultimately
estimate and extract the phase history across multiple sweeps
from the angle dimension.

Extending to common full-field multitarget scenarios, the
angle-dimensional phasors regarding multichannel baseband
signals can be expressed as
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where l = 1, 2,⋯L, L is the total number of detectable targets
and θl is the incident angle of the lth target. Therefore, we can
simultaneously measure and track the phase evolution corre-
sponding to each target from the converted angle dimension.
With the aspect of phasor analysis, it is worth noting that our
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Figure 1: Overall comparison of the echolocating bat and the mmWBat. (a) Schematic of the echolocating bat with multitarget tiny motion
perception. (b) Schematic of the biosonar system. (c) Schematic of the mmWBat system with micromotion perception in FFOV. (d) Block
diagram of the mmWBat system. Txs: transmitters; Rxs: receivers; ADC: analogue-to-digital converter.
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approach is equivalent to separating and isolating the desired
components combined with range dimension and angle
dimension, offering great benefits of the challenging clutter
interference suppression especially for the mutual coupling
issues (see Supplementary Note 2) in real scenarios. In
addition, for 3D spatial multitarget localization, the range-
azimuth and the range-elevation estimations should be
performed in succession. However, when extracting the
micromotion displacements of full-field targets, only one of
the azimuth and elevation angle dimensions is employed to
form the range-angle joint dimension.

For practical implementation, Figure 2(c) shows the flow
chart of micromotion measurements of full-field targets with
the mmWBat, and Figure 2(d) presents the schematic illus-
trating how to extract the time-domain displacement signals
of a certain target via phase variation estimation in the range-
angle joint dimension. In Materials and Methods and
Supplementary Fig. 2, we show the basic algorithm of full-
field phase evolution tracking. Consequently, according to

the interferometric measurement principle, the displacement
time series of micromotion of each target can be extracted as
xðl, iTÞ = ½λcðφðl, iTÞ − φl meanÞ/4π�/cos ϕl, where φðl, iTÞ is
the extracted variation phase of target l for the ith sweep,
φl mean is the mean of φðl, iTÞ, i = 1, 2,⋯, and ϕl is the angle
between motion direction and the mmWave line-of-sight of
target l.

3. Results

3.1. Multi-Person Vital Sign Monitoring with mmWBat. The
mmWBat system offers great potential for revolutionizing
healthcare solutions in biomedical engineering, which is not
wearable, regardless of bad lighting and with complete pri-
vacy. Particularly, the example involves noncontact vital sign
(i.e., respiration and heartbeat) monitoring is valuable for
health disorder evaluation, disease diagnostic, and sleep qual-
ity analysis of people, especially for infants and the elderly
[37]. Moreover, it is worth noting that the mmWBat can
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provide a cost-efficient way to simultaneously monitor the
vital signs of multiple persons in public places including
nursing homes and hospitals. For example, it can perform
the health monitoring of a large number of patients in mobile
cabin hospitals combating COVID-19, which can save a lot
of medical resources, offer long-term comfortable monitor-
ing, and reduce the infection risk of medical workers [38, 39].

The intrinsic principle of vital sign detection with RF
sensing is measuring the micromotion of the chest wall
caused by cardiopulmonary activity. Although many efforts
have been made with microwave radar-based methods, two
main challenges remain that prevent the widespread applica-
tion of this technology. Firstly, since the chest wall movement
caused by heartbeat is much smaller than that of respiration,
and the movements are averaged with multipoint scattering
effect, the current RF-based far-field vital sign monitoring
cannot retrieve the heart rate (HR) accurately and reliably
in practical scenarios even with careful processing. Secondly,
for multiperson (e.g., a couple and their baby in the bed)

monitoring scenarios, it requires individuals to be far apart
from each other to mitigate mutual interference. The
mmWBat system offers an effective approach to address
these challenges by full-field micromotion sensing on the
multiple body parts of one individual, as well as multiple
individuals. For per individual, the mmWBat can automati-
cally locate the chest position of the heartbeat according to
the characteristics of heartbeat activity, allowing a great
reduction in the average effect of multipoint scattering, which
can significantly enhance the desired heartbeat component.
For multiple individuals, the mmWBat is attractive to elimi-
nate the tricky mutual interference with sensing in range-
angle joint dimension. Note that, since the human body is a
flexible continuum, it requires the mmWBat to have rela-
tively high angular resolution for achieving excellent
performance.

Figure 3 presents the experimental setup (Figure 3(a))
and results (Figures 3(b)–3(d)) of multiperson vital sign
monitoring. To mimic a multiuser scenario in a real-world
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setting, we recruited three volunteers to sit on a couch shoul-
der by shoulder in a break room and they stay in a quasistatic
situation without large body movement. The mmWBat
device sensed and monitored their vital signs simultaneously
from a distance of about 2m, and additional details appear in
Materials and Methods. As an example, the extracted chest
wall displacement signal of the volunteer on the left is shown
in Figure 3(b) and that of all individuals are shown in Supple-
mentary Video 1. It is observed that the desired heartbeat
component can be well retrieved with full-field micromotion
sensing and localization from different body parts. With
sliding window processing, Figure 3(c) presents the com-
parison results of the tracked respiration rate (RR) and
HR time series and the corresponding references, which
show a good match. The challenging HR tracking, in par-
ticular, can be reliably achieved via heartbeat component
enhancement sensing with our proposed MFMS method.
Moreover, we evaluate the monitoring accuracy of all three
individuals in percentage by defining confidence intervals
(see Figure 3(d)), with most measurement errors less than
±3Beats/Min. In addition, the composition of the success
percentage with deviation within 1 b.p.m., 2 b.p.m., and
3 b.p.m. is provided to illustrate the agreement performance.
These results demonstrate that mmWBat can monitor multi-
ple individuals’ vital signs (even with zero separation) and
micromotions of different body parts, exhibiting a promising
technique for contactless vital sign monitoring.

3.2. Full-Field Mechanical Vibration Measurement via
mmWBat. The mmWBat is capable of micromotion
mapping and quantification of multiple targets or points
simultaneously, thereby creating interesting opportunities
for full-field mechanical vibration monitoring. Our approach
offers appealing advantages as nonintrusive, full-field, large
measurement region and vibration scales (μm to m), along
with high reliability in harsh environments, which are highly
desirable for structural health monitoring, modal analysis,
and machinery diagnostics in mechanical, aerospace, and
civil engineering. Here, we validate and compare the perfor-
mance of the mmWBat and the existing radar-based tech-
nique by conducting experiments with various scenarios.
Figures 4(a) and 4(b) presents the block diagram and a pho-
tograph of the experimental setup. As shown in Figure 4(c),
we mimic three typical measurement scenarios (similar to
gleaning bats), which can comprehensively examine the sig-
nificant performance improvement of our approach and
highlight the key aspect of clutter interference suppression
for mmWave sensing. Additional details concerning the
experimental setup appear in Materials and Methods.

Figure 4(d) depicts the comparison result of the typical
scenario when the two targets are located in adjacent range
bins. In conventional radar-based micromotion sensing, the
adjacent clutter interference (caused by the reflection of adja-
cent objects) is common and has an obvious effect on the
measurement accuracy of both targets. It is challenging to
evaluate and suppress the adjacent clutter due to the mutual
coupling between components (see Supplementary Note 2).
However, the mmWBat system can effectively eliminate the
adjacent clutter interference from the range-angle joint

dimension and obtain accurate displacement measurement
results (see Figure 4(d)). In addition, Figure 4(g) illustrates
the benefit of the MFMS method when the two targets are
placed at different azimuth angles. The root mean square
error (RMSE) of measurements is adopted to better evaluate
the performance. We show that our approach can achieve
much better performance in all cases and the measurement
error is stably small, offering an effective strategy to eliminate
the tricky clutter interference.

For the scenario when the two targets are located in a
same range bin, we also provide corresponding comparison
results with a similar form (see Figures 4(e) and 4(g)). Obvi-
ously, the existing radar-based technique is difficult or
impossible to perform phase evolution tracking due to the
severe aliasing problems, which results in failure of multitar-
get vibrationmeasurement and sensitive to the demodulation
frequency. In contrast, the MFMS method can accurately
extract the vibration displacement of each target via angle-
dimensional demodulation, illustrating the effectiveness and
significant advantages of our technique (see the good agree-
ment between reference and measured results). Note that
due to the heavy coupling in range dimension, the measure-
ment accuracy in this scenario is indeed slightly lower than
the previous scenario, which can be solved by increasing
the angular resolution of the mmWBat system. Moreover,
we further evaluate the performance when the two targets
are close in angle dimension (i.e., targets have similar azi-
muth angles in our example). Experiment results (see
Figure 4(f)) show that although the two targets are adjacent
in angle profile, the proposed approach can also achieve bet-
ter measurement accuracy than the conventional technique.
As shown in Figure 4(f), since targets A and B are separated
far apart, the current technique can achieve a relatively small
measurement error due to the weak interference. However,
the proposed method can further improve the measurement
accuracy even with adjacent angles, which benefits from the
isolation and distribution in range-angle joint dimension.
Examples of full-field vibration monitoring with the three
typical scenarios illustrated are shown in Supplementary
Video 2.

Furthermore, Supplementary Video 3 presents the full-
field dynamic monitoring of a scaled bridge (18 cm × 90 cm
) under different load conditions, offering an example of
vibration and deformation-based structural health monitor-
ing of large structures. With the mmWBat system, we can
accurately and remotely measure full-field multipoint dis-
placements of the scaled bridge, creating an effective
approach to solve the problem of dynamic deflection moni-
toring and torsion monitoring. Note that for the torsion
monitoring of a long-span bridge in practical applications,
owing to the remote monitoring requirement, the system
may need to be equipped with more equivalent receiving
antennas, which can better eliminate the coupling interfer-
ence between two parallel measurement points distributed
on both sides of the bridge structure.

3.3. mmWBat as RF Microphone. We also applied the
mmWBat to the field of sound source localization and recon-
struction, which is significant and useful in a wide range of
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Figure 4: Experimental results of full-field mechanical vibration measurement. (a, b) Experimental setup: block diagram (a) and photograph
(b). (c) Schematic illustration of three typical measurement scenarios, i.e., adjacent clutter (A), aliasing clutter (B), and adjacent angle (C).
(d–f) Comparison results of displacement tracking of targets A and B regarding three typical scenarios. Adjacent clutter scenario (d) and
aliasing clutter scenario (e) with θ1 and θ2 about 15° (one angular resolution). Adjacent angle scenario (f) when θ1 and θ2 are similar.
(g) Comparison of displacement measurement accuracy (i.e., RMSE) of targets A and B with different azimuth angles (i.e., θ1 ≈ θ2 ≈ 10°,
15°,⋯, 35°) corresponding to the first two typical scenarios.
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contexts such as sound separation and enhancement, target
recognition, surveillance, and security [40, 41]. Here, we
present an innovative approach to locate and reconstruct
multiple sound sources using the mmWBat, creating a
unique RF microphone. The key enabler underlying our RF
microphone is the proposed MFMS method and the fact that
sound is produced by micromotions with magnitude of μm
length scale and high frequency. With the mmWBat, we
detect and monitor the slight surface movements of sound
sources via FFOV sensing. Our approach exhibits several
exceptional advantages compared to existing techniques
such as microphone array. For example, regardless of the
characteristics of multiple sound sources and whether they
are coherent, we can achieve high directivity and separa-
tion with small size and power, while recovering the
high-quality audio signal of each source. Moreover, the
RF microphone can easily obtain high-performance range
and angular positioning without complex and time-
consuming estimation calculations.

Figure 5(b) shows the implementation procedure for the
RF microphone, which is detailed in Materials and Methods.
As a result, we can clearly distinguish the sound sources and
obtain their localization information, including their distance
and direction, while the extracted micromotion signals can
be employed for reconstructing the corresponding sound sig-
nals. We validate the feasibility and performance of the RF
microphone technique with experiments including three
loudspeakers (i.e., sound sources). Figure 5(a) presents the
experimental setup, and additional details appear in Mate-
rials and Methods. To mimic real scenarios, we put several
stationary objects and the three sound source targets in the
detection region. As shown in Figure 5(b), we first achieved
the range-angle heatmap of all targets and tracked the phase
evolution signals corresponding to each possible target based
on the MFMS method. Then, we can further process to iden-
tify the sound sources (see Materials and Methods and
Supplementary Figure 3). Consequently, we were able to
extract the range and angle information of all sound source
targets accurately (see Figure 5(b), which matches well
with the ground truth obtained by rulers), and reconstruct
the corresponding audio signal of each source. In the
experiment, the three sound sources are different, offering a
comprehensive testing scenario. For better evaluation, we
show the comparison results of the time-frequency
representations of the recovered signal and original audio
for each source (see Figure 5(c)–5(e)). It is seen that the RF
microphone can effectively separate different sound sources
and accurately recover the audio signals. Moreover, as a
comparison, the sound signal captured by the traditional
microphone of a cellphone is also provided (see
Figure 5(f)). Obviously, the conventional microphone
cannot separate and isolate different sound sources, which
leads to severe sound aliasing. To intuitively evaluate our
reconstructed audios with the comparison of the traditional
microphone, we recommend listening to Supplementary
Video 4.

Note that the RF microphone has a relatively low recov-
ery performance for music sound which generally has many
high-frequency components (see Figure 5(e)). This is because

the micromotion corresponding to high frequency is ultra-
small, which is susceptible to noise interference. However,
the RF microphone can also successfully recover a clear
music sound even if high-frequency components are not
well preserved (see Supplementary Video 4). Furthermore,
for better perception and reconstruction of high-frequency
sound, it suggests achieving submicron displacement mea-
surement accuracy which requires high signal-to-noise
ratio (SNR). Since the RF microphone has excellent capa-
bility for sound source localization, we can further use the
beam steering technique to focus on the sound source tar-
get of interest, which can well improve the SNR and
reduce interference, allowing high-quality broadband
sound recovery. Considering that traditional microphones
work in response to sound pressure, the RF microphone
can be extended to sense and extract the minute motions of
other objects stimulated by sound pressure, which is poten-
tially useful for handling scenarios where sound sources are
obscured.

4. Discussion

Here, we have demonstrated a bioinspired mmWBat system
for mapping and quantifying micromotions in FFOV. Its
structure is functionally similar to that of the echolocating
bat’s biosonar system. In particular, we develop a fundamen-
tal concept of MFMS, which enables us to image andmeasure
tiny motions of full-field targets simultaneously and accu-
rately, providing significant technological advance compared
with the current emerging radar-based approaches. We
reveal the intrinsic transfer mechanism of the interferometric
phase evolution information between range and angle
dimension, allowing full-field micromotion sensing andmea-
suring from the range-angle joint dimension. Meanwhile, the
MFMS method also provides an effective strategy for tackling
the challenge of tricky clutter interference in mmWave
sensing. The potential and appealing advantages of our
mmWBat concept are highlighted in three disparate appli-
cations, namely, multiperson noncontact vital sign moni-
toring, full-field mechanical vibration measurement, and
multiple sound source localization and reconstruction,
which provide novel approaches and insights into address-
ing challenges of micromotion sensing in various fields.
We envision that our approach can revolutionize micro-
motion monitoring technology with a large monitoring
range, full-field synchronous measurement, multiscale
visualization, high accuracy, robustness, and low cost. Fur-
thermore, our work opens up new perspectives and moti-
vates interesting research of mmWave sensing, while
possibly inspiring novel biomimetic wireless sensing sys-
tems with an understanding of the perception mechanisms
used by echolocating mammals.

5. Materials and Methods

5.1. Algorithm of Full-Field Phase Evolution Tracking. The
basic algorithm can be implemented with the following two
main steps:
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Figure 5: RF microphone. (a) Photograph of the experimental scenario. (b) Schematic illustration of procedures and results of sound source
localization and recovery. (c–e) Comparison results of sound recovery regarding sound 1 (c), sound 2 (d), and sound 3 (e). Recovered sound
signal is with time-domain (A) and time-frequency (B) representation, and the original sound signal is with time-frequency representation
(C). (f) Sound recovery results from a cellphone’s microphone.
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(1) Full-field target localization and phasor index

As shown in Supplementary Fig. 2b, we first choose a cer-
tain (e.g., the first) sweep multichannel baseband signal H
= ½S1,⋯Sm,⋯SM�, where Smðm = 1,⋯MÞ denotes the corre-
sponding mth channel signal and then perform the calcula-
tion with a two-dimensional fast Fourier transform (FFT).
Specifically, we first calculate the FFT for each channel base-
band signal (i.e., each column of H) to obtain the range-
dimensional phasor matrix Hf. Then, we calculate the FFT
for each row of Hf (i.e., phasors of multiple channels) and
denote the obtained matrix as Hff. Note that to refine the
spectrum and reduce the fence effect, we can apply the com-
monly used zero-padded FFT for practical calculations.

Next, we perform a simple peak detection with ∑P−1
p=0abs

ðSðk, pÞÞ, where Sðk, pÞ is the element in row k and column
p of matrixHff, absð·Þ denotes taking the complex magnitude,
and P is the total column number ofHff. Accordingly, we can
achieve the located range bins and the peak index klðl = 1,⋯Þ
of full-field targets. Similarly, the located angle bins and the
corresponding index plðl = 1,⋯Þ can be obtained by directly
employing the magnitude peak detection on row kl of matrix
Hff. The obtained phasor corresponding to the desired com-
ponent of each target by FFT and index search has a certain
error with the ground truth, but fortunately, it has no effect
on the phase variation tracking (see Supplementary Note 2
for details).

(2) Full-field phase evolution estimation

When the heatmap and the corresponding phasor
indexes of full-field targets are obtained, the phase evolution
of each target can be estimated as

φ l, iTð Þ = arg 〠
M−1

m=0
〠
N−1

n=0
si n,mð Þe−j 2πnkl/Nzð Þe−j 2πmpl/Mzð Þ

" #
, ð3Þ

where φðl, iTÞ denotes the estimated initial phase corre-
sponding to the ith sweep period of the lth target, arg ½·�
denotes taking the phasor angle, sið·Þ is the multichannel
baseband signal of the ith sweep period with N rows and M
columns, and NZ and MZ are the FFT sizes of the first and
second FFT calculations in the previous step, respectively.
In addition, due to the calculated phase angle that always lies
between ±π, it is essential to perform the unwrap procedure
for practical use.

5.2. Experimental Setup and Implementation

5.2.1. Construction of the mmWBat System Prototype. The
mmWBat system prototype built consists of a commercial
mmWave transceiver, a data capture card, and a laptop. To
achieve different angle resolution capacity, we adopted two
types of mmWave transceivers: (i) AWR1443, Texas Instru-
ments, which mainly includes microcontroller, single-chip
front-end (Tx power: 12 dBm, carrier frequency: 77-79GHz
are used) and onboard antennas (2 Txs and 4 Rxs are used)
and (ii) AWR1243P cascade, Texas Instruments, which
mainly consists of 4-chip AWR 1243P. The data capture card

streams the transceiver raw data over Ethernet to the laptop.
The mmWBat system works in LFMCW mode with saw-
tooth modulation. We use software (mmWave Studio) for
transceiver parameter setting, data acquisition, and control.
The raw data is saved and processed offline using MATLAB
R2017b.

5.2.2. Setup of Multi-person Vital Sign Monitoring
Experiments. Three volunteers are asked to sit on a couch
shoulder by shoulder and breathe normally. During experi-
ments, they are in a state of daily behavior (i.e., reading books
or using their cell phones) in quasistatic situations. A breath-
ing belt and a finger pulse sensor are adopted for each indi-
vidual, which provide the references of RR and HR time
series, respectively. The reference signals are captured by a
DAQ device (USB-6210, National Instruments), which is
synchronous with the mmWBat system. The second type of
mmWBat system prototype is employed in this application,
and the main parameters of the mmWBat system are that
the transmitted bandwidth is 3GHz and the sweep cycle is
10ms.

5.2.3. Setup of Full-Field Mechanical Vibration Measurement
Experiments. In these experiments, two corner reflectors are
employed as the targets. They are mounted on two linear
stages and controlled to achieve different vibration move-
ments (target A: triangular pattern, target B: sinusoidal pat-
tern), respectively. The mimicked vibration device includes
two linear stages and a controller with a LabVIEW control
interface. To mimic the three typical measurement scenarios,
we place target A and the mmWave transceiver on an optical
table in different positions. During the experiments, we uti-
lize two laser displacement sensors (LK-G80, Keyence) to
provide the ground truths of the two target displacements,
respectively. The vibration signals measured by laser sensors
are captured by a DAQ device (USB 4431, National Instru-
ments), which is synchronous with mmWBat raw data acqui-
sition. The first type of mmWBat system prototype is
employed. With the built system, we employ 2Tx-4Rx
antenna configuration with time division multiplexing. The
sweep cycle is set to 4ms, and the transmitting bandwidth
is set to 2GHz (i.e., range resolution is 7.5 cm).

5.2.4. Implementation Procedure for the RF Microphone.
First, we achieve the range-angle profile of the monitoring
region illuminated by the mmWave beam. Then, we identify
the sound source targets depending on the micromotion
characteristics of the sound signals. To quickly locate and
reduce the amount of calculation, we extract the phase evolu-
tion signal of each possible target along slow time according
to the range-angle heatmap. To eliminate the interference of
low-frequency movement objects and possible undesirable
minor phase shift across sweeps due to the temperature drift
of hardware, we apply the high-pass filtering (finite impulse
response high-pass filter with a cut-off frequency of 40Hz)
to the extracted phase evolution signals. The key consider-
ation for sound localization via mmWBat is to distinguish
the sound source targets from other likely static objects. Since
the phase history corresponding to a static object is basically
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broadband thermal noise, there is no obvious frequency
component. In contrast, the sound source target usually has
rich frequency components which change dynamically.
Therefore, we propose to evaluate the time-varying sparse-
ness (TVS) of the amplitude spectrum of each phase history
signal with a sliding window. Specifically, we perform an
FFT on each window and calculate the ratio of the peak value
to the average value of the obtained amplitude spectrum.
Then, we distinguish the sound source targets and others
with the indicator TVS = arðtÞmean + brðtÞstd, where a and b
are weight coefficients (which are set to 1 and 2, respectively,
in our implementation due to the obvious time-varying of
sound signal spectrums), rðtÞmean and rðtÞstd are the mean
and standard deviation of rðtÞ (i.e., the calculated ratio time
series), respectively. If the indicator is larger than the thresh-
old (empirically set to 10), we consider it a sound signal
component.

5.2.5. Setup of RF Microphone Experiments. The mmWBat
device employed here is the same as in the full-field mechan-
ical vibration measurement experiments. The difference in
parameter settings is that the sweep cycle is set to 0.2ms
(i.e., micromotion displacement sampling frequency is
5 kHz). In the experiments, all targets are placed on an optical
table (length: 2m, width: 1.5m). In terms of the three sound
source targets, source 1 is driven by an arbitrary waveform
generator which outputs voltage signals with sinusoidal mod-
ulation, source 2 is driven and input by a computer and a
power amplifier with a tone signal, and source 3 is input to
music signals via Bluetooth. The traditional microphone of
a cellphone (P30, Huawei) captured the audio signal via a
sound recorder app, and the cellphone is placed next to the
mmWave transceiver.

5.2.6. Signal Processing Implementation of Experimental
Validations. According to the basic algorithm of full-field
phase evolution tracking, when performing 2D FFT for mul-
tichannel baseband signals, we used the zero-padded FFT
technique with Nz = 2N andMz = 180. For multiperson vital
sign monitoring experiments, after extracting the chest wall
displacement time series, we performed the RR and HR
tracking by using the sliding window technique (window
length: 15 s, step size: 1 s). For each window, the RR is esti-
mated by autocorrelation analysis after band-pass filtering
(0.1-0.9Hz) and the HR is estimated by first-order differen-
tial enhancement analysis. For RF microphone experiments,
the time-frequency representations of all recovered and orig-
inal sound signals are achieved by short-time Fourier trans-
form (STFT) with a sliding window size of 1024.
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