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Background and Objective: Mutations located in epidermal growth factor receptor (EGFR) tyrosine 
kinase domains have been described as the ‘Achilles heel’ of non-small cell lung cancer (NSCLC) and can 
be targeted by epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). However, the 
clinical benefits of EGFR-TKIs are limited, and drug resistance inevitably occurs in NSCLC patients after 
long-term exposure to certain drugs. EGFR-TKI combination therapies, including combined targeted 
therapy, radiotherapy, chemotherapy, and immunotherapy, have shown promise in addressing this issue. This 
literature review analyzed the rationale and controversies of clinical research related to various EGFR-TKI 
combination therapies.
Methods: The PubMed database was searched to retrieve articles published from January 1, 2001 to April 
15, 2023 using the following Medical Subject Headings (MeSH) terms: “EGFR-mutated non-small cell lung 
cancer” and “clinical trial”. Google Scholar was also reviewed to retrieve additional articles. The search was 
limited to articles published in English.
Key Content and Findings: In this review, we summarized EGFR-TKI combination therapies, 
including combined targeted therapy, radiotherapy, chemotherapy, and immunotherapy, most of which have 
shown efficacy and safety in patients with EGFR-mutated NSCLC. A number of clinical studies with large 
sample sizes have analyzed the activity and toxicity of combined therapies and explored potential and well-
tolerated treatment options.
Conclusions: EGFR mutations have been detected in many NSCLC patients and can be targeted by 
EGFR-TKIs. However, drug resistance after long-term exposure remains a significant challenge for this 
type of treatment. Most clinical trials have shown that the combination of EGFR-TKIs and targeted therapy, 
chemotherapy, radiotherapy or immunotherapy is efficacious and safe in the treatment of EGFR-mutated 
NSCLC. It should be noted that in some instances, serious adverse events have led to the termination of 
trials. However, EGFR-TKI combination therapy is indeed an effective approach for the treatment of 
patients with EGFR-mutated NSCLC and deserves further development.
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Introduction

Lung cancer, which is one of the most common types 
of cancer, remains the leading cause of cancer-related 
deaths in both men and women (1). In 2022, there were 
approximately 2.21 million new diagnoses of lung cancer 
(accounting for 11.4% of all cancer cases) and 1.79 million 
deaths caused by lung cancer worldwide (2). Non-small 
cell lung cancer (NSCLC) is the most common form of 
lung cancer, accounting for about 80–85% of all lung 
cancers (3). Depending on the stage of the cancer, radical 
surgery, platinum-based chemotherapy, radiotherapy, 
and immunotherapy can be applied in the treatment of 
NSCLC (4).

In-depth research on the oncogenesis and progression 
of NSCLC has shown that most NSCLC patients have 
mutations of the epidermal growth factor receptor  
(EGFR) (5). EGFR is a kind of transmembrane tyrosine 
kinase protein and is becoming a landmark target in the 
treatment of NSCLC. EGFR is activated by receptor 
overexpression, a common phenomenon in various cancer 
tissues. EGFR overexpression, it has been reported to 
be associated with higher aggressiveness and poorer 
clinical outcomes in breast, lung, ovarian, cervical, 
bladder, esophageal, brain, head, and neck cancers (6-10).  
Additionally, EGFR activation and phosphorylation by the 
binding of the ligands, such as epidermal growth factor 
(EGF) (11), further activate several downstream signaling 
pathways, such as the rat sarcoma protein (Ras)/rapidly 
accelerated fibrosarcoma protein (Raf)/mitogen-activated 
protein kinases (MAPK), phosphatidylinositol-3 kinase 
(PI3K)/protein kinase B (AKT)/mammalian target of 
rapamycin (mTOR), Janus kinase (JAK)/signal transducer 
and activator of transcription (STAT) pathways (12), which 
play an important role in regulating multiple cellular 
processes, including proliferation, survival, and apoptosis.

Epidermal growth factor receptor-tyrosine kinase 
inhibitors (EGFR-TKIs), which target the EGFR kinase 
domain, have been proven to be clinically effective in 
addressing the above problems. The main EGFR-TKIs 
are summarized in Table 1. In recent decades, EGFR-TKIs 
have become the first-line standard treatment for patients 
with advanced NSCLC with EGFR mutations (13,14). The 
randomized, controlled, large-sample phase-III Iressa Pan-
Asia Study (I-PASS) landmark clinical trial was the first to 
show that gefitinib significantly prolonged progression-
free survival (PFS) in the first-line treatment of patients 
with advanced NSCLC with the EGFR mutation [median 

PFS: 9.5 vs. 6.3 months; hazard ratio (HR) =0.48, 95% 
confidence interval (CI): 0.36–0.64; P<0.001], improved 
the tumor response rate and quality of life (QoL), and had 
good safety (15). Subsequently, compared with standard 
chemotherapy, multiple prospective phase-III clinical trials 
with EGFR-positive patients, such as WJTOG3405 (16), 
NEJ002 (17), and EURTAC, have shown that the EGFR 
mutation is an important target and a key predictive marker 
for first-line EGFR-TKI therapy (18). In addition, the 
results of the CTONG0806 trial suggest that gefitinib does 

Table 1 Summary of the main EGFR-TKIs

Classification Drug Approval Structure

First-
generation 
EGFR-TKI

Gefitinib 
(Iressa)

FDA, EMA, 
CFDA

Erlotinib 
(Tarceva)

FDA, EMA

Icotinib CFDA

Second-
generation 
EGFR-TKI

Afatinib 
(Gilotrif)

FDA, EMA

Third-
generation 
EGFR-TKI

Osimertinib 
(Tagrisso)

FDA, EMA, 
CFDA

EGFR, epidermal growth factor receptor; TKIs, tyrosine kinase 
inhibitors; FDA, Food and Drug Administration; EMA, European 
Medicines Agency; CFDA, China Food and Drug Administration.
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not significantly improve PFS, tumor response, and QoL in 
NSCLC patients without EGFR mutations. Thus, EGFR-
targeted therapy should not be used in EGFR-negative 
patients, as it is not beneficial in reducing the risk of disease 
progression or death (19).

Unfortunately, after experiencing tumor regression, 
delayed progression and symptom improvement, research 
has shown that patients who are treated with EGFR-
TKIs inevitably become drug resistant (most often within 
9–12 months), which has been defined as “acquired 
resistance” (20-22). Possible mechanisms for acquired 
resistance have been extensively discussed; Threonine to 
Methionine substitution at position 790 (T790M), which 
is present in approximately 50% of EGFR-TKI resistant 
NSCLC patients, is the most common alteration (23).  
Other mechanisms leading to resistance include the 
human epithelial growth factor receptor 2 (HER2) 
mutation and amplification (24,25), mesenchymal-
epithelial transition (MET) amplification (26), epithelial-
mesenchymal transition (EMT) (27), and SCLC phenotypic 
transformation (28).

Due to the tumor heterogeneity and the possibility of 
simultaneous or sequential drug resistance mechanisms 
in patients, combination therapy has been put forward as 
a promising strategy for the treatment of EGFR-mutated 
NSCLC. Theoretically, in addition to overcoming or 
delaying the drug resistance, combination therapy could also 
enhance anti-cancer efficacy through its synergistic effects 
(29,30). Additionally, some combination therapy strategies 
may lower the dose of highly toxic drugs and minimize 
adverse reactions, and thus expand drug applications (31). 

In this review, we summarized EGFR-TKI combination 
strategies for treating EGFR-mutated NSCLC, including 
combined targeted therapy, radiotherapy, chemotherapy, 
and immunotherapy, which are of great significance in 
prolonging the survival of patients with NSCLC. This 
article is written in accordance with the Narrative Review 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-956/rc).

Methods

The following Medical Subject Headings (MeSH) terms 
were used to search the PubMed database: “EGFR-mutated 
non-small cell lung cancer” and “clinical trial”. Articles 
with those terms, published in English, from January 1, 
2001 to April 15, 2023, were retrieved. Google Scholar was 
also reviewed to retrieve additional articles. The relevant 
literature was searched using the following keywords: 
“EGFR-TKIs”, “combination therapy”, “EGFR-mutated 
NSCLC”, “acquired resistance”, and “clinical trial”. The 
research selection process was divided into the following 
three stages: title review, abstract review and full-text 
review. Original articles and review articles appropriate to 
the topic of this review were included in the full-text review 
phase. The search strategy is detailed in Table 2.

EGFR-TKIs combined with targeted therapy

Targeted therapy has been defined as a method of treatment 
that blocks the growth of cancer cells by interfering with 
the specific cell molecules required for carcinogenesis and 

Table 2 The search strategy summary

Items Specification

Date of search February 1 (first search), 2023 to July 15 (last search), 2023

Databases and other 
sources searched

PubMed database, Google Scholar 

Search terms used “EGFR-TKIs”, “combination therapy”, “EGFR-mutated NSCLC”, “acquired resistance”, “clinical trial”

Timeframe January 1, 2001 to April 15, 2023

Inclusion and 
exclusion criteria

Inclusion: the search was limited to articles published in English. The research selection process was divided into 
the following three stages: title review, abstract review, and full-text review. Original articles and review articles 
appropriate to the topic of this review were included in the full-text review phase

Exclusion: articles not published in English and not related to the research topic were excluded

Selection process Q Zhang conducted the article selection independently. L Xu and R Wang supervised the article selection

EGFR, epidermal growth factor receptor; TKIs, tyrosine kinase inhibitors; NSCLC, non-small cell lung cancer. 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-956/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-956/rc
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Figure 1 Various mechanisms of EGFR-TKI resistance. EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; HGF, 
hepatocyte growth factor; MET, mesenchymal-epithelial transition; HER, human epidermal growth factor receptor; IGF-1, insulin-like 
growth factor-1; PTEN, phosphatase and tensin homolog deleted on chromosome 10; PI3K, phosphatidylinositol-3 kinase; AKT, protein 
kinase B; mTOR, mammalian target of rapamycin; JAK, Janus kinase; STAT3, signal transducer and activator of transcription 3; TKI, 
tyrosine kinase inhibitor. 

tumor growth, and has fewer side effects than classical 
cytotoxic chemotherapy (32). In NSCLC patients with 
EGFR mutations, targeted drugs for different targets can be 
provided according to different drug resistance mechanisms 
(see Figure 1) to develop precise and individualized anti-
tumor programs.

Targeting MET

The MET receptor, a transmembrane tyrosine kinase 
receptor encoded by the proto-oncogene MET, is thought 
to be an important cause of acquired resistance to gefitinib 
or erlotinib in NSCLC (33). Hepatocyte growth factor 
(HGF) is a ligand of the MET receptor. It promotes the 
phosphorylation of MET tyrosine kinase by binding to the 
MET receptor and then activates the downstream PI3K/

AKT/mTOR pathway, which is the key signaling pathway 
for cell proliferation, survival, and anti-apoptosis (33,34). 
Thus, targeting MET appears to be an effective approach 
for treating NSCLC.

Clinical trials have shown exciting results. For example, 
the INSIGHT study suggests that MET inhibitor tepotinib 
plus gefitinib results in increased anti-activity compared 
with standard chemotherapy in patients with EGFR-
mutant NSCLC and MET amplification. Unfortunately, 
the study was prematurely terminated due to insufficient 
enrollment (35). However, the interim results of this 
multicenter, open-label, phase-Ib study and the TATTON 
study suggest that the combination of osimertinib and 
the MET inhibitor volitinib has an acceptable risk-
benefit profile and encouraging anti-tumor activity 
(36,37). In phase-I studies examining the MET antibody 
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emibetuzumab as a monotherapy or in combination 
with erlotinib, emibetuzumab showed good tolerance, 
and no dose-limiting toxicities were observed (38).  
Based on this study, Camidge et al. conducted a multicenter, 
randomized, non-controlled, open-label phase-II study, 
and found that the median PFS and median overall survival 
(OS) were similar in both the treatment groups, and 
neither emibetuzumab plus erlotinib nor emibetuzumab 
monotherapy reversed the acquired resistance to 
erlotinib in MET positive patients. The study did not 
meet its primary endpoint; however, a subset of patients 
obtained meaningful clinical benefits in both treatment 
groups, including a partial response (PR) lasting up to  
11 months (39). It should also be noted that the association 
of meaningful clinical benefits with the combination 
treatment strategy has yet to be investigated (39).  
In addition, exploratory biomarker analyses of other 
MET-targeted drugs, such as onartuzumab or tivantinib, 
in combination with erlotinib have shown that favorable 
trends in PFS were associated with increased MET 
expression by immunohistochemistry (40,41). Thus, MET 
remains a valid target in the treatment of EGFR-mutated 
NSCLC.

Targeting HER2/human epidermal growth factor receptor 
3 (HER3)

Other than EGFR, HER2 is one of the most popular targets 
of NSCLC targeted therapy. HER2 is a transmembrane 
glycoprotein receptor with intracellular tyrosine kinase 
activity. Alterations in HER2, including mutation, 
amplification, and overexpression, have the potential to 
induce oncogenic effects, and have been detected in many 
cancers, such as NSCLC (42). Notably, the other target, 
HER3, cannot be autophosphorylated due to impaired 
kinase activity but can be tyrosine phosphorylated if it 
is coupled with other receptor tyrosine kinases (RTKs), 
such as EGFR and HER2. EGFR and HER2 must recruit 
and transphosphorylate PI3K through HER3 (43,44). 
Activated HER3 provides multiple docking sites for PI3K, 
and amplifies signaling in the PI3K/AKT/mTOR pathway, 
ultimately promoting cellular survival (45). Thus, HER3 is 
also considered one of the targets for anti-cancer treatment, 
especially in EGFR-mutated NSCLC (44).

The results of monotherapies with anti-HER drugs 
are not optimistic. In a multicenter international trial, 
trastuzumab (an anti-HER2 drug) was found to lead to a 
high proportion of remission and provide lasting clinical 

benefits in patients with advanced HER2-mutated NSCLC; 
however, the safety of the drug has yet to be studied, and 
issues such as drug-related interstitial lung disease (ILD) 
are important risks of the treatment that require careful 
monitoring and management (46). Additionally, positive 
results from clinical studies of combination therapies 
with anti-HER drugs and EGFR-TKIs have rarely been 
reported. Hughes et al. published the results of a phase-
II study exploring the combination of pertuzumab (an 
anti-HER2/HER3 drug) and erlotinib in 41 patients with 
relapsed NSCLC. Contrary to the original intention to 
produce greater activity by targeting the HER family, the 
combination therapy showed only moderate anti-tumor 
efficacy and was generally poorly tolerated, which limits its 
clinical applicability (47). Thus, further research needs to 
be conducted to discover combinations of drugs that can 
effectively interfere with HER receptor signaling while 
demonstrating enhanced tolerability profiles. Further, 
until powerful, safe and effective drugs targeting HER 
are developed, treatments in combination with EGFR-
TKIs and other target inhibitors, such as mTOR in the 
downstream pathway, should be preferred.

Targeting PI3K/AKT/mTOR

PI3K-AKT-mTOR is a signaling pathway controlled by 
the EGFR. PI3K is triggered when extracellular ligands 
bind to receptors (e.g., when EGF binds to EGFR 
resulting in the phosphorylation and activation of receptor 
tyrosine kinase (RTK) to catalyze the phosphorylation of 
phosphatidylinositol diphosphate into phosphatidylinositol 
3-phosphate  (PIP3) .  The accumulat ion  of  PIP3 
localizes AKT to the plasma membrane, where AKT is 
phosphorylated by 3-phosphoinositol-dependent kinase 
1 indirectly or directly. The activated AKT regulates the 
phosphorylation of the downstream effectors, instigating 
alterations in gene expression and cell behavior. The major 
downstream effectors are mammalian target of rapamycin 1 
(mTORC1) and mammalian target of rapamycin complex 
2 (mTORC2) (48). Hyperactivation of PI3K/AKT/mTOR 
signaling not only explains the formation and growth of 
many tumors, but also illustrates the resistance to targeted 
inhibitors, such as EGFR-TKIs (49,50). Phosphatase and 
tensin homolog (PTEN) is a known tumor suppressor gene 
that can counteract the activation of AKT driven by PI3K. 
PTEN inactivation is associated with resistance to EGFR-
TKI treatment and lower survival in NSCLC patients (50).

Buparlisib (BKM120) is an oral pan-class I, reversible 
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inhibitor of PI3K. Tan et al. observed mild anti-tumor 
activity with gefitinib and buparlisib in patients resistant 
to EGFR-TKIs. However, given the late toxicity and long 
half-life period of buparlisib, other alternatives need to be 
explored, such as copanlisib (BAY80-6946), duvelisib (IPI-
145), and pictilisib (GDC-0941) (51). In addition, there 
are dual PI3K/mTOR inhibitors, such as dactolisib (NVP-
BEZ235), and apitolisib (GDC-0980). Despite a reasonable 
theoretical basis and demonstrable pharmacodynamic tumor 
activity in the relevant tumor population, it is not possible 
to determine a dose and schedule for this class of drugs 
that is both tolerated and provides clear efficacy in the 
population evaluated. Thus, their combination with EGFR-
TKIs is still in the early clinical development stage (52).

Molife et al. and Lin et al. each conducted a phase-I trial 
evaluating the oral AKT inhibitor MK-2206 plus erlotinib or 
gefitinib, and both reported that they were well tolerated and 
found early evidence of anti-tumor activity (53,54). Based on 
these promising results, Lara et al. conducted a phase-II study 
and found that the combination of MK-2206 plus erlotinib 
was more effective in patients with EGFR wild-type NSCLC 
than in patients with EGFR-mutant NSCLC. Some efficacy 
was observed in the EGFR-mutated NSCLC; however, this 
did not exceed the previous estimates. Thus, AKT pathway 
inhibition merits additional clinical assessment in EGFR 
wild-type NSCLC (55). In general, there is limited literature 
on the combination of AKT inhibitors and EGFR-TKIs 
in the treatment of NSCLC in recent years, and relevant 
clinical studies are not yet mature.

Rapamycin and its analogues are currently the inhibitors 
most commonly used to target the PI3K/AKT/mTOR 
pathway. Among them, everolimus (RAD001), an orally 
bioavailable derivative of rapamycin, is a potent mTOR 
inhibitor. It has been shown to be highly effective in 
restoring the sensitivity of gefitinib-resistant NSCLC 
cell lines with the PIK3CA mutation or PTEN deletion 
(56,57). Many clinical trials have been conducted to assess 
the efficacy of combining everolimus with EGFR-TKIs. 
Compared with promising pre-clinical trial results, the 
efficacy of this combination in patients with EGFR-mutated 
NSCLC appears to be unsatisfactory (58). In a multicenter, 
open-label ,  phase-II study,  133 patients received 
everolimus-erlotinib (n=66) or erlotinib alone (n=67), and 
at 3 months, had disease control rate (DCR) of 39.4% and 
28.4%, respectively. It was estimated that the probability 
that the difference in the DCR at 3 months would be ≥15% 
was 29.8%, which was below the prespecified probability 
threshold of ≥40%. The median PFS for the patients who 

received everolimus-erlotinib (n=66) and those who received 
erlotinib alone was 2.9 and 2.0 months, respectively. Grade 
3/4 adverse events occurred in 72.7% and 32.3% of these 
patients, respectively. Thus, everolimus plus erlotinib was 
not considered effective enough, and the combination 
does not warrant further investigation due to the increased 
toxicity and the lack of substantial improvement in disease 
stabilization (59). Similarly, a phase-II study by Price et al.,  
which achieved a partial response (PR) in eight of 62 
patients and a response rate of only 13%, did not meet 
the prespecified response threshold to warrant further 
investigations of everolimus in combination with  
gefitinib (60). In addition, Fang et al. also found that 
everolimus, whether combined with gefitinib, afatinib, or 
osimertinib, showed very limited anti-tumor activity in 
EGFR-TKI-resistant NSCLC patients (61).

Targeting JAK2/signal transducer and activator of 
transcription 3 (STAT3)

Ligand-binding receptors recruit and phosphorylate JAK2 (a 
member of the JAK family that also includes JAK1, JAK3, 
and Tyk2, among which, JAK2 plays a prominent role in 
tumorigenesis), which ultimately leads to STAT3 protein 
phosphorylation, dimerization, and activation (62). It 
should be noted that in addition to JAK, STAT3 activation 
can also be mediated by the Src family, Abl family, EGFR, 
and insulin-like growth factor-1 receptor (IGF-1R) (63). 
After STAT3 is activated by JAK2, it is transported into 
the nucleus through the nuclear membrane, regulates 
the expression of related genes, and participates in 
important biological processes, such as cell proliferation, 
differentiation, apoptosis, and angiogenesis (62,64). Similar 
to PI3K/AKT/mTOR, JAK2/STAT3 also has a significant 
role in tumorigenesis, and its abnormal activation is also 
involved in the decreased sensitivity of NSCLC to EGFR-
TKIs (65).

The phase-Ib study by Park et al. demonstrated that the 
combination of afatinib and the JAK1/2 inhibitor ruxolitinib 
was tolerated by patients, with moderate clinical activity 
observed in NSCLC patients with acquired resistance to 
EGFR-TKIs. The 30 patients had an objective response rate 
(ORR) of 23.3%, a DCR of 93.3% (no patients achieved a 
complete response, seven achieved a PR, and 21 achieved 
stable diseases), and a median PFS of 4.9 (95% CI: 2.4– 
7.5) months (66). However, another phase-Ib study 
concluded that  JAK1/2 inhibitor momelotinib in 
combination with erlotinib did not appear to produce any 
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improved benefits compared to findings based on historical 
data of erlotinib monotherapy in patients diagnosed 
with EGFR-mutated NSCLC (67). Thus, the efficacy of 
different combinations of JAK inhibitors and EGFR-TKIs 
needs to be further explored in clinical studies.

Research is still being conducted on the safety and anti-
tumor efficacy of STAT3 inhibitors as monotherapies. 
For example, the STAT3 inhibitor OPB-51602 has been 
shown to display significant anti-tumor activity, especially 
in NSCLC; however, its long half-life period and the 
poorer tolerability of continuous dosing, compared with 
intermittent dosing, suggests that less frequent dosing 
should be explored (68). Zheng et al. also found that the 
STAT3 inhibitor W2014-S showed significant anti-tumor 
activity in NSCLC (69). This suggests that combinations 
of STAT3 inhibitors and EGFR-TKIs may be a potential 
strategy for overcoming EGFR-TKI-acquired resistance in 
NSCLC patients.

Targeting IGF-1R

IGF-1R is a transmembrane heterotetramer comprising 
two extracellular α and β subunits (70). Upon the binding 
of IGF-1 and IGF-2 to the extracellular subunit domain 
of IGF-1R, the tyrosine kinase activity of IGF-1R is 
activated, and the activation of IGF-1R initiates cascades 
involving signal transduction pathways, such as Ras, Raf, 
and MAPK (71). The overexpression of IGF-1R has been 
reported to promote tumor growth, progression, invasion, 
and metastasis (72). IGF-1R also plays an important role in 
promoting the progression of NSCLC (73).

Many pre-clinical studies have shown that the joint 
administration of IGF-1R inhibitors, such as α-IR3, AG1024, 
and R1507, with EGFR-TKIs amplifies the suppressive 
effects on growth and apoptosis initiated by EGFR-TKIs, 
which could provide a potential way of treating EGFR-TKI-
resistant NSCLC (74,75). However, very few relevant clinical 
studies have been conducted in this area.

Targeting rearranged during transfection (RET)

The RET proto-oncogene encodes a transmembrane 
RTK involved in normal embryonic development (76). 
Due to an aberrant DNA repair process, RET fuses 
with another irrelevant gene (77), activating various 
downstream signaling cascades that play essential roles 
in cell proliferation and survival; that is, the PI3K/AKT, 
JAK2/STAT3 pathways (78). It has emerged as a rare 

but targetable acquired resistance mechanism in EGFR-
mutated NSCLC patients undergoing treatment with 
EGFR-TKI (79,80).

Thus, a combination therapy of anti-EGFR and anti-
RET therapy will likely be required to overcome this 
resistance. Notably, two highly potent RET inhibitors, 
selpercatinib and pralsetinib, have been proven to be 
effective in treating advanced or metastatic RET-altered 
NSCLC (80). Additionally, RET fusions are more likely 
to be associated with EGFR-mutant NSCLC patients 
who received therapeutic interventions targeting EGFR 
through third-generation EGFR-TKIs (80). In a multicenter, 
prospectively treated cohort, Rotow et al. found that the 
addition of selpercatinib to osimertinib was feasible and 
safe and provided clinical benefits to patients with EGFR-
mutant NSCLC with an acquired RET fusion (81). 
Additionally, Piotrowska et al. reported that RET fusions 
mediate resistance to EGFR inhibitors and demonstrated 
that combined EGFR and RET inhibition with osimertinib/
pralsetinib (BLU-667) may be a well-tolerated and effective 
treatment strategy for EGFR-mutant NSCLC (82). 
Urbanska et al. also found that EGFR-mutated patients 
displayed sustained ongoing objective response (OR) to 
an osimertinib-pralsetinib combination for more than  
12 months, which provides clinical evidence of the effectively 
targetable mechanism of osimertinib resistance (83).

EGFR-TKIs combined with chemotherapy

As the first-line treatment for NSCLC patients without 
clear therapeutic targets, chemotherapy has always played 
an important role in tumor treatments (84). Platinum-
based therapy is the mainstay of chemotherapy for NSCLC 
patients and is usually administered in combination with 
a tubulin binding agent [such as taxanes (paclitaxel or 
docetaxel) and vinca alkaloids (vinorelbine or vincristine)], 
a camptothecin analogue (irinotecan or opotecan), 
gemcitabine, and pemetrexed (85). It should be noted that 
pemetrexed has significant activity, favorable tolerance, and 
low toxicity compared to other cytotoxic agents. Extensive 
research has been conducted to explore its administration 
either alone or in combination with other regimes (86). To 
ameliorate the inevitable drug-resistant outcome of EGFR-
TKI therapy, combining it with chemotherapy could 
provide an effective treatment option for EGFR-mutated 
NSCLC patients.

Studies of the combination of EGFR-TKIs and 
chemotherapy in patients with EGFR mutations have shown 
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promising results. The NEJ009 study showed that patients 
with advanced NSCLC with EGFR mutations treated with 
gefitinib combined with carboplatin plus pemetrexed had 
better PFS (20.9 vs. 11.2 months, respectively, HR =0.493, 
P<0.001) with an acceptable toxicity profile than those 
treated with gefitinib alone. The benefits of this combined 
treatment in terms of OS require further validation (but 
the results of the study showed that the patients had an 
OS of 52.2 vs. 38.8 months, respectively, HR =0.695,  
P=0.0013) (87). Additionally, Planchard et al. and Watanabe 
et al. found that at the recommended doses, osimertinib or 
afatinib in combination with carboplatin and pemetrexed 
also had manageable safety and tolerability, and good 
clinical efficacy in patients with EGFR-mutated NSCLC 
(88,89). A meta-analysis of 18 eligible trials involving 
4,628 patients and 12 treatments indicated that osimertinib 
and gefitinib plus pemetrexed-based chemotherapy were 
associated with the best PFS and OS benefits for patients 
with advanced EGFR-mutated NSCLC compared with 
other first-line treatments (90). Another meta-analysis of 
eight randomized controlled trials involving 1,349 advanced 
NSCLC patients with the sensitive EGFR mutation 
had similar findings, which suggests that compared with 
EGFR-TKI monotherapy, the combination of first-
generation EGFR-TKI and chemotherapy, especially 
when applying the concurrent delivery of platinum-based 
doublet chemotherapeutic drugs, significantly improves the 
ORR, PFS, and OS in the first-line treatment of advanced 
EGFR-mutated NSCLC. Despite the increased incidence 
of chemotherapy-induced toxicities in the combination 
group, it is well tolerated and can be effectively managed 
from a clinical perspective (91). However, Gijtenbeek et al. 
demonstrated that the effects of erlotinib with cisplatin-
pemetrexed were not favorable, as the toxicity rate was 
high and not negligible (92). Moreover, another systematic 
analysis reported that the combination of chemotherapy 
and EGFR-TKIs did not achieve satisfactory results, and 
that while there was no notable difference in OS and the 
ORR, there was an increased incidence of grade 3/4 anemia, 
rash, and other adverse events in the patients (93). As the 
role of EGFR-TKIs combined with chemotherapy remains 
controversial, it has not yet been widely used in clinical 
practice, and further clinical trials need to be conducted to 
explore and verify its use (31).

EGFR-TKIs combined with radiotherapy

Radiotherapy is an important way of treating NSCLC, 

and its role in locally advanced and early-stage disease, 
recurrence, postoperative, central early stage NSCLC, 
and mult iple primary lung cancer has been ful ly  
demonstrated (94). Several studies have been carried out to 
test the hypothesis that the combination of EGFR-TKIs 
and radiotherapy may confer better survival benefits than 
monotherapy.

A retrospective study of 380 patients reported that the 
EGFR-TKI + thoracic stereotactic body radiation therapy 
(SBRT) group had a median PFS of 19.4 months and the 
EGFR-TKI group had a median PFS of 13.7 months 
(P=0.034) with tolerable toxicity and no significant effect in 
relation to OS (P=0.557) (95). The clinical trials by Zheng 
et al. and Akamatsu et al. also validated the efficacy and 
tolerability of erlotinib or gefitinib plus thoracic radiotherapy 
in a subset of NSCLC patients harboring EGFR mutations 
(96,97). Notably, an especially high incidence of grade two 
or worse radiation pneumonia was observed in patients 
receiving osimertinib combined with thoracic radiotherapy 
(63.6%) compared with those receiving erlotinib or gefitinib 
combined with thoracic radiotherapy, which should serve as 
a warning to physicians to exercise caution when using this 
combination regimen (98).

In addition to thorax, between 25% and 40% of NSCLC 
patients reportedly develop brain metastases during the 
course of the disease, usually within 2 years of diagnosis of 
the primary tumor and have poor prospects (99). Current 
treatments for patients with brain metastases include 
whole-brain radiation therapy (WBRT) with or without 
stereotactic radiosurgery (100). The blood-brain barrier 
renders most chemotherapeutic agents ineffective, but 
it has been established that EGFR-TKIs can permeate 
the blood-brain barrier (101) with limited penetration 
into cerebrospinal fluid (102,103), and thus could be 
administered with WBRT.

Many studies have reported on the feasibility of WBRT 
combined with EFGR-TKIs in the treatment of NSCLC 
patients with the EGFR mutation and brain metastases. Fan 
et al. reported a median survival time of 22.0 months for 
patients with EGFR mutations and 7.5 months for those 
with wild-type EGFR (P=0.0001), which suggests that 
patients with EGFR mutations benefit more from icotinib 
combined with WBRT (104). Additionally, a meta-analysis 
of 18 prospective clinical studies reported that the ORR of 
WBRT combined with erlotinib/gefitinib was also superior 
to that of WBRT alone (odds ratio =2.67; 95% CI: 2.10–
3.38; P<0.05) (105). Moreover, He et al. found that in first-
line therapy for NSCLC patients with EGFR mutations, 
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the combination therapy of EGFR-TKIs and WBRT 
significantly improved OS and intracranial PFS (iPFS), and 
patients with symptomatic brain metastasis, an older age, 
and exon 19 deletion may benefit more from combination 
therapy (106). However, He et al. also suggested that 
EGFR-TKI alone may be an option as a first-line therapy 
for patients with three or less brain metastases, which 
may defer or avoid the neurocognitive sequelae caused by 
WBRT (106). In addition, one case report demonstrated 
that the combination of WBRT and afatinib might cause 
serious dermatological toxicity (107). Thus, more multi-
institutional, prospective randomized clinical trials need to 
be conducted to further explore the combination of EGFR-
TKIs and radiotherapy to better guide clinical treatment.

EGFR-TKIs combined with immunotherapy

Immunotherapy has become popular as the preferred 
option for cancer treatment in recent years (108). It aims to 
improve the anti-tumor immune response. Related drugs 
stimulate or promote the activation of the immune system 
to kill tumor cells that have escaped previous immunological 
surveillance. Compared to chemotherapy and other drugs 
that kill cancer cells directly, immunotherapy has fewer 
off-target effects (108). Thus, immunotherapy exerts a 
powerful anti-cancer effect by improving the immune 
microenvironment and has been approved for the treatment 
of NSCLC (109). The combination of immunotherapy with 
EGFR-TKIs is also under evaluation.

The programmed cell death protein-1 (PD-1) and its key 
ligand, the programmed cell death ligand-1 (PD-L1), are 
key therapeutic targets for NSCLC therapy. PD-L1 induces 
T cell apoptosis by binding to its receptor PD-1, which 
is mainly expressed in activated T cells (110,111). The 
overexpression of PD-L1 is associated with a poor prognosis 
in many cancers, such as NSCLC and breast cancer (112). 
A phase-I open-label multicenter study (NCT02088112) 
observed encouraging activity in durvalumab (an anti-
PD-L1 antibody) and gefitinib in NSCLC patients with 
sensitizing EGFR mutations (113). The TATTON study 
is a multi-arm, open-label, phase-Ib study designed to 
evaluate the safety and tolerability of osimertinib based 
combinations (osimertinib + MEK1-2 inhibitor selumetinib, 
osimertinib + MET-TKI savolitinib, and osimertinib + 
anti-PD-L1 monoclonal antibody durvalumab) in patients 
with EGFR-mutated NSCLC. As part of the TATTON 
study, Oxnard et al. found that while osimertinib (80 mg 
orally once a day) combined with durvalumab (3–10 mg/kg  

intravenously every 2 weeks) was tolerable, there was a 
higher than expected frequency of ILD (22%). However, 
the mechanism underlying the high incidence of ILD 
remains unclear, which led to the discontinuation of this 
combination (114).

Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)  
is another immune checkpoint receptor that induces T 
cell non-reactivity by binding to the B7 molecule and 
participates in the negative regulation of the immune 
response (115). It has also been developed as a prospective 
target for therapy in cases of NSCLC (115). In a small 
phase-I trial, Chalmers et al. evaluated a combination 
of ipilimumab (anti-CTLA-4 antibody) plus erlotinib 
in 11 NSCLC patients with EGFR mutations. This 
combination was associated with excessive short-term 
gastrointestinal toxicity (36%), which exceeded the pre-
planned conventional definition of an unacceptable toxicity 
frequency of 33%, leading to the early termination of 
the study. However, the long-term follow-up revealed an 
unexpected prolongation of patient survival, with a median 
PFS of 27.8 months and a median OS of 42.3 months (116).  
Based on the study by Chalmers et al., Puri et al. replaced 
erlotinib with osimertinib to decrease the toxicity of 
the combination therapy to assess the efficacy of the 
combination of ipilimumab and osimertinib in patients with 
EGFR-mutated NSCLC. The study is ongoing and the 
results are expected to be published in the near future (117).

In addition, high levels of circulating vascular endothelial 
growth factor (VEGF) stimulate tumor angiogenesis, 
which plays an important role in the growth, proliferation, 
and metastasis of tumor cells in NSCLC patients (118). 
ARTEMIS-CTONG1509, a multicenter phase-III study, 
found that bevacizumab (an anti-VEGF antibody) plus 
erlotinib significantly improved PFS in patients with 
EGFR-mutated NSCLC, including those with brain 
metastases at the baseline (119). Kuo et al. found that a 
bevacizumab combination treatment showed moderate 
efficacy in afatinib-treated NSCLC patients with the 
EGFR-sensitizing mutation (120). However, a treatment 
of osimertinib plus bevacizumab failed to show any efficacy 
in improving the PFS of EGFR-mutated NSCLC patients, 
with similar findings reported in the studies of Soo et al. and 
Kenmotsu et al. (121,122).

As mentioned above, most studies have shown that a 
combination of immunotherapy drugs and EGFR-TKIs 
could be comparatively clinically effective. However, 
EGFR-TKIs can cause several serious adverse events, 
notably including interstitial pneumonia. Given the 
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potential toxicity challenges associated with combination 
therapies, some studies have had to be terminated 
prematurely. Widespread safety concerns indicate a lack 
of understanding of antibody-based immunotherapy and 
should be addressed before the extensive clinical use of 
immunotherapy drugs.

Conclusions

In summary, the use of EGFR-TKI combination therapy 
is case-dependent. Most clinical trials have shown the 
efficacy and safety of EGFR-TKI combination therapy in 
patients with EGFR-mutated NSCLC; however, in some 
instances, several serious adverse events have led to the early 
termination of trials. Thus, more clinical studies with large 
sample sizes need to be conducted to analyze the activity 
and toxicity of combination therapies to explore potential 
and well-tolerated options. In addition, retrospective studies 
should be carried out from which the classification of 
patient subgroups should be analyzed to select patients who 
might benefit from combination therapy in terms of cost-
effectiveness, increased longevity, and improved QoL. In 
conclusion, EGFR-TKI combination therapy is an effective 
approach for the treatment of patients with EGFR-mutated 
NSCLC and deserves further development.
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