
RESEARCH ARTICLE

A pan-cancer analysis of matrisome proteins

reveals CTHRC1 and a related network as

major ECM regulators across cancers

Keerthi HarikrishnanID
☯*, Srinivas Sheshagiri PrabhuID

☯, Nagaraj Balasubramanian☯*

Indian Institute of Science Education and Research (IISER) Pune, Pashan, Pune, Maharashtra, India

☯ These authors contributed equally to this work.

* dr.keerthiharikrishnan@gmail.com (KH); brandbombay@gmail.com (NB)

Abstract

The extracellular matrix in the tumour microenvironment can regulate cancer cell growth

and progression. A pan-cancer analysis of TCGA data from 30 cancer types, identified the

top 5% of matrisome genes with amplifications or deletions in their copy number, that affect

their expression and cancer survival. A similar analysis of matrisome genes in individual

cancers identified CTHRC1 to be significantly altered. CTHRC1, a regulator of collagen syn-

thesis, was identified as the most prominently upregulated matrisome gene of interest

across cancers. Differential gene expression analysis identified 19 genes whose expression

is increased with CTHRC1. STRING analysis of these genes classified them as ‘extracellu-

lar’, involved most prominently in ECM organization and cell adhesion. KEGG analysis

showed their involvement in ECM-receptor and growth factor signalling. Cytohubba analysis

of these genes revealed 13 hub genes, of which MMP13, POSTN, SFRP4, ADAMTS16 and

FNDC1 were significantly altered in their expression with CTHRC1 and seen to affect sur-

vival across cancers. This could in part be mediated by their overlapping roles in regulating

ECM (collagen or fibronectin) expression and organisation. In breast cancer tumour sam-

ples CTHRC1 protein levels are significantly upregulated with POSTN and MMP13, further

supporting the need to evaluate their crosstalk in cancers.

Introduction

Extracellular matrix (ECM) is a dynamic interconnected mesh of macromolecules that pro-

vides structural support and also regulates cellular behaviour via mechanical and biochemical

cues. It regulates several cellular processes including proliferation, differentiation, migration,

invasion and survival [1]. ECM composition is tightly regulated by the cells and changes in

ECM production, secretion, deposition and remodelling are reported in pathological diseases

such as atherosclerosis, fibrosis, skeletal disorders, vascular disorders and cancer [2, 3]. ECM

composition also varies between the tumour cells, tumour stroma and it is distinctly different

across the metastatic sites [4, 5]. Recent studies characterizing changes in the composition of

ECM in normal and tumour microenvironments have emphasized the importance of ECM

and its contribution towards developing novel biomarkers and therapeutic targets [5–7].
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The “Matrisome” pioneered by Naba et al., is an ensemble of genes that codes for core

ECM proteins, ECM associated growth factors, ECM regulators and other ECM associated fac-

tors [6, 8]. It accounts for 4% of the human and mouse genome and reflects the composition of

proteins in normal and tumour tissues [3, 9]. Since the publication of MatrisomeDB in 2012,

the understanding of the role of ECM in cancers has significantly enhanced. Matrisome pro-

teins like Insulin like growth factor binding protein 3, 4, 5 (IGFBP3, IGFBP4, IGFBP5), Cellu-

lar Communication Network factor (CCN) family, Thrombospondin2 (THBS2), Tenascin N

(TNN) and Von Willebrand factor A 9 (VWA9) are detected primarily in cancer tissues [10]

while Lysyl oxidase like 2 (LOXL2) [11], Cartilage oligomeric matrix protein (COMP), Perios-

tin (POSTN) [12], Tenascin N (TNC) [13], Tenascin X (TNX) [13] and Fibronectin (FN)

(EIIIA and EIIIB variant) [14] have been reported to be upregulated in cancers. Oncomine

analysis of core matrisome genes in the lung, gastric, ovarian and colon cancers show that a

signature of 9 genes Collagen type XI alpha 1 chain (COL11A1), Secreted phosphoprotein

1 (SPP1), Microfibrillar associated protein 2 (MFAP2), Collagen type X alpha 1 chain

(COL10A1), Biglycan (BGN), Cartilage oligomeric matrix protein (COMP), Agrin (AGRN)

and Matrix remodelling associated 5 (MXRA5) is associated with poor survival and is involved

in regulating cancer hallmarks such as epithelial to mesenchymal transition (EMT), and angio-

genesis [15]. Data mining of 10 NSCLC microarray datasets has identified 29 ECM signature

genes which were found to be consistently upregulated in patients with NSCLC and also pre-

dicts prognosis [16]. Analysis of 12 cancer types (lung, pancreas, prostate, kidney, stomach,

colon, ovary, breast, liver, bladder and skin) shows that tumour matrisome index (TMI) is

associated with disease progression and poor clinical outcome [17]. In addition, tumours with

high TMI show enrichment for Mage family member A3 (MAGEA3) and CD8 positive T cells

and also display high expression of B7-H3 which is negatively associated with clinical outcome

in solid tumours [18].

Pan-Cancer analysis of transforming growth factor ß (TGFß) associated ECM gene expres-

sion shows a set of matrisome genes to be upregulated in cancer and the expression is associated

with a worse prognosis. This study also reveals an association of aberrant ECM expression with

immunosuppression in cancers [17, 19]. Cell-cell adhesion, Forkhead box O (FOXO), Wnt

pathways are found to control matrisome in most cancer types whereas tumour protein 53

(TP53), Notch and TGFß signalling pathways regulate matrisome genes in some cancers [20].

Using a multi-omics approach and machine learning, several landmark matrisome genes

have been identified from 74 clinical and molecular subtypes of cancers that show prognostic

significance [21]. Bioinformatic analysis of the copy number alterations (CNA’s) reveals that

matrisome genes display a disproportionately high number of CNA’s and mutations compared

to the rest of the genome [22] across cancers. This increase in the genome alterations of matri-

some was further predictive of prognosis across cancer types. Together, these findings high-

light a significant role of ECM genes in cancer progression.

While recent studies have evaluated the role of matrix protein families or individual cancer

matrisome signatures, our study was aimed at identifying matrisome genes that can act as vital

ECM regulators in pan-cancer analysis and individual cancers. Our pan-cancer analysis of

matrisome genes for copy number variation (amplification or deletion), relative expression

and effect on cancer survival identified collagen triple helix repeat containing 1 (CTHRC1) as

a major pan-cancer ECM regulator. Its role is further supported by CTHRC1 being identified

as the most prominently regulated ECM protein across individual cancers. Further, network

analysis reveals CTHRC1 could work with matrisome genes Periostin (POSTN), Matrix metal-

loproteinase 13 (MMP13), Secreted frizzled related protein 4 (SFRP4), Fibronectin type III

domain containing 1 (FNDC1) and ADAM metallopeptidase with thrombospondin type 1

motif (ADAMTS16) in regulating the impact ECM has on cancers.
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Materials and methods

Data sources

The list of matrisome genes was downloaded from the matrisome database [23]. TCGA Pan-

Cancer copy number data calculated using the GISTIC2 threshold method was downloaded

from the UCSC Xena browser [24]. TCGA and GTEx data was used to perform the expression,

survival, correlation, cooccurrence disease stage and protein analysis. The analysis was

restricted to 30 types of cancers from TCGA which include: Adrenocortical Carcinoma

(ACC), Bladder Urothelial Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), Cervial

Squamous Cell Carcinoma (CESC), Cholangiocarcinoma (CHOL), Colon Adenocarcinoma

(COAD), Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC), Esophageal Carci-

noma (ESCA), Glioblastoma Multiforme (GBM), Head and Neck Squamous Cell Carcinoma

(HNSC), Kidney Chromophobe (KICH), Kidney Renal Clear Cell Carcinoma (KIRC), Kidney

Renal Papillary Cell Carcinoma (KIRP), Brain Lower Grade Glioma (LGG), Liver Hepatocellu-

lar Carcinoma (LIHC), Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma

(LUSC), Ovarian Serous Cystadenocarcinoma (OV), Pancreatic Adenocarcioma (PAAD),

Pheochromocytoma and Paraganglioma (PCPG), Prostate Adenocarcinoma (PRAD), Rectum

Adenocarcinoma (READ), Sarcoma (SARC), Skin Cutaneous Melanoma (SKCM), Stomach

Adenocarcinoma (STAD), Testicular Germ Cell Tumours (TGCT), Thyroid Carcinoma

(THCA), Thymoma (THYM), and Uterine Corpus Endometrial Carcinoma (UCEC), Uterine

Carcinosarcoma (UCS).

Copy number variation analysis

First genes were clustered based on their functionality (ECM genes, Proteoglycans etc.). These

gene clusters were prepared as an excel file containing a single column with gene symbols as

cell entries and this list represented the genes of interest whose copy number variations were

to be analyzed. There were 10845 samples in total and the gene-level copy number estimate

values of -2, -1, 0, 1, 2 represented deep deletion, shallow deletion, no change, amplification

and gain respectively. The excel file retrieved after extracting the dataset was in the genomic

Matrix format (ROWs (identifiers) x COLUMNs (samples)). Next, we wrote a code in Python

to find the gene-level copy number estimate values of our genes of interest across all 10845

samples. To achieve this, we had to explore our list in the database retrieve the corresponding

values for the samples and process the data to calculate the number of deep deletions and gain.

The top 5% of the genes (n = 104) with amplification or deep deletion were then used for fur-

ther analysis. The code used to perform the analysis can be made available upon written

request.

Expression, survival, correlation and disease stage analysis

RNA expression for the matrisome genes was analyzed using the GEPIA2 portal [25] which

contains the expression data for 9736 tumour samples and 8587 normal samples and the data

is processed using a standard processing pipeline. The data from 30 cancer types are repre-

sented in a box plot (log scale) as mean ± standard deviation (S.D). We also evaluated the

expression of the matrisome genes by pathological stage using the stage plot function in the

database. The data from 30 cancer types are represented in a violin plot (log scale) which

shows the distribution of data. p-value less than 0.05 was considered statistically significant.

Survival analysis for all the matrisome genes was performed using TCGA data through the

GEPIA2 portal. A custom cutoff was set for the survival analysis with the top 75 percentile

being classified as “high” and the bottom 25 percentile classified as “low”. This classification
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was used to evaluate the significance of the difference in effect on survival that exists between

the “high” and “low” groups. Log-rank p values and the hazard ratio (HR) with 95% confi-

dence interval were calculated using the GEPIA2 web portal and a p-value of less than 0.05 was

considered statistically significant. This was used to classify individual cancers as affecting sur-

vival (p<0.05) or not (p> 0.05).

Percentage effect on expression and survival was calculated as follows:

Percentage affected ¼
number of cancers significantly affected

total number of cancers n ¼ 30ð Þ

Univariate and Multivariate Survival analysis for Figs 1B and 3B was performed using TCGA

data with the survival analysis code in the TCGA2STAT package in R (version 3.6.3)Analysis 2

(univariate), 3 (multivariate) [26].

Correlation analysis for CTHRC1 along with its 10 hub genes across 30 cancer types was

done using the Spearman correlation coefficient. Correlation where p< 0.05 was considered

statistically significant.

Scoring of genes based on expression and effect on survival

Genes selected based on their copy number agreeing with mRNA expression (Fig 2A) were

arranged in descending order based on their upregulation or downregulation across cancers.

The data plotted in these graphs represent percentage alteration calculated as above. A score

was assigned for each gene based on their position in the upregulated or downregulated graphs

respectively. The top gene was assigned a score of 1 and this score increased by 1 point for the

next gene. This was done for all genes in the graph.

All of the above genes (upregulated or downregulated) were further arranged based on

their effect on survival across cancers in descending order. A score was assigned for each gene

based on its position in the survival graph. The top gene was assigned a score of 1 and this

score increased by 1 point for the next gene. This was done for all genes in the graph.

These two scores were added to obtain the final score for upregulated and downregulated

genes. They were arranged in a table based on their score (low to high). A low score indicates a

higher ranking in expression (up or down) and survival.

Mutation and co-occurrence analysis

Mutation analysis for 8 shortlisted genes (based on expression, survival data as mentioned

above) was analyzed using the cBioPortal database across 30 cancer types. It showed the muta-

tional burden along with the copy number analysis in the patient samples. We also used this

portal to identify the co-expressed genes of CTHRC1(30 cancer types) in the cBioPortal using

the cooccurrence-mutual exclusivity tab in the database. p less than or equal to 0.05 was con-

sidered statistically significant.

Differential gene expression analysis

First, the data was preprocessed locally in R using the preprocessing script. The differential

gene expression (DEG) analysis was performed (30 cancer types) in groups with high expres-

sion (75%) or low (25%) expression. Thresholds for DEG’s was set at fold change > 2, -2 with

a p-value of 0.05. The following source code from the GitHub repository was used to perform

the preprocessing and the DEG analysis [27–29]
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Fig 1. Cancer type-specific analysis of matrisome genes. A) Schematic shows the steps involved in shortlisting genes

from the individual TCGA cancer dataset based on copy number (GISTIC score), expression and survival (GEPIA2

database). The number of genes that met the criteria for each stage and were eventually shortlisted are indicated in the

box for genes identified. Their occurrence in two or more cancers was used for the final selection (n = 1). B) Based on

their copy number, the number of deep deleted (BLUE bar) or amplified (RED bar) matrisome genes in individual

cancers (n = 28) were arranged in the descending order based on total genes affected (BLUE+RED). C) Based on their

mRNA expression, the top 5% of matrisome genes in individual cancers (n = 28) that are downregulated (BLUE bar) or

upregulated (RED bar) were arranged in descending order based on total genes affected (BLUE+RED). D)Table lists the

individual cancers with one or more amplified and upregulated (RED) or deleted and downregulated (BLUE) genes that
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Venn diagram analysis for overlapping genes

Omics Box software and the Venn diagram tool [30] were used to identify the overlapping dif-

ferentially expressed genes across cancer types. 20 genes that overlapped in 3 or more cancers

were used for further analysis. Venn diagram tool was also used to identify the top hub genes

that overlapped in survival, disease stage expression, correlation and co-occurrence analysis. 3

genes identified were then used to perform CPTAC analysis.

Protein-protein interaction and functional enrichment analysis

STRING database [31] was used to identify the protein-protein interactions of CTHRC1 along

with the differentially expressed genes across different cancer types. The list of proteins along

with CTHRC1 was entered in the online database and a medium confidence interaction score

of 0.4 was used to generate the full string network. The network was then exported as a high-

resolution image. Functional enrichment analysis performed using the STRING database

included biological process, molecular function, cellular compartment and KEGG pathways.

FDR of< 0.05 was used to identify the gene ontology (GO) terms that were statistically

significant.

CytoHubba analysis

The PPI network constructed using the STRING database was sent to Cytoscape using the web

link. Cytoscape (version 3.8.2) is an open-source software used for the visualization and analy-

sis of protein-protein interaction networks. Using the cytoHubba tool in the software, we iden-

tified the top 14 hub genes based on the degree of connectivity. These hub genes were then

used for further analysis.

GeneMANIA PPI network analysis

GeneMANIA [32] was used to construct a PPI network of CTHRC1 along with its hub genes

(POSTN, MMP13, FNDC1, SFRP4 and ADAMTS16) to identify if these genes are functionally

related and discover genes that could be part of this functional network. The networks were

generated using the following weighing methods: 1) Based on query genes and 2) Gene Ontol-

ogy. In the gene ontology-based weighing method, Biological Process and Cellular component

methods were used for building networks. GeneMANIA will build networks showing genetic

interactions, protein-protein interactions, protein-DNA interactions, protein expression, simi-

larity in protein domains, pathways and phenotypic screening profiles using the publicly avail-

able datasets.

UALCAN analysis

UALCAN is a web-based tool for the analysis of CPTAC data from the TCGA cancer types.

We used the UALCAN database [33] to analyze the protein levels of CTHRC1, POSTN,

MMP13, SFRP4 and FNDC1 in breast cancer. Data were represented as mean ± S.D and a p-

value of less than 0.05 were considered statistically significant.

affect survival. Genes marked with an asterisk (�) are also shortlisted in the pan-cancer analysis (Fig 2F). Genes marked

in bold are affected by more than one cancer type. E) Graph represents the mutational (GREEN), copy number

amplification (RED) and deletion (BLUE) analysis of CTHRC1 in 30 individual cancers. Arrows point to the individual

cancers where CTHRC1 is also selected as detailed above (Fig 1D).

https://doi.org/10.1371/journal.pone.0270063.g001
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Fig 2. Pan-cancer analysis of matrisome genes. A) Schematic shows the steps involved in shortlisting genes from the

pan-cancer TCGA dataset based on copy number (GISTIC score), expression and survival (GEPIA2 database). The

number of genes shortlisted at each stage of the selection process is indicated in each box. B) Deleted (n = 52) and

amplified (n = 52) genes were classified based on their mRNA expression as downregulated (BLUE), upregulated (RED)

and no change (GREEN). The nested bar graph represents the percentage of each for deleted (top graph) and amplified

(bottom graph) genes. C) Bar graph shows the percentage of cancers where the top 5% of amplified matrisome genes are

also upregulated (n = 23). Genes are arranged in descending order (RED–represents upregulated genes). D) Bar graph

shows the percentage of cancers where the top 5% of deleted matrisome genes are also downregulated (n = 17). Genes are

arranged in descending order (BLUE–represents downregulated genes). E) Bar graph shows the percentage of survival in
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Results

Pan-cancer analysis of altered matrisome genes

In this study, we first obtained the list of matrisome genes (n = 1027) from the Matrisome

database (DB). We then analyzed the copy number variation of these genes using the Pan-Can-

cer TCGA dataset from the UCSC cancer genome browser (Fig 2A). Overall, there were 10845

samples in this dataset which were scored based on their copy number variations (GISTIC

score from UCSC Xena browser) (Fig 2A). The top 5% of genes with deep deletions or amplifi-

cations were identified and shortlisted (104 genes). Using the GEPIA2 portal, we evaluated the

mRNA expression of these 104 genes across 30 cancer types. Of these deep deleted and ampli-

fied genes, 32.69% showed reduced mRNA expression (17 genes) and 44.23% showed

increased mRNA expression (23 genes) respectively (Fig 2B). Upregulated (Red Graph) and

downregulated (Blue Graph) genes were arranged in descending order as per their change in

pan-cancer expression (Fig 2C and 2D). Similarly, the effect of these genes on pan-cancer sur-

vival was determined using the GEPIA2 portal and genes were arranged in descending order

(Fig 2E) (the colour code used for expression of genes was retained in the graph). The relative

position of genes in the expression and survival graphs was used to score them as detailed in

the methods section. The final score thus obtained was used to arrange upregulated (red) and

downregulated (blue) genes in the descending order (Fig 2F). A low score indicates a higher

ranking for the gene in expression and survival.

Individual cancer analysis of altered matrisome genes

Further, we analyzed the copy number, expression and effect on survival of matrisome genes

in individual cancers (Fig 1A). The pooling of cancer types in the above pan-cancer analysis

could be sensitive to tumours with significant copy number alterations that could skew the

selection of gene(s) of interest. Combining the pan- and individual cancer analysis could be

better at identifying matrisome gene(s) of consequence. TCGA data for 30 individual cancer

types obtained from the UCSC cancer genome browser was used for copy number analysis.

This showed THYM and KICH cancers to lack deep deletions or amplifications in any of the

matrisome genes (data not shown). Of the 28 remaining cancers, 15 showed both deep dele-

tions and amplifications in their matrisome genes, while 10 showed only deep deletions and 3

had only amplifications. The total number of genes with amplification (red bar) and deep dele-

tions (blue bar) for individual cancers were represented in the graph and arranged in descend-

ing order (Fig 1B). In each of these 28 cancers, we selected the top 5% of genes whose copy

number is altered (either deleted or amplified) (Fig 1A). Using the GEPIA2 portal, we evalu-

ated the mRNA expression of these genes. Genes with deep deletion and reduced mRNA

expression or amplification and increased mRNA expression were shortlisted for each cancer

(Fig 1A). The number of so-identified upregulated (red bar) and downregulated (blue bar)

genes for each cancer were plotted and they were arranged in descending order (Fig 1C). We

further tested if these shortlisted genes in their respective cancers significantly affected survival

(Fig 1A). This revealed 14 amplified (red) and 8 deleted (blue) genes to affect survival in 12

individual cancers, listed in the table for Fig 1D. Of these genes, CTHRC1, PDGFA, and IL7

were also shortlisted as matrisome genes of interest in the pan-cancer analysis (Figs 1D and

cancers for the top 5% of matrisome genes shortlisted in C (RED bar) and D (BLUE bar). These are arranged in

descending order. F) Tables list genes in the ascending order of their score calculated based on their position in the

expression (C, D) and survival (E) graphs (as detailed in methods). A lower score is indicative of a higher position in these

graphs. Upregulated genes are listed in RED and downregulated genes are listed in BLUE.

https://doi.org/10.1371/journal.pone.0270063.g002
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2F). CTHRC1 was however the only gene that was affected in more than one individual cancer

type (BRCA, HNSC and LIHC) (Fig 1D). Copy number variation and mutation analysis for

CTHRC1 across cancers find it to be prominently amplified in most cancers (Fig 1E) including

BRCA, HNSC and LIHC (marked by arrow). This led us to choose CTHRC1 as the matrisome

gene of interest for further evaluation.

Detailed Pan-cancer analysis of CTHRC1

CTHRC1 (Collagen triple helix repeat containing-1) expression (evaluated in 30 individual

cancers using GEPIA2 portal confirmed its overexpression in 23 cancers (Fig 3A—labels in

red and Fig 3C–boxes coloured in purple). In 7 cancers no change in expression was observed

(Fig 3A—labels in black and Fig 3C–boxes coloured in green). We also compared the effect

CTHRC1 has on survival in 30 cancers using univariate and multivariate analysis. Using

TCGA data univariate analysis was done to calculate the hazards ratio (HR), which captures

the likelihood of CTHRC1 expression affecting survival in cancers (Fig 3B). The calculated sig-

nificance showed CTHRC1 expression to significantly affect survival in 11 cancers (Fig 3B and

3C –boxes in pink). A comparison of the expression and survival data to identify cancers sig-

nificantly affected in both reveals 9 individual cancers (Fig 3C). This includes the 3 CTHRC1

overexpressing individual cancers (BRCA, HNSC and LIHC) identified earlier (Fig 1D and

1E). The table in Fig 3C marks cancers with significant CTHRC1 expression in purple and

their significant effect on survival in pink. Multivariate survival analysis for race (data available

in 7 cancers) and gender (data available in 6 cancers) was also done. In these cancers with

available data, a comparison for race between, 1) White vs Not Hispanic or Latino, 2) White vs

Black and 3) White vs Asian revealed the following. In HNSC, survival was affected signifi-

cantly for white but not black patients. In LIHC and STAD survival was significantly affected

in Asian patients but not in white patients. In BRCA, black and white patients were both sig-

nificantly affected though their hazard ratios were distinctly different (Black– 5.77 and White–

1.97) (Fig 3D). This suggests black patients with “high” CTHRC1 expression (top 75 percen-

tile) are 3.8 times more likely to have poor survival compared to white patients in the top 75

percentile. Data for gender when compared revealed a significant effect on survival in only

males in BLCA and LIHC and only females in SARC. Males and females were significantly

affected in HNSC, KIRC and STAD (Fig 3E). Taken together, the multivariate analysis across

CTHRC1 overexpressing cancers does not reveal any distinctly conserved effect on survival

across race or gender. These effects when seen do seem to be limited to individual cancer

types.

Identifying possible genes involved in CTHRC1 dependent cancers

Differential gene expression (DEG) analysis of the 9 CTHRC1 dependent cancers, BLCA,

BRCA, HNSC, KIRC, LIHC, OV, READ, SARC and STAD was done to identify genes that

could be regulated by CTHRC1. The top 5% of these genes with a 2 fold increase or decrease

(p<0.05) in expression in each of the above cancer types were selected for further analysis (Fig

4A, S1A - S1J Files in S1 File). This identified 19 genes that were upregulated in 3 or more can-

cers (Fig 4B and 4C), but none that were downregulated. The Venn diagram (Fig 4B) shows

the overlapping upregulated genes. The 19 upregulated genes include Collagen type XI alpha 1

chain (COL11A1), Secreted Frizzled related protein 2 (SFRP2), Periostin (POSTN), Epiphycan

(EPYC), Cartilage oligomeric matrix protein (COMP), Collagen type X alpha 1 chain

(COL10A1), Osteomodulin (OMD), Leucine rich repeat containing 15 (LRRC15), Secreted

frizzled related protein 4 (SFRP4), Phosphatidic acid phosphatase type 1A (PPAPDC1A),

ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS16), Osteoglycin
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Fig 3. Pan-cancer analysis of CTHRC1 expression and its effect on survival. A) Graphs represent CTHRC1

expression data from the GEPIA2 portal in 30 different tumour types (T–RED bar) relative to normal (N–GREY bar).

Cancers showing significant upregulation in CTHRC1 are listed first and labelled in RED. Those showing no

significant change in expression are listed later and labelled in BLACK. Expression data are represented as

mean ± standard deviation (S.D) on a log scale using a box plot. p-value of< 0.05 was determined as statistically
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(OGN), Chromosome 5 open reading frame 46 (C5orf46), Fibroblast activation protein alpha

(FAP), Fibronectin type III domain containing 1 (FNDC1), Teneurin transmembrane protein

1 (ODZ3/TENM1), Matrix metalloproteinase 13 (MMP13), Integrin subunit beta like 1

(ITGBL1) and Thrombospondin 4 (THBS4) (Fig 4C). They were used to construct a protein-

protein interaction network using the STRING database (Fig 4D). Co-expression, database

information and text mining are what largely contribute to the making of this network. There

is hence a vital need to experimentally validate this network. Functional enrichment analysis

of this network revealed ECM organization and adhesion to be among the top 5 biological pro-

cesses regulated by these network genes (Fig 4E). At the molecular level, these proteins bind

Fibronectin, Collagen, cell adhesion molecules and integrins among others (Fig 4F). Proteins

in this network almost exclusively belong to the extracellular compartment (extracellular

matrix, region and space) (Fig 4G). KEGG analysis of this network further shows their involve-

ment in ECM-receptor interaction, Wnt and focal adhesion signalling (Fig 4H). cytoHubba

tool identified 14 hub genes (with a score�1) from this predicted network which includes,

POSTN, COMP, COL11A1, MMP13, COL10A1, OMD, OGN, SFRP4, SFRP2, THBS4,

CTHRC1, FAP, ADAMTS16 and FNDC1 (Fig 4I). Of these POSTN ranks highest and has the

most number of connections, which also includes CTHRC1.

To validate the significance of these hub genes with CTHRC1, we first analyzed the effect

on pan-cancer survival of CTHRC1 and these 13 hub genes using the TCGA data through the

GEPIA2 portal. Like CTHRC1, COL11A1, MMP13, COL10A1, POSTN, OGN, SFRP4, FAP,

ADAMTS16 and FNDC1 were all seen to significantly affect survival in cancers with “high”

expression (top 75 percentile) relative to “low” (bottom 25 percentile) (Fig 5A). THBS4 how-

ever significantly affects survival in cancers with “low” (bottom 25 percentile) relative to

“high” (top 75 percentile) (Fig 5A). We used data from the GEPIA2 portal to determine if the

change in expression of CTHRC1 and 13 hub genes is associated with tumour grade. Statistical

analysis of this change across tumour grades by ANOVA showed all hub genes and CTHRC1

expression to indeed be tumour stage-dependent (Fig 5B). Spearman correlation analysis

showed a positive correlation between all the 13 hub genes and CTHRC1 (Fig 5C). cBiportal

analysis also showed a significant co-occurrence between CTHRC1 and OMD, POSTN, OGN,

MMP13, COMP, SFRP4, ADAMTS16 and FNDC1 (Fig 5D). Based on the significant effect

they have on survival, tumour grade, correlation and co-occurrence analysis, we identified five

genes, POSTN, MMP13, SFRP4, ADAMTS16 and FNDC1 as the most likely mediators of

CTHRC1 dependent function in cancers (Fig 5E–represented in the Venn diagram).

It would hence be of interest to look at the protein expression data in cancers for CTHRC1

and the now identified genes of interest, POSTN, MMP13, SFRP4, ADAMTS16 and FNDC1.

Of the 9 cancers shortlisted in the pan-cancer analysis based on CTHRC1 overexpression and

its effect on cancer survival (Fig 3A–3C), BRCA, HNSC and LIHC were also shortlisted in the

individual cancer study based on their CTHRC1 expression and its effect on survival. Protein

expression data for most of the network genes (4 out of 5) of interest was available for only

significant. B) Table lists the results of univariate analysis of CTHRC1 expression on survival across 30 individual

cancers. It shows the significance values (p-value) for survival in patients with “high” vs “low” CTHRC1 expression and

their hazards ratio (HR). Cancers with significance p� 0.05 are listed in PINK and p> 0.05 in BLACK in the

descending order of their respective hazards ratio. C) Table shows CTHRC1 expression and survival data in 30

individual cancers. Upregulated (PURPLE), and comparable (GREEN) expression marked accordingly. Significant

effect seen on survival is marked in PINK and lack thereof marked in ORANGE. D-E) Tables shows the multivariate

survival analysis for CTHRC1 expression in the context of (D) race and (E) gender in selected cancers for which data is

available. It shows the significance values (p-value) for survival in patients with “high” vs “low” CTHRC1 expression

and their hazards ratio (HR) for comparison. Cancers with significance p< 0.05 are listed in their descending order of

significance.

https://doi.org/10.1371/journal.pone.0270063.g003

PLOS ONE CTHRC1 as pan-cancer ECM regulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0270063 October 3, 2022 11 / 25

https://doi.org/10.1371/journal.pone.0270063.g003
https://doi.org/10.1371/journal.pone.0270063


Fig 4. Differential gene expression analysis of CTHRC1. A) The table lists in the 9 selected cancers (BLCA, BRCA, HNSC, KIRC,

LIHC, OV, READ, SARC and STAD–as detailed in Methods) the number of differentially expressed genes and the top 5% genes

upregulated or downregulated with a 2 fold change (as detailed in Methods). B) This Venn diagram shows the overlap (if any) of the

top 5% upregulated genes in the above listed 9 cancers. C) Table lists the 19 overlapping genes between 3 or more cancer types. D)

Protein-protein interaction network constructed for CTHRC1 and its 19 differentially expressed genes using the STRING database.

BLUE line marks predicted interactions from gene co-occurrence data, GREEN line marks predicted interactions based on gene

neighbourhood evidence, PURPLE line marks experimentally determined known interactions, YELLOW line marks interactions

based on text mining and the LIGHT BLUE line marks interactions based on database evidence. E-F) Functional enrichment for

significant (p<0.05) (E) biological processes, (F) molecular functions and (G) cellular components in the STRING network analysis
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BRCA (breast cancer) in the UACLAN portal. Mass spectrometric data from 125 breast

tumour samples showed CTHRC1, POSTN and MMP13 to all be significantly higher in breast

tumour tissue relative to normal while SFRP4 and FNDC1 levels were unaffected (Fig 6A).

To further test if CTHRC1 and its related hub genes (POSTN, MMP13, SFRP4, ADAMTS

16 and FNDC1) share functional networks, we performed network analysis using GeneMA-

NIA online database [34] and compared their co-expression and physical interaction net-

works. The co-expression network based on query-dependent weighting (Fig 7A) is seen to be

rich in core matrisome genes, cell receptors and intracellular signalling molecules (S1A Fig).

Co-expression and physical interaction networks based on Gene Ontology (GO) weighting for

are listed in their descending order of significance. (H) The table lists the pathways identified by KEGG analysis for the STRING

network in the descending order of their significance (FDR). I) Network of 13 hub genes identified using CytoHubba plugin in

Cytoscape software. Colours of the hub genes are based on their rank which is also listed as a table (High to low).

https://doi.org/10.1371/journal.pone.0270063.g004

Fig 5. Validation of CTHRC1 and its hub genes in cancers. A) Graph represents percentage survival in 30 cancers with “high” (RED plot) vs “low” (BLUE plot)

expression for CTHRC1 or each of its 13 hub genes (POSTN, COMP, COL11A1, MMP13, COL10A1, OMD, OGN, SFRP4, SFRP2, THBS2, FAP, FNDC1 and

ADAMTS16) using GEPIA2 database. The significance of the difference in survival is listed above each graph. p values are as indicated above the graph. Genes with

significance (p� 0.05) are listed in RED and those lacking significance in BLACK. p values = 0 are representative of very high significance. B) Violin plot shows the

expression of CTHRC1 and each of its 13 hub genes across pathological stages in 30 cancers analyzed using the GEPIA2 database. Differences across the stages of cancer

for each gene of interest was calculated using the ANOVA test and significance was reported. p values are as indicated above the graph. Genes with significance (p� 0.05)

are listed in RED. C) Scatter plots show the Spearman correlation analysis for CTHRC1 and its 13 hub genes in 30 cancers using GEPIA2. p values are as indicated above

the graph. Genes with significance (p� 0.05 or p = 0) are listed in RED. D) Bar graph shows log2 odds ratio from the cBioPortal for statistically significant co-occurrence

between CTHRC1 and hub genes of interest (8 genes) in 30 cancer types. E) This Venn diagram shows the overlap of genes that significantly affects survival and tumour

staging and are related in correlation and co-occurrence analysis in 30 cancer types. The table lists the 5 overlapping genes detected in this analysis.

https://doi.org/10.1371/journal.pone.0270063.g005
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Fig 6. Protein levels of CTHRC1 and network genes in breast cancer. Graphs represent protein levels of CTHRC1 and shortlisted

network genes (POSTN, MMP13, SFRP4 and FNDC1) in normal (BLUE) versus tumour tissue (RED) data from the UALCAN

Portal. The box plot shows the median ± standard deviation. p values are as indicated and calculated using the students t-test. Genes

with significance (p <0.05) are listed in RED and those lacking significance in BLACK.

https://doi.org/10.1371/journal.pone.0270063.g006
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Fig 7. Functional Network analysis of CTHRC1 and its 5 hub genes. Network analysis of CTHRC1 and its 5 hub genes

(POSTN, MMP13, FNDC1, SFRP4 and ADAMTS16) identifies COL3A1 and ROR2 genes in both co-expression and

physical interaction categories. A) Image shows co-expression network based on query genes, B-C) Images shows co-

expression network based on (B) biological processes and (C) cellular component. D-E) Image shows physical interaction

network based on (D) biological processes and (E) cellular component.

https://doi.org/10.1371/journal.pone.0270063.g007
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biological process and cellular components were also evaluated (Fig 7B–7E). These networks

were enriched in core matrisome genes and proteases (S1B–S1E Fig). Query and Gene Ontol-

ogy-based networks when compared identified Collagen type III alpha chain 1 (COL3A1) and

receptor tyrosine kinase like receptor 2 (ROR2) as two genes that were conserved among these

networks and could hence be involved in regulating CTHRC1 and its hub gene-mediated reg-

ulation of the tumour matrisome (Fig 7A–7E –labelled with the red circle). In breast cancer

(BRCA) CTHRC1 is overexpressed with hub genes POSTN and MMP13 (Fig 6), leading us to

do evaluate their co-expression network based on query-dependent weighting and co-expres-

sion and physical interaction network based on Gene Ontology (GO) weighting for biological

process and cellular components. These co-expression networks when compared confirmed

COL3A1 and ROR2 to be genes conserved (Fig 8A–8C- labelled with the red circle), as seen

earlier (Fig 7). Physical interaction networks however detected only COL3A1 (Fig 8D and 8E),

suggesting it could be a gene of interest that CTHRC1, POSTN and MMP13 could use to regu-

late the tumour matrisome in breast cancers. Together they further emphasize the possible

role overexpression of these matrisome genes and their crosstalk as part of a regulatory and/or

functional network could have in driving the impact of the ECM through CTHRC1 in cancers.

Discussion

In the past decade, the ECM has emerged as a key player in the progression, diagnosis, and

treatment of cancers. Changes in the ECM composition and structure have been known to

promote migration and invasion of cancer cells [2, 22, 35, 36]. Altered ECM deposition is fur-

ther associated with poor prognosis in multiple cancers [2, 3]. Recent studies have shown that

CTHRC1 is overexpressed in cancers and associated with poor prognosis [37]. These studies

have specifically implicated CTHRC1 with immune infiltration in Kidney and Brain cancers.

Peng at al [38] reported that in addition to being upregulated in high-grade gliomas, CTHRC1

expression correlated with genes associated with the Wnt Signaling pathway (DVL3, DVL1,

DVL2, ROR2, WNT3A, FZD6 and FZD5). Our study in evaluating 1027 matrisome genes

across cancers, has identified a novel set of genes (MMP13, FNDC1, SFRP4 and ADAMTS16)

that could work with CTHRC1 to regulate cancer progression.

Using TCGA data from 30 cancer types, we evaluated 1027 matrisome genes stringently

analyzing their copy number, expression data with their effect on cancer survival and identi-

fied the top overexpressed (n = 23) and downregulated (n = 17) genes of interest across can-

cers. We further used a similar criterion to evaluate matrisome genes in individual cancers and

identify genes affecting survival in 2 or more cancers. The intent here was to compare the pan-

and individual cancer analysis to identify matrisome gene(s) that consistently show differential

expression and affect cancer survival. This while eliminating possible false positives will also

ensure that the genes eventually selected are strong candidates for a pan-cancer role.

This identified 3 matrisome genes, CTHRC1, PDGFA and IL7 to be prominent candidates

of which only CTHRC1 was upregulated in pan-cancer and 3 individual cancers making it the

matrisome gene of interest (Figs 1D and 2F, table in red). The expression and effect on sur-

vival of CTHRC1 were hence compared across 30 cancer types identifying 9 cancers where

both were affected (BLCA, BRCA, HNSC, KIRC, LIHC, OV, READ, SARC and STAD). Differ-

ential gene expression analysis of these cancers to identify genes with a 2-fold change

(increase/decrease) in 3 or more cancers led us to 19 matrisome genes that could work with

CTHRC1. STRING analysis of these 19 genes further identified 13 hub genes. This network

data is largely based on predictions from text mining and suggests CTHRC1 to primarily talk

to POSTN which in turn communicates with other hub genes. Could the CTHRC1-POSTN

connect be of significance to their role as part of the matrisome in cancers remains to be tested
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Fig 8. Functional Network analysis of CTHRC1, POSTN and MMP13. Network analysis of CTHRC1, POSTN and MMP13

identifies COL3A1 in both co-expression and physical interaction categories. A) Image shows co-expression network based on

query genes, B-C) Images shows co-expression network based on (B) biological processes and (C) cellular component. (D-E)

Image shows physical interaction network based on (D) biological processes and (E) cellular component.

https://doi.org/10.1371/journal.pone.0270063.g008
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experimentally. Additional hub genes MMP13, SFRP4, ADAMTS16 and FNDC1 also signifi-

cantly affect survival with their expression across tumour grades comparable to CTHRC1.

They also show a significant correlation and co-occurrence with CTHRC1 across cancers. Pro-

teomics data for breast cancers in revealing CTHRC1 overexpression with POSTN and

MMP13 further strengthens the need to look at this gene network in other cancers.

CTHRC1 is a known regulator of collagen synthesis [39], shown to inhibit collagen type I

and III transcripts [40], with KO mice showing reduced type I collagen levels [41]. Fibroblasts

from CTHRC1 KO mice show significant downregulation of genes involved in ECM organiza-

tion and collagen biosynthesis [42]. CTHRC1 is also known to regulate Wnt signalling and

enhances the binding of Wnt3A with the Frizzled receptors [43]. Both POSTN and MMP13

are known to independently regulate the collagen [44, 45]. POSTN plays an important role in

ECM structure and organization via its interaction with BMP1 to accelerate collagen cross-

linking [12]. POSTN null mice exhibit aberrant collagen fibrillogenesis in the periosteum and

a decrease in collagen cross-linking in the skin, tendons, and heart [44]. CTHRC1 and POSTN

along with collagen are both highly expressed by the same cluster of cells in fibrotic lungs and

hearts [42, 46]. MMP13 binds collagen through its c terminal domain and cleaves collagen

[45]. MMP13 KO mice implanted with mammy tumour cells show increased lung metastasis

as a result of increased collagen synthesis and altered collagen structure and organization [47].

Similarly, SFRP4 (a known Wnt antagonist) could also regulate collagen structure and organi-

zation by controlling Wnt signalling via beta-catenin [48]. Exogenous addition of SFRP4

decreases scar formation by regulating ECM deposition in infarcted hearts of mice [49].

Studies using cardiac fibroblasts have revealed the presence of crosstalk between TGFß and

Wnt signalling to regulate the fibrotic response [50]. CTHRC1 binds TGFß and promotes its

activation in colorectal cancer cells [51]. It also interacts with TGFß receptor II and TGFß

receptor III to stabilize the ligand-receptor pathway and promote liver metastasis [51]. Hence,

CTHRC1 could regulate collagen synthesis and organization by modulating both TGFß and

Wnt signalling pathways. Increased activation of TGFß induces POSTN and CTHRC1 expres-

sion [52]. Like CTHRC1, ADAMTS16 also physically binds TGFß to promote its activation

[53] and loss of ADAMTS16 in rats results in a reduced TGFß activation [39]. In a mice model

for heart failure, ADAMTS16 is upregulated, its expression correlating with collagen expres-

sion [53]. This TGFß -ADAMTS16 feedback could regulate collagen synthesis, organization

and degradation.

Similar to collagen, these CTHRC1 related network genes could also act to regulate fibro-

nectin synthesis, organization and degradation. FN and collagen organization are interde-

pendent [54, 55]. Cancer-associated fibroblasts secrete high levels of FN to form a highly

organized FN rich ECM which promotes cancer cell migration and invasion [56, 57]. Such a

fibronectin matrix promotes cancer cell survival during dormancy while its MMP mediated

degradation promotes proliferation [58]. CTHRC1 and FN are both overexpressed in mela-

nomas where they are found to be localized in similar regions [59]. POSTN which binds FN

also promotes its synthesis via the JNK pathway [60]. MMP13 cleaves FN which also upregu-

lates its expression using the same pathway [61]. ADAMTS16 also cleaves FN inducing

MMP3 expression to promote FN degradation [62]. Exogenous Wnt ligands can promote

FN synthesis [63] that SFRP4 dependent regulation of Wnt signalling [49, 64] could also reg-

ulate. During wound healing, CTHRC1, MMP13, ADAMTS16, SFRP4, POSTN and FNDC1

are all significantly upregulated by myofibroblasts to regulate ECM deposition [65]. POSTN

binding to FN and collagen [66] could further regulate the ECM to drive tumour cell migra-

tion and invasion.

In breast cancer, CTHRC1 gene and protein expression is upregulated with MMP13 and

POSTN. The UALCAN proteomic data while currently limited to 125 breast cancer samples
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(of the total TCGA cohort of 1080), does support the same. Though CTHRC1 and POSTN

upregulation in breast cancer is associated with poor prognosis [67], no direct interaction

between them is reported. In breast cancer, tumour-associated collagen signatures are of prog-

nostic significance. Aligned collagen bundles are negatively correlated with breast cancer sur-

vival [68]. CTHRC1 with POSTN and MMP13 could potentially affect ECM remodelling

which in turn could aid in tumor cell migration and invasion [69, 70]. CTHRC1 secreted by

cells could also independently bind collagen and regulate its assembly and organization. This

could also modulate how secreted growth factors (i.e.,TGFb and Wnt) are sequestered by the

matrix in breast cancer cells [71]. CTHRC1 expression is associated with metastasis to the

bone [72]. In breast cancer patients with high periostin, the risk of bone metastases is

enhanced by elevated CTHRC1 expression [68]. This when considered with the known

role for MMP13 in bone metastasis of breast cancer [73, 74] strongly supports a role for

CTHRC1-POSTN-MMP13 crosstalk in mediating the same. Understanding how this crosstalk

facilitates bone metastasis remains a vital open question.

Further experimental validation of the predictive bioinformatics data will be vital to estab-

lish the regulatory and/or functional crosstalk between CTHRC1 and POSTN, MMP13,

SFRP4, FNDC1 and ADAMTS16. CTHRC1 is susceptible to proteolysis and cleaved CTHRC1

has been reported to be a better inhibitor of collagen synthesis [40]. If MMP13 or ADAMTS16

could regulate CTHRC1 cleavage remains to be tested. CTHRC1, ADAMTS16 and POSTN

are all reported to bind TGFß [12, 39] which could as a point of convergence for their regula-

tory crosstalk. CTHRC1 and POSTN expression [53] are directly induced upon TGFß activa-

tion which could be one of the key players in influencing the CTHRC1 related matrisome

network. Whether FNDC1, SFRP4, ADAMTS16 and MMP13 are regulated by CTHRC1 inde-

pendent of TGFß remains to be evaluated.

Could the CTHRC1 network also regulate other growth factors (Wnt, EGF, FGF etc)

remains to be verified. A joint role for these proteins in ECM remodelling (through collagen

and fibronectin) could regulate tumour cell migration and invasion [69, 70]. The cross-linking

of collagen fibers controls their density and packing order which could regulate ECM stiffness

to further drive cancer progression [75–80] downstream of CTHRC1.

Our functional network analysis of CTHRC1 and its hub genes using GeneMANIA has

identified COL3A1 and ROR2 to be a part of the co-expression and physical interaction net-

works. CTHRC1 has been shown to regulate type III collagen synthesis and binds ROR2 to

regulate planar cell polarity during development [81]. Changes in ECM composition and

remodelling drive tumour progression [82]. Collagen fibers are seen to be less dense, shorter,

straighter, thinner, and more aligned with one another in breast cancer [83] which can predict

their pathology and outcomes [84]. Both COL3A1 and ROR2 have been implicated in breast

cancer pathogenesis [85–88]. ROR2 has been shown to act as an oncogene to promote breast

cancer progression. COL3A1 is highly expressed by the tumour stroma and associated with

increased survival in breast cancer patients [89]. Secreted COL3A1 causes a wavy collagen

fiber orientation promoting tumour dormancy in breast cancer [90] possibly through a DDR

pathway (Discoidin domain receptor—tyrosine kinase proteins activated by collagen) to limit

metastasis [88, 90]. COL3A1 expression could have implications as a vital biomarker in breast

cancer [88]. In Esophageal Cancer COL3A1 is overexpressed with POSTN [91] which further

emphasizes the joint role they could have with CTHRC1. Thus, in identifying CTHRC1 and

the network of genes it works with across cancers, this study not only helps reveal the possible

role POSTN, MMP13, SFRP4, FNDC1 and ADAMTS16 could have in regulating the impact of

the matrisome in cancers but also highlights the role such a network could have in sustaining

the same.
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Supporting information

S1 Fig. Protein categories of the functional network analysis of CTHRC1 and its 5 hub

genes. Nested bar graphs represent the percentage of proteins that belong to each category in

(A) the network analysis based on query genes, (B) co-expression network based on biological

processes or (C) cellular component and physical interaction network based on (D) biological

processes or (E) cellular component. Each colour represents a distinct protein subcategory.

(PDF)

S1 File. S1A is the summary file of the top 5% genes for 9 cancers. S1B - S1J are the raw

data output files of the differential gene expression analysis of the 9 cancers (Fig 4A) where

CTHRC1 is upregulated and affects survival.

(ZIP)
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77. Yang L, van der Werf KO, Fitié CFC, Bennink ML, Dijkstra PJ, Feijen J. Mechanical Properties of Native

and Cross-linked Type I Collagen Fibrils. Biophysical Journal. 2008 Mar 15; 94(6):2204–11. https://doi.

org/10.1529/biophysj.107.111013 PMID: 18032556

78. Svensson RB, Hassenkam T, Grant CA, Magnusson SP. Tensile Properties of Human Collagen Fibrils

and Fascicles Are Insensitive to Environmental Salts. Biophysical Journal. 2010 Dec 15; 99(12):4020–

7. https://doi.org/10.1016/j.bpj.2010.11.018 PMID: 21156145

79. Aifantis KE, Shrivastava S, Odegard GM. Transverse mechanical properties of collagen fibers from

nanoindentation. Journal of Materials Science: Materials in Medicine. 2011; 22(6):1375–81. https://doi.

org/10.1007/s10856-011-4320-9 PMID: 21556981

80. Kohn JC, Lampi MC, Reinhart-King CA. Age-related vascular stiffening: causes and consequences.

Frontiers in Genetics. 2015; 6:112. https://doi.org/10.3389/fgene.2015.00112 PMID: 25926844

81. Yamamoto S, Nishimura O, Misaki K, Nishita M, Minami Y, Yonemura S, et al. Cthrc1 selectively acti-

vates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev

Cell. 2008 Jul; 15(1):23–36. https://doi.org/10.1016/j.devcel.2008.05.007 PMID: 18606138

82. Martino J Di, Nobre AR, Mondal C, Taha I, Farias E, Fertig E, et al. No Title. Nature Portfolio. 2021;

83. Bodelon C, Mullooly M, Pfeiffer RM, Fan S, Abubakar M, Lenz P, et al. Mammary collagen architecture

and its association with mammographic density and lesion severity among women undergoing image-

guided breast biopsy. Breast Cancer Res. 2021 Nov; 23(1):105. https://doi.org/10.1186/s13058-021-

01482-z PMID: 34753492

84. Sprague BL, Vacek PM, Mulrow SE, Evans MF, Trentham-Dietz A, Herschorn SD, et al. Collagen Orga-

nization in Relation to Ductal Carcinoma In Situ Pathology and Outcomes. Cancer epidemiology, bio-

markers & prevention: a publication of the American Association for Cancer Research, cosponsored by

the American Society of Preventive Oncology. 2021 Jan; 30(1):80–8. https://doi.org/10.1158/1055-

9965.EPI-20-0889 PMID: 33082201

PLOS ONE CTHRC1 as pan-cancer ECM regulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0270063 October 3, 2022 24 / 25

https://doi.org/10.2353/ajpath.2010.090748
https://doi.org/10.2353/ajpath.2010.090748
http://www.ncbi.nlm.nih.gov/pubmed/20489157
https://jcp.bmj.com/content/64/11/977
https://jcp.bmj.com/content/64/11/977
https://doi.org/10.1136/jclinpath-2011-200106
http://www.ncbi.nlm.nih.gov/pubmed/21742751
https://doi.org/10.3390/bioengineering8020017
https://doi.org/10.3390/bioengineering8020017
http://www.ncbi.nlm.nih.gov/pubmed/33494220
https://doi.org/10.1093/gbe/evaa020
http://www.ncbi.nlm.nih.gov/pubmed/32022859
https://doi.org/10.1042/EBC20180050
http://www.ncbi.nlm.nih.gov/pubmed/31488698
https://www.sciencedirect.com/science/article/pii/S0169409X15300235
https://www.sciencedirect.com/science/article/pii/S0169409X15300235
https://doi.org/10.1016/j.addr.2015.12.017
http://www.ncbi.nlm.nih.gov/pubmed/26743193
https://doi.org/10.3390/ijms22052426
http://www.ncbi.nlm.nih.gov/pubmed/33670905
http://ar.iiarjournals.org/content/31/4/1307.abstract
http://ar.iiarjournals.org/content/31/4/1307.abstract
http://www.ncbi.nlm.nih.gov/pubmed/21508380
https://doi.org/10.1371/journal.pone.0029615
https://doi.org/10.1371/journal.pone.0029615
http://www.ncbi.nlm.nih.gov/pubmed/22253746
https://doi.org/10.1111/j.1742-4658.2007.05823.x
https://doi.org/10.1111/j.1742-4658.2007.05823.x
http://www.ncbi.nlm.nih.gov/pubmed/17488283
https://doi.org/10.1529/biophysj.107.124602
http://www.ncbi.nlm.nih.gov/pubmed/18641067
https://doi.org/10.1529/biophysj.107.111013
https://doi.org/10.1529/biophysj.107.111013
http://www.ncbi.nlm.nih.gov/pubmed/18032556
https://doi.org/10.1016/j.bpj.2010.11.018
http://www.ncbi.nlm.nih.gov/pubmed/21156145
https://doi.org/10.1007/s10856-011-4320-9
https://doi.org/10.1007/s10856-011-4320-9
http://www.ncbi.nlm.nih.gov/pubmed/21556981
https://doi.org/10.3389/fgene.2015.00112
http://www.ncbi.nlm.nih.gov/pubmed/25926844
https://doi.org/10.1016/j.devcel.2008.05.007
http://www.ncbi.nlm.nih.gov/pubmed/18606138
https://doi.org/10.1186/s13058-021-01482-z
https://doi.org/10.1186/s13058-021-01482-z
http://www.ncbi.nlm.nih.gov/pubmed/34753492
https://doi.org/10.1158/1055-9965.EPI-20-0889
https://doi.org/10.1158/1055-9965.EPI-20-0889
http://www.ncbi.nlm.nih.gov/pubmed/33082201
https://doi.org/10.1371/journal.pone.0270063


85. Menck K, Heinrichs S, Wlochowitz D, Sitte M, Noeding H, Janshoff A, et al. WNT11/ROR2 signaling is

associated with tumor invasion and poor survival in breast cancer. Journal of Experimental & Clinical

Cancer Research. 2021; 40(1):395. https://doi.org/10.1186/s13046-021-02187-z PMID: 34911552

86. Guo M, Ma G, Zhang X, Tang W, Shi J, Wang Q, et al. ROR2 knockdown suppresses breast cancer

growth through PI3K/ATK signaling. Aging. 2020 Jul; 12(13):13115–27. https://doi.org/10.18632/aging.

103400 PMID: 32614787

87. Lucchetta M, da Piedade I, Mounir M, Vabistsevits M, Terkelsen T, Papaleo E, et al. Cystatin A sup-

presses tumor cell growth through inhibiting epithelial to mesenchymal transition in human lung cancer.

International Journal of Molecular Sciences. 2021 Jan 1; 71(1):14084–98.

88. Di Martino JS, Nobre AR, Mondal C, Taha I, Farias EF, Fertig EJ, et al. A tumor-derived type III colla-

gen-rich ECM niche regulates tumor cell dormancy. Nature Cancer. 2021; https://doi.org/10.1038/

s43018-021-00291-9 PMID: 35121989

89. Brisson BK, Mauldin EA, Lei W, Vogel LK, Power AM, Lo A, et al. Type III Collagen Directs Stromal

Organization and Limits Metastasis in a Murine Model of Breast Cancer. Am J Pathol. 2015 May; 185

(5):1471–86. https://doi.org/10.1016/j.ajpath.2015.01.029 PMID: 25795282

90. Sun X, Wu B, Chiang HC, Deng H, Zhang X, Xiong W, et al. Tumour DDR1 promotes collagen fibre

alignment to instigate immune exclusion. Nature. 2021 Nov; 599(7886):673–8. https://doi.org/10.1038/

s41586-021-04057-2 PMID: 34732895

91. Zhang SW, Zhang N, Wang N. Role of COL3A1 and POSTN on Pathologic Stages of Esophageal Can-

cer. Technol Cancer Res Treat. 2020; 19:1533033820977489–1533033820977489. https://doi.org/10.

1177/1533033820977489 PMID: 33280513

PLOS ONE CTHRC1 as pan-cancer ECM regulator

PLOS ONE | https://doi.org/10.1371/journal.pone.0270063 October 3, 2022 25 / 25

https://doi.org/10.1186/s13046-021-02187-z
http://www.ncbi.nlm.nih.gov/pubmed/34911552
https://doi.org/10.18632/aging.103400
https://doi.org/10.18632/aging.103400
http://www.ncbi.nlm.nih.gov/pubmed/32614787
https://doi.org/10.1038/s43018-021-00291-9
https://doi.org/10.1038/s43018-021-00291-9
http://www.ncbi.nlm.nih.gov/pubmed/35121989
https://doi.org/10.1016/j.ajpath.2015.01.029
http://www.ncbi.nlm.nih.gov/pubmed/25795282
https://doi.org/10.1038/s41586-021-04057-2
https://doi.org/10.1038/s41586-021-04057-2
http://www.ncbi.nlm.nih.gov/pubmed/34732895
https://doi.org/10.1177/1533033820977489
https://doi.org/10.1177/1533033820977489
http://www.ncbi.nlm.nih.gov/pubmed/33280513
https://doi.org/10.1371/journal.pone.0270063

