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Introduction

Parkinson’s disease  (PD) is caused by neurodegeneration 
of nigrostriatal pathways and is characterized by a series 
of motor symptoms  (bradykinesia, rigidity, postural 
instability, and static tremor), which are caused by 
progressive dopamine loss in the substantia nigra  (SN) 
pars compacta. Dopamine replacement therapy, currently 
the most efficacious and gold standard treatment for PD, 
mainly comprises the use of the dopamine precursor 
levodopa  (L‑DOPA), dopamine agonists, monoamine 
oxidase B inhibitors, and catechol‑O‑methyltransferase 
inhibitors.[1] Long‑term use of L‑DOPA may result in 
several complications, including motor fluctuations and 
levodopa‑induced dyskinesia  (LID), which cause serious 
distress to patients. Moreover, symptoms that appear at the 
later stages of PD are often not responsive to dopaminergic 

treatments. The development of these symptoms could 
involve the degeneration of nondopaminergic systems, 
leading to PD.[2] The development of novel nondopaminergic 
treatments is therefore of great clinical interest. Continuous 
studies have shown that the mechanism of PD involves 
many nondopaminergic mechanisms including adenosine 
receptors (ARs), glutamatergic, adrenergic, serotoninergic, 
histaminic, and iron chelator pathways.[3‑6] Targeting 
nondopaminergic systems could prove an effective 
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alternative approach to enhance efficacy and improve motor 
complications in PD.[7] The aim of this article was to review 
currently available nondopaminergic therapeutic options, 
including clinically available options and those in clinical 
trials, for motor symptoms and motor complications in PD.

Search and Selection Criteria

Papers in English published in PubMed, Cochrane, and Ovid 
Nursing databases between January 1988 and November 
2016 were searched using the following keywords: PD, 
nondopaminergic therapy, adenosine, glutamatergic, 
adrenergic, serotoninergic, histaminic, and iron chelator. We 
also reviewed the ongoing clinical trials in the website of 
clinicaltrials.gov. The classification of each nondopaminergic 
therapy is shown in Table 1.

Adenosine Options

Adenosine A2A receptor antagonists
ARs, which are seven‑transmembrane G‑protein‑ 
coupled receptors ,  are  of  four  types,  namely, 
A1, A2A, A2B, and A3.[8] Adenosine A2A  receptors are 
abundantly located in γ‑aminobutyric acid  (GABA) ergic 
striatopallidal projection neurons and are closely associated 
with the indirect pathway of the basal ganglia system owing 
to the formation of receptor heteromers with the dopamine 
D2 receptors.[3] Blocking of A2A receptors contributes to 
dopamine D2 receptor function. In PD animal models, A2A 
receptor antagonists in the striatum inhibit the indirect pathway 
and reduce postsynaptic effects of dopamine depletion and 
thereby improve motor symptoms and decrease the speed 
of underlying neurodegeneration without inducing LID.[9] 
Moreover, A2A receptor antagonists can prolong the duration 
of dopaminergic action.[10] These findings strongly suggest that 
adenosine A2A antagonists could have clinical applications as 
adjunct therapies for patients with PD [Table 1].

Istradefylline, a selective adenosine A2A antagonist, 
recently licensed in Japan for clinical use as an adjunct 
treatment,[14,53] is capable of reducing off time in the 
management of motor complications in advanced PD.[12,15,54] 
However, treatment with istradefylline could result in 
adverse reactions, of which dyskinesia is the most common. 
Recently, a 52‑week Phase III study in Japan showed that 
long‑term administration of istradefylline  (20  mg/d) was 
efficacious and caused an obvious reduction in off time 
despite mild‑to‑moderate dyskinesia.[54] However, there 
were controversial conclusions drawn on the benefits 
of istradefylline treatments in Phase II/III studies in the 
USA.[10,13,16,17] A Phase III study demonstrated that 10, 20, and 
40 mg/d of istradefylline did not alter the duration of off time; 
only slight improvements in motor assessment were observed 
at 40 mg/d.[17] In contrast, positive results were described 
in other clinical trials in the preceding years.[10,13,16] The 
Food and Drug Administration approval was therefore not 
received. A subsequent 52‑week Phase III trial to assess the 
effects of istradefylline in patients with moderate‑to‑severe 

PD is currently ongoing.[18] The improvement of motor 
function in early PD without provoking dyskinesia 
upon administration of istradefylline with low‑dose 
dopaminergic drugs has been described in   1-Methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)‑treated common 
marmosets.[55] Further istradefylline was reportedly safe and 
well tolerated as monotherapy for PD in a Phase II study, 
which showed great benefits based on the unified PD rating 
scale III (UPDRS III).[11]

Preladenant, another adenosine A2A antagonist, improved 
motor ability without worsening dyskinesia in rodent and 
primate models of PD.[56,57] A Phase II trial, assessing 
preladenant as an adjunct to levodopa in individuals with 
PD for 12  weeks, showed significant off time reduction 
upon treatment with 5 and 10  mg preladenant twice 
daily.[19] Moreover, preladenant was well tolerated. Another 
Phase II trial of long‑term (36‑week) preladenant treatment 
(5 mg twice a day) yielded similar findings.[20] However, in 
two Phase III and a Phase II trials, preladenant did not cause 
a clear reduction in off time compared with placebo,[21,22] 
and the failed results were attributed to inappropriate 
study design and execution. To the best of our knowledge, 
preladenant is no longer under study for the treatment of PD.

Tozadenant is another A2A antagonist that could alleviate 
motor fluctuation. The results of a small Phase IIa study 
suggested that tozadenant could cause an obvious decrease 
in thalamic cerebral blood flow following reduced 
pallidothalamic inhibition via the indirect pathway.[58] In a 
Phase IIb trial, tozadenant administered at 120 mg or 180 mg 
twice daily was generally effective in reducing off time.[23] 
A Phase III study is currently under way.[24] Combination 
treatments with tozadenant and other drugs have been tested 
in animal models. The A2A/NR2B receptor antagonist 
combination  (tozadenant/radiprodil) could ameliorate 
motor symptoms without the side effects associated with 
dopaminergic treatment.[59] Other A2A antagonists that have 
progressed to Phase I clinical trials include ST1535, ST4206, 
ST3932, V81444, and PBF‑509.[14]

A1/A2A receptor antagonists
Blocking of adenosine A1 receptors that are distributed 
throughout the cortex, hippocampus, and striatum has 
also resulted in motor activation in animal models.[60,61] 
Combined targeted blockage of A1 and A2A receptors could 
therefore synergistically provide a potential alternative 
to conventional PD treatments. Several novel adenosine 
A1/A2A antagonists that have been effective in treating 
motor deficits are based on the common structure of the 
synthesized 2‑aminopyrimidine motif, with potent adenosine 
A1/A2A affinity.[62‑66] Further studies on the physicochemical 
properties of these compounds are needed.

Nonspecific adenosine receptor antagonist
Caffeine is a nonspecific AR antagonist that has shown 
antiparkinsonian and neuroprotective effects in animal 
models of PD.[67,68] Caffeine could possibly increase excitatory 
activity in the striatopallidal area and inhibit astrocyte‑induced 
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Table 1: Current nondopaminergic therapeutic options for motor symptoms in PD

Mechanism Drugs Stage n Dose Duration Results Reference
Adenosine

A2A receptor 
antagonist

Istradefylline II 176 40 mg/d 12 weeks Improvement in UPDRS III 
motor score

[11]

II 363 20 or 40 mg/d 12 weeks Reduction in off time [12]
II 196 40 mg/d 12 weeks Reduction in off time [10]
II 395 20 or 60 mg/d 12 weeks Reduction in off time [13]
III 373 20 or 40 mg/d 12 weeks Reduction in off time [14]
III 308 20 or 40 mg/d 52 weeks Sustained reduction in off 

time
[15]

III 231 20 mg/d 12 weeks Reduction in off time [16]
III 584 10, 20, or 40 mg/d 12 weeks No reduction in off time, 

only improved motor score 
at 40 mg/d

[17]

III 20 or 40 mg/d 12 weeks Ongoing [18]
Preladenant II 253 1, 2, 5, or 10 mg, bid 12 weeks Reduction in off time [19]

II 106 5 mg, bid 36 weeks Sustained reduction in off 
time

[20]

II 450 2, 5, or 10 mg, bid 12 weeks No reduction in off time [21]
III 778 2, 5, or 10 mg, bid 12 weeks No obvious reduction in off 

time
[22]

III 476 2 or 5 mg, bid 12 weeks No obvious reduction in off 
time

[22]

Tozadenant II 420 60, 120, 180, or 
240 mg, bid

12 weeks Reduction in off time [23]

III 450 60 or 120 mg, bid 24 weeks Ongoing [24]
Nonspecific 

antagonist
Caffeine III 119 200 mg, bid 5 years Ongoing [25]

Glutamate
NMDA 

receptor 
antagonist

ADS‑5102 
(extended‑release)

II 83 260, 340, or 
420 mg/d

8 weeks Reduction of LID, and 
increase in on time without 
troublesome LID

[26] (EASED study)

III 77 13 weeks Completed waiting for a 
result

[27] (EASE LID 3)

III 126 25 weeks Completed without results [28] (EASE LID)
Amantadine HCL 

(extended‑release)
III 162 240 or 320 mg/d 16 weeks Ongoing [29] (ALLAY‑LID I)
III 162 240 or 320 mg/d 26 weeks Ongoing [30] (ALLAY‑LID II)

Mantadix IV 80 200 mg/d 12 weeks Reduction in severity of LID [31]
Memantine III 15 20 mg/d 3 weeks No significant change in LID [32]

AMPA 
receptor 
antagonist

Perampanel II 263 0.5, 1, 2 mg/d 12 weeks No significant change in LID [33]
III 480 4 mg/d 18 weeks No significant change in LID [34]
III 763 2 or 4 mg/d 30 weeks No significant change in LID 

or off time
[35]

III 751 2 or 4 mg/d 20 weeks No significant change in LID 
or off time

[35]

Topiramate II 55 14 weeks The trial testing topiramate 
combined with amantadine 
is ongoing

[36]

mGluR5 
antagonist

Mavoglurant II 31 50–300 mg/d 16 days Reduction in severity of 
dyskinesia

[37]

II 28 50–300 mg/d 16 days Reduction in severity of 
dyskinesia

[37]

II 197 20, 50, 100, 150, or 
200 mg/d

13 weeks Reduction in severity 
of dyskinesia without 
worsening underlying 
motor symptoms

[38]

II 78 100 mg/d 12 weeks No significant change in LID [39]
II 154 150 or 200 mg/d 12 weeks No significant change in LID [39]
II 66 3.5 years Completed without results [40]
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inflammation in PD.[69] A 4‑year observational cohort study 
revealed that caffeine consumption played a pivotal role in 
reducing accrual of disability in PD.[70] However, there have 
been inconsistencies in the conclusions obtained from some 
clinical trials. A clinical study demonstrated that caffeine 
could reduce the likelihood of developing dyskinesia.[71] 
However, there were no significant changes in motor features 
except for reduced total UPDRS score and objective motor 
component in another randomized controlled trial.[72] A 
Phase III trial to evaluate the efficacy of caffeine in PD is 
currently ongoing.[25]

Glutamatergic Options

The role played by glutamate in the mechanism and progression 
of PD via various ionotropic and metabotropic receptor 
types in the basal ganglia motor loop has been extensively 
investigated. N‑methyl‑D‑aspartate (NMDA), α‑amino‑3‑
hydroxy‑5‑methyl‑4‑isoxazolepropionic acid (AMPA), and 
metabotropic glutamate receptors  (mGluRs) in particular 
have been extensively studied, not only to identify their 
role in the progression of PD but also as potential novel 
therapeutic options.[4,73] Overactivity of the corticostriatal 
glutamatergic pathways and disinhibition of the subthalamic 
nucleus (STN) exacerbate the pathogenesis of PD by further 
activating the indirect striatopallidal pathway by weakening 
of normal dopamine D2‑like receptor‑mediated inhibition.[73] 

Enhanced cell excitotoxicity to the SN also underpins the 
appearance of motor symptoms in PD. Increased glutamate 
transmission from corticostriatal projections by long‑term 
volatile stimulation of dopamine receptors at the affected 
striatal synapses could play a key role in LID;[74] however, 
the mechanisms involved remain unclear [Table 1].

N‑methyl‑D‑aspartate receptor antagonists
The appearance of LID is accompanied by the excessive 
activation of NMDA receptors, a type of inotropic 
glutamate receptor expressed in the striatum and STN.[75] 
Dopaminergic and glutamatergic receptors are located in 
mutual striatal projection spiny neurons. Activation of 
D1 receptors results in the phosphorylation of NMDA 
receptors (especially the NR2A and NR2B receptor subunits) 
via protein phosphatase‑1 and Fyn protein tyrosine kinase 
and consequently triggers a rapid redistribution of NMDA 
receptors via trafficking from synaptic to extrasynaptic 
compartments.[76,77] Over time, this functional link between 
D1 and NMDA receptors results in a change of corticostriatal 
synaptic plasticity, known as long‑term potentiation (LTP), 
which could promote the development of LID.[77,78]

Most conventional nonselective NMDA receptor antagonists, 
however, have been implicated in adverse effects including 
psychotomimetic effects, impairments of learning, memory, 
and dissociative anesthesia. Thus, more selective antagonists 
targeting specific subtypes of NMDA receptors, especially 

Table 1: Contd...

Mechanism Drugs Stage n Dose Duration Results Reference
Dipraglurant II 76 50–300 mg/d 4 weeks Reduction in severity of LID [41]

Adrenaline
Noradrenergic 

reuptake 
inhibitor

Methylphenidate IV 27 Up to 80 mg/d 24 weeks Slight improvement in gait 
during off period

[42]

IV 69 1 mg·kg-1·d-1 12 weeks Improved gait hypokinesia 
and freezing

[43]

α2‑adrenergic 
receptor 
antagonist

Fipamezole II 180 90,180, or 270 mg/d 4 weeks No significant change in LID [44]

Serotonin
α1 adrenergic 

receptor and 
5‑HT1A 
agonist

Buspirone I 16 10 mg, tid 6 weeks The trial testing buspirone 
combined with amantadine 
is ongoing

[45]

III 100 10–30 mg/d 13 weeks The trial for buspirone 
monotherapy is ongoing

[46]

Combined 
5‑HT1A and 
5‑HT1B 
agonist

Eltoprazine II 22 2.5, 5, or 7.5 mg/d Reduction in severity of 
dyskinesia

[47]

II 60 2.5, 5, or 7.5 mg/d 3 weeks Ongoing [48]

Histamine
Histamine H2 

antagonist
II 7 80, 120, or 160 14 days No significant change in LID [49]

Iron chelator Deferiprone II 338 30 mg·kg−1·d−1 9 months Ongoing [50]
II 140 300, 600, 900, or 

1200 mg/d
9 months Ongoing [51]

c‑Abl inhibitor Nilotinib I 12 150 or 300 mg/d 6 months Beneficial effect on clinical 
motor outcome

[52]

c‑Abl: c‑Abelson tyrosine kinase; A2A: Adenosine 2A; NMDA: N‑methyl‑D‑aspartate; AMPA: α‑amino‑3‑hydroxy‑5‑methyl‑4‑isoxazolepropionic acid; 
UPDRS III: Unified Parkinson’s disease rating scale III; LID: Levodopa‑induced dyskinesia; PD: Parkinson’s disease; 5‑HT1A: 5‑hydroxytryptamine‑1A; 
mGluR5: Metabotropic glutamate receptor 5.
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NR2A and NR2B receptors that seem to be alternatively 
expressed in the striatum, have been explored.[73,78] A 
favorable antidyskinetic outcome was reported in a study 
using a NR2B‑selective NMDA glutamate antagonist, 
CP‑101, 606; however, adverse cognitive effects were 
observed.[79] The clinical efficacy of NR2B subtype‑selective 
antagonists in alleviating PD symptoms could not be 
confirmed following a randomized controlled trial, which 
failed to show any motor improvements after treatment 
with the NR2B‑selective antagonist MK‑0657.[80] Studies 
on NR2A subunits revealed that a cell‑permeable peptide 
blocking NR2A subunits caused a reduction of LID in 
parkinsonian rats.[81,82] Currently, nonselective NMDA 
antagonists are still preferred for clinical use.

There have been several reports on the antidyskinetic 
effects of amantadine, a nonselective NMDA receptor 
antagonist.[31,83,84] Amantadine has been approved for the 
treatment of LID despite its side effects such as confusion, 
constipation, and visual hallucinations. ADS‑5102, a 
long‑lasting sustained‑release capsule of amantadine HCl, 
administered once daily at night, has been described in an 
8‑week Phase II study in patients with obvious dyskinesia.[26] 
The 340  mg/d dosage of amantadine caused significant 
improvement of dyskinesia versus placebo and increased 
“on” time without aggravating dyskinesia. Two Phase III 
trials by the same sponsor on the use of ADS‑5102 for the 
treatment of LID were recently completed, and the results 
are awaited.[27,28] Two Phase III studies testing another 
long‑lasting sustained‑release formulation of amantadine 
for 16 and 26 weeks are currently ongoing.[29,30]

Memantine is another conventional nonselective NMDA 
antagonist used for the treatment of dementia. Unexpected 
improvements in LID and On‑Off appearance in PD were 
recorded after administration of memantine in five cases.[85,86] 
Memantine could be effective against LID despite transient 
tolerance in 6‑OHDA‑lesioned rat models.[87] However, 
recent studies on memantine (20 mg) revealed no significant 
improvement in dyskinesia ratings. Further, no serious side 
effects were observed in a small crossover clinical study in 
15 patients with PD.[32]

α‑Amino‑3‑hydroxy‑5‑methyl‑4‑isoxazolepropionic acid 
receptor antagonists
AMPA receptors are ionotropic glutamate receptors 
expressed in the striatum and SN. The potential use of 
AMPA antagonists in the improvement of LID has been 
demonstrated in preclinical studies.[73,88] Perampanel, a 
selective AMPA receptor antagonist, however, failed to effect 
statistically significant improvement in motor symptoms 
and motor fluctuations of levodopa‑treated patients with 
moderately advanced PD in clinical trials.[33‑35] Topiramate 
is an antiepileptic drug that functions via inhibition of 
voltage‑gated sodium and calcium currents. Topiramate is 
also a potent AMPA receptor antagonist and triggers AMPA 
receptor dephosphorylation. Studies in animal models 
have suggested applications for topiramate as a potential 

antidyskinetic treatment.[89,90] However, contrary to the 
results of preclinical studies, topiramate tended to worsen 
dyskinesia in patients with PD and was poorly tolerated.[91] 
The use of topiramate as an adjunct to amantadine is being 
evaluated in a Phase II trial.[36]

Metabotropic glutamate receptor antagonists
The mGluRs are eight G‑protein‑coupled receptors, 
consisting of three groups  (Groups  I, II, and III), which 
are localized in the basal ganglia. They are involved in 
synaptic transmission and plasticity in progression of 
LIDs.[92] Studies on Group I mGluRs, particularly subgroup 
mGluR5, showed that mGluR5 antagonists are highly 
efficient in ameliorating motor symptoms and LIDs in 
animal models.[93,94] Enhanced density of postsynaptic 
metabotropic glutamate 5  (mGlu5) receptor and specific 
combination with the striatum and posterior putamen 
observed in 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine 
(MPTP)‑lesioned macaque models could contribute 
to the pathogenesis of LIDs in PD.[95‑97] These results 
formed the basis of several clinical trials evaluating 
the potential of two mGlu5 receptor negative allosteric 
modulators  (NAMs) — mavoglurant and dipraglurant. In 
previous studies, mavoglurant  (AFQ056) demonstrated 
relevant antidyskinetic effects;[37,38] however, further clinical 
trials did not reveal obvious antidyskinetic efficacy.[40,98,99] 
A recent Phase II trial has been concluded without results 
being published.[40] Dipraglurant  (ADX48621) is another 
mGluR5 antagonist that was proven to reduce LID in 
an MPTP‑lesioned macaque model.[100] Results of a new 
Phase IIa study showed safety and well tolerability of 
dipraglurant.[41]

Activation of Group  II mGluRs  (mGluR2/3) could also 
be used to treat parkinsonian motor symptoms because of 
decreased excitatory glutamate transmission at corticostriatal 
synapses. However, there is no significant evidence from 
studies on animal models of PD that Group  II mGluRs 
could reverse dyskinesia.[101,102] Group III mGluRs consist of 
mGlu4, 6, 7, and 8 receptors. Activation of mGlu4 receptors, 
especially localized at GABAergic and glutamatergic 
synapses in the indirect pathway of basal ganglia circuitry, 
was tested using positive allosteric modulators  (PAMs) 
for reducing synapse transmission at GABAergic and 
glutamatergic synapses.[103] Several animal studies had 
revealed that mGlu4 PAMs  (VU0364770, VU0400195, 
Lu AF21934, and VU0418506) have good efficacy in 
antiparkinsonian clinical use.[104‑107]

Adrenergic Options

The degeneration of the locus coeruleus that can produce 
noradrenaline plays a major role in subcortical neuronal 
loss in PD.[108] Dramatic reductions in noradrenergic levels 
in the extensive brain regions, including the frontal cortex, 
striatum, hippocampus, and amygdala, have been detected 
in postmortem PD brains, and could contribute to motor 
dysfunction.[6] Noradrenaline deficiency is believed to 
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be involved in the pathogenesis of LID and freezing of 
gait (FOG).[109‑111] However, the detailed mechanisms remain 
unclear. Growing evidence supports the development of 
strategies to enhance NE neurotransmission for the treatment 
of LID and FOG in animal models and clinical trials of 
PD [Table 1].[112]

Noradrenergic reuptake inhibitor
Methylphenidate is a central stimulant, conventionally 
used for treating attention‑deficit hyperactivity disorder. It 
elevates noradrenaline and dopamine levels by inhibiting 
the presynaptic dopamine and noradrenaline transporters 
in the striatum and prefrontal cortex.[113] In a 3‑month 
crossover study by Moreau et al.,[43] gait hypokinesia and 
freezing was improved in the methylphenidate group in 
69 patients with advanced PD despite optimized dopamine 
treatment and subthalamic stimulation. Side effects were 
also reported in this group, including weight loss, increased 
heart rate, sleeplessness, and transient confusion. Further, 
dopamine transporter type  1‑encoding gene  (SLC6A3) 
variants played a vital role in the efficacy of methylphenidate 
treatment for gait disorders in the same population.[114] 
Another 6‑month randomized trial (n = 27) did not show a 
significant improvement in gait,[42] although a double‑blind 
assessment was also conducted. Thus, longer followed‑up 
studies in patients with PD who have not received 
surgery are needed. A  case report of isolated FOG in 
PKAN (pantothenate kinase‑associated neurodegeneration) 
revealed dramatic responsiveness with an increased dosage 
of methylphenidate.[115] These findings suggest that the 
association between methylphenidate and FOG merits 
further exploration.

Adrenergic receptor antagonist
Fipamezole, an α2‑adrenergic receptor antagonist, was 
previously reported to reduce LID and improve the quality of 
levodopa action in animal models.[116,117] In a 1‑month crossover 
study,[44] conducted in the USA (n = 115) and India (n = 64), 
no significant outcome was reported, only a subgroup analysis 
of subjects in the USA revealed obvious LID reduction under 
fipamezole treatment, because of the difference in demographic 
characteristics between the USA and India.

Serotonergic Agents

In the brain, serotonergic receptors are localized in the raphe 
nuclei of the brainstem which provides 5‑HT innervation 
to the entire brain. Depletion of serotonergic neurons 
and accumulation of lewy bodies in PD were observed in 
previous studies.[5] Abnormality in the serotonin system 
responsible for LID could be due to aberrant processing of 
exogenous levodopa and dysregulated dopamine release in 
striatal serotonergic terminals.[118] Furthermore, an increased 
serotonin‑to‑dopamine transporter binding ratio accelerates 
PD progression.[119] Several clinically available drugs have 
been assessed recently in this context [Table 1].

Buspirone is a combined 5‑hydroxytryptamine‑1A (5‑HT1A) 
and α1 adrenergic receptor agonist with antidyskinetic 

potential.[120] Results of a dose‑finding study suggested 
the suitability of buspirone for use as antidyskinetic 
agent in PD.[118] A Phase I study assessing the efficacy of 
buspirone  (in combination with amantadine) and a Phase 
III (monotherapy) are actively ongoing.[45,46]

Eltoprazine is a mixed 5‑HT1B and 5‑HT1A agonist, 
which exerts antidyskinetic effects by reducing striatal 
glutamate transmission.[121,122] Eltoprazine (5 mg/d) showed 
antidyskinetic effects without reducing normal motor 
responses to levodopa,[47] through the restoration of LTP 
and synaptic depotentiation in a subset of striatal spiny 
projection neurons.[123] However, in another rat model study, 
reduced levodopa‑induced mobility was observed despite the 
antidyskinesia properties of eltoprazine.[122] A combination 
of eltoprazine and preladenant reduced dyskinesia and 
maintained the full therapeutic effects of a low dose of 
levodopa.[124] A Phase II study is currently active.[48]

A retrospective investigation on the effects of selective 
serotonin reuptake inhibitors (SSRIs) during dopaminergic 
treatment revealed that SSRIs did not prevent dyskinesias. 
However, SSRI exposure could delay onset of dyskinesia and 
reduce the severity, suggesting potential anti‑PD applications 
for the serotonergic system in the future.[125]

Histamine Pathways

Histamine receptors are classified into four subtypes 
(H1, H2, H3, and H4). H2 receptors are mainly distributed 
in basal ganglia, particularly in the major input nucleus 
of the striatum indicating that histamine can affect direct 
pathways.[126] In addition, cholinergic interneurons activated 
in LID were attenuated by inhibition of H2 histaminergic 
transmission in mouse models.[127] Furthermore, histamine 
modulates the microglial activity in PD, which is accompanied 
by microglia‑induced neuroinflammation.[128] Famotidine, 
a selective histamine H2 antagonist, could enhance the 
antiparkinsonian effects and duration of levodopa action in 
a macaque model.[129] However, a Phase II trial evaluating 
famotidine 80, 120, 160 mg/d failed to demonstrate efficacy 
in reducing dyskinesia severity [Table 1].[49]

Iron Chelators

A normal SN has a higher density of iron linked to ferritin 
and neuromelanin.[130] Maintenance of iron homeostasis is 
important and involves several mechanisms. Mismanagement 
of iron homeostasis may lead to various neurological injuries 
observed in PD.[131] Brain iron deposition could contribute to 
oxidative stress response in the SN and therefore exacerbate 
dopamine neuron degeneration.[132] Iron chelators likely 
protect against reduction in striatal dopamine by combining 
with iron in the SN. This dopaminergic neuroprotection 
was proved in animal models, wherein the iron chelator 
desferrioxamine ameliorated iron accumulation.[133‑135] 
Desferrioxamine has long been clinically available. 
However, its obstruction of the blood–brain barrier has 
restricted its use in neurodegenerative disorders.[136] The 
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chelator deferiprone has an advantage over desferrioxamine, 
a 12‑month study in patients with early‑stage PD revealed 
a meaningful reduction in iron levels and improvement in 
motor symptoms,[137] and several Phase II clinical trials 
evaluating deferiprone are ongoing [Table 1].[50,51]

C‑Abelson Tyrosine Kinase Inhibitor

C‑Abelson tyrosine kinase (c‑Abl) is activated in the brain of 
patients with PD. Nilotinib, the c‑Abl inhibitor, is clinically 
used for chronic myelogenous leukemia treatment. Recent 
studies revealed that nilotinib could degrade autophagy 
of α‑synuclein, leading to protection of SN neurons and 
amelioration of motor symptoms.[138,139] A new 6‑month 
Phase I trial (n = 12) showed that nilotinib had beneficial 
effects on clinical motor outcome and changed cerebrospinal 
fluid biomarkers which indicated reduction of toxicity to the 
brain.[52] However, this small proof‑of‑concept study lacked 
a placebo group, and further studies with a greater sample 
size and control group are needed [Table 1].

Conclusions

Targeting nondopaminergic transmission could improve 
some motor symptoms in PD, especially the discomfort 
of dyskinesia. Some nondopaminergic drugs, such as 
istradefylline and amantadine, are currently used clinically, 
while most such drugs are in preclinical testing stages. 
Transitioning of these agents into clinically beneficial 
strategies requires reliable evaluation since several agents 
have failed to show consistent results despite positive 
findings at the preclinical level. In conclusion, although 
nondopaminergic treatments show great potential in 
PD treatment as an adjunct therapy to levodopa, further 
investigation is required to ensure their success.
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