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Abstract: COVID-19 has been threatening human health since the late 2019, and has a significant
impact on human health and economy. Understanding SARS-CoV-2 and other coronaviruses is
important to develop effective treatments for COVID-19 and other coronavirus-caused diseases.
In this work, we applied multi-scale computational approaches to study the electrostatic features
of spike (S) proteins for SARS-CoV and SARS-CoV-2. From our results, we found that SARS-CoV
and SARS-CoV-2 have similar charge distributions and electrostatic features when binding with the
human angiotensin-converting enzyme 2 (hACE2). Energy pH-dependence calculations revealed
that the complex structures of hACE2 and the S proteins of SARS-CoV/SARS-CoV-2 are stable at pH
values ranging from 7.5 to 9. Three independent 100 ns molecular dynamics (MD) simulations were
performed using NAMD to investigate the hydrogen bonds between S proteins RBD and hACE2
RBD. From MD simulations, we found that SARS-CoV-2 forms 19 pairs (average of three simulations)
of hydrogen bonds with high occupancy (>50%) to hACE2, compared to 16 pairs between SARS-CoV
and hACE2. Additionally, SARS-CoV viruses prefer sticking to the same hydrogen bond pairs,
while SARS-CoV-2 tends to have a larger range of selections on hydrogen bonds acceptors. We also
labelled key residues involved in forming the top five hydrogen bonds that were found in all three
independent 100 ns simulations. This identification is important to potential drug designs for COVID-
19 treatments. Our work will shed the light on current and future coronavirus-caused diseases.

Keywords: SARS-CoV; SARS-CoV-2; COVID-19; electrostatic features; Angiotensin-Converting
Enzyme 2; hACE2; spike protein; pH dependence; binding energy; folding energy; hydrogen bonds

1. Introduction

The ongoing COVID-19 pandemic is changing human society significantly and causing
both economic and social consequences all over the world [1]. Coronaviruses are named for
their crown-like spikes on their surface, and they are commonly found in many mammal
species [2]. Human coronaviruses were firstly identified in the mid-1960s. There are four
main sub-groupings of coronaviruses, known as alpha, beta, gamma, and delta [3]. Among
all the coronaviruses, there are seven known types of coronaviruses that can infect human
beings. People around the world are commonly infected by human coronaviruses 229E,
NL63, OC43, and HKU1 [4,5]. Additionally, some coronaviruses that infect animals are
able to evolve and infect humans, among which the three recent cases are SARS-CoV-2,
SARS-CoV, and MERS-CoV [6]. The SARS-CoV-2 virus is the novel coronavirus that causes
coronavirus disease 2019, or COVID-19. Other than COVID-19, coronaviruses have caused
several pandemics before, including severe acute respiratory syndrome (SARS), which
was caused by SARS-CoV, and the Middle East respiratory syndrome (MERS), which was
caused by MERS-CoV. To end the current pandemic soon and be prepared for the future
similar challenges for human society, it is essential to understand the binding mechanisms
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of SARS-CoV-2 infecting human cells. This is achievable by studying the stabilities of SARS-
CoV-2 at different pH conditions and identifying the key residues that play significant roles
in the binding processes.

Coronaviruses contain membrane glycoprotein (M), nucleocapsid protein (N), spike
protein (S), envelope protein (E), and an RNA single chain [7]. For all enveloped viruses,
one of the most important steps during the binding process is membrane fusion, which
allows viruses to infiltrate host cells [8]. For coronaviruses, the fusion protein is the S
protein that leads the binding process to attack human cells through the host cell receptor
angiotensin-converting enzyme 2 (hACE2) [9]. Human hACE2 (hACE2) is an enzyme
located widely in the human body, including the lungs, kidneys, adipose tissue, central
nervous system, and cardiovascular system [9–11], and it has multiple essential functions
such as the regulation of amino acid transport in the kidney controlling the blood pressure,
and viral receptors including both SARS-CoV-2 and SARS-CoV [11]. Since it is of extreme
importance to human health, numerous research groups have been or are currently working
on S proteins and hACE2 using various approaches.

The traditional process of the de novo drug design is a challenging task that consumes
resources and time significantly. With the fast developments of computing technology,
computational methods have been widely used in drug-related research [12], including
protein–protein interactions [13,14], MD simulations [15], coarse-grained models [16], pH
dependence of protein–protein interactions [17–20], etc. Our previous studies have applied
multi-scale computational methods to study several pathogens [21–25] including the SARS-
CoV-2 viruses [26,27], which revealed some mechanisms of the SARS-CoV-2 S protein.
Additionally, many other research groups have made successful progress to understand
the SARS-CoV-2 using computational methods [28,29].

In this work, we firstly calculated the electrostatic potentials on the surface of S proteins
from both SARS-CoV and SARS-CoV-2, followed by the electric field line comparison
between SARS-CoV and SARS-CoV-2 when they bind to hACE2. We found that these
two viruses have similar pH responses: the pH-dependence of folding energies for S
protein receptor binding domains (RBDs) demonstrated that both the S protein RBDs of
these two viruses are at the most stable status when pH values ranging from 6 to 9. The
pHvdependence of binding energies for S protein RBDs and hACE2 RBD showed that the
complex structures of the two viruses are at the most stable status at pH values ranging
from 7.5 to 10.5. Therefore, pH 7.5 to 9 is the best condition for both SARS-CoV and
SARS-CoV-2 to perform their functions of binding with hACE2. Additionally, we analyzed
the trajectories from three independent 100ns MD simulations for each complex structure
using NAMD [30] and identified essential hydrogen bonds with the involved key residues
using VMD [31]. This work mainly focuses on the analyses of hydrogen bonds. Our
previous studies discussed ionic interactions in detail [26,27]. From the MD simulations
we found that SARS-CoV-2 forms average 19 pairs hydrogen bonds with high occupancy
(>50%) to hACE2, compared to 16 pairs between SARS-CoV and hACE2. Additionally,
SARS-CoV tends to stick to same hydrogen bond pairs, while SARS-CoV-2 tends to have
a larger range of selections on hydrogen bonds acceptors. We also labelled key residues
involved in forming the top five hydrogen bonds that were found in all three independent
100 ns simulations. This identification is important to potential drug designs for COVID-19
treatments. Our work will shed light on current and future coronavirus-caused diseases.

2. Results and Discussions

First of all, the electrostatic features of SARS-CoV and SARS-CoV-2 S proteins were
investigated, including electrostatic potential and electric field lines. Secondly, the relative
binding energies of complex structures and folding energies of S proteins at different
pH values were analyzed. Finally, the hydrogen bonds and related key residues in each
complex structure were obtained using MD simulations.
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2.1. S Protein Trimer Structure

The RMSD between the S proteins of SARS-CoV and SARS-CoV-2 is 0.973 Å, showing
that the S proteins of SARS-CoV and SARS-CoV-2 are very similar. The S proteins of SARS-
CoV and SARS-CoV-2 are both homotrimers. Each monomer contains an RBD, which
connects the other part of the monomer via a hinge composed by two flexible loops (as
shown in the black circle of Figure 1A). The RBD is in closed configuration when there is
no hACE2 binds to the S protein. When binding to hACE2, the RBD of one monomer flips
out as open configuration, and it binds to the RBD of hACE2.

Figure 1. SARS-CoV S protein structure. Only the SARS-CoV S protein structure is illustrated in this
figure, because SARS-CoV and SARS-CoV-2 S proteins are very similar (the RMSD between two S
protein RBDs is 0.973 Å). (A) The S protein is a homotrimer (orange, blue, pink), of which one chain
(pink) flips out when it binds to hACE2 (gray). The hinge connecting the RBD and the other part of
S protein is shown in a black circle; (B) the closeup view of binding domains when S protein RBD
(pink) binds to hACE2 RBD (gray).

2.2. Electrostatic Potential on Surfaces

To study the electrostatic features, DelPhi was utilized to calculate the electrostatic po-
tential on surfaces of the S protein trimer (full structure) and hACE2 RBD. The electrostatic
potential distribution on SARS-CoV S protein trimer structure is showed in Figure 2B,E,H
and Video S1, which were rendered by Chimera with a color scale from −1.0 to 1.0 kT/e.
The charge distribution on SARS-CoV-2 S protein trimer structure is shown in Figure 2C,F,I
and Video S2, which were rendered by Chimera with a color scale from −1.0 to 1.0 kT/e
as well, for comparison. Negatively and positively charged areas are colored in red and
blue, respectively.
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Figure 2. Electrostatic potential on surfaces of SARS-CoV and SARS-CoV-2 S proteins. (A) Top view
of S protein structure; (B,C) top views of electrostatic potential on surfaces of SARS-CoV and SARS-
CoV-2 S protein, respectively; (D) front view of S protein structure; (E,F) front views of electrostatic
potential on surfaces of SARS-CoV and SARS-CoV-2 S protein, respectively; (G) bottom view of S
protein structure; (H,I) bottom views of electrostatic potential on surfaces of SARS-CoV and SARS-
CoV-2 S protein, respectively. Negatively and positively charged areas are colored in red and blue,
respectively, with the color scale from −1.0 to 1.0 kT/e.

By comparing the electrostatic potential on surfaces of two trimer structures, it is
obvious that the charge distribution of SARS-CoV and SARS-CoV-2 S proteins are different.
From the top view (Figure 2A–C) and the bottom view (Figure 2G–I), we noticed that SARS-
CoV has slightly more positively charged area (blue), compared to SARS-CoV-2. It indicates
that the SARS-CoV may attract the hACE2 more easily, since the hACE2 binding interface
is overall negatively charged (Video S3). Such finding supports the previous studies of
our research group [26,27]. The electrostatic distribution differences observed from front
views (Figure 2D–F) of the S proteins demonstrate that the electrostatic features may have
impacts on the stabilities of the trimers. Here, several details were not investigated about
the binding stabilities among monomers in an S protein due to the scope of this work,
which mainly focusses on the binding between S protein and hACE2. The electrostatic
distributions of S protein RBDs show that the SARS-CoV RBD is more positive, which is
consistent with the top view (Figure 2B,C). The bottom of SARS-CoV (Figure 2E,H) has
more positive potential than SARS-CoV-2 (Figure 2F,I).

2.3. Electric Filed Lines

Electric field lines surrounding two complex structures were calculated. To better
visualize the field lines between interfaces, S protein RBDs are separated from hACE2
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RBDs by 10Å (Figure 3). The field line distributions confirmed that both the SARS-CoV and
SARS-CoV-2 S protein RBDs have attractive forces to hACE2 protein. In the analysis of field
lines, the density of field lines indicates the strength of binding forces, which means that
the denser area has the stronger binding interactions. The electric field lines demonstrate
that, when hACE2 is away from the S protein, all the three S protein monomers provide
attractive interactions to the hACE2. This is expected because the S protein RBDs are
positively charged while the hACE2 is negatively charged, as shown in Figure 2 and Video
S3, respectively. When hACE2 binds to S proteins (as shown in Figure 1), the hACE2 only
binds with one S protein RBD, which is in open state.

Figure 3. Electrostatic filed lines at the interfaces of S protein and hACE2. (A) Electrostatic filed lines
between SARS-CoV S protein and hACE2; (B) A closeup view of binding domain between SARS-
CoV S protein and hACE2; (C) electrostatic field lines between SARS-CoV-2 S protein and hACE2;
(D) A closeup view of binding domain between SARS-CoV-2 S protein and hACE2. Negatively and
positively charged areas are colored in red and blue, respectively. Color scale is −1.0 to 1.0 kT/e.
Yellow square areas are the RBD of S proteins at open state to reach the hACE2, cyan square areas are
the RBD of S proteins at closed state.

Combining the information from Figures 1 and 3, they demonstrate that all the three S
protein RBDs generate attractive forces to hACE2. However, when hACE2 becomes closer
to an S protein, one S protein RBD flips out and binds to the hACE2 tightly, while the
other two S protein RBDs stay in closed state. Even though the monomer with flipped-out
S protein RBD is the closest to hACE2 and forms most of the salt bridges and hydrogen
bonds, the other two monomers also provide dense field lines and show strong attractive
interactions between S proteins and hACE2.
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2.4. pH-Dependence of Relative Folding Energies

The folding energy of SARS-CoV and SARS-CoV-2 complexes were calculated using
DelPhiPKa at different pH values ranging from 0 to 14 with an interval of 0.5 (Figure 4). We
observed that SARS-CoV and SARS-CoV-2 have the same trend of folding energy with the
change of pH values, which is decreasing from 0 to 6, then becoming stable from 6 to 9, and
increasing from 10 to 14. The optimal values locate between 6 to 9 for both of the viruses.

Figure 4. pH dependence of the relative folding energy of S protein RBDs of SARS-CoV and SARS-
CoV-2. All values are the differences to the folding energy values at pH = 0, which means that positive
values indicate that the energies are higher than the folding energy at pH = 0, and negative values
indicate that the energies are lower than the folding energy at pH = 0. So, the larger absolute value is,
the larger difference is.

Please note that the folding energies in Figure 4 are relative values because we set the
reference energy to be 0 kcal/mol when pH is equal to 0. We did not calculate the absolute
values of folding energies since we focused on the pH dependency of the folding energies.

2.5. pH-Dependence of Relative Binding Energies

DelPhiPKa was implemented to calculate the binding energies of two complex struc-
tures at different pH values. The results are presented in Figure 5, where we noticed that
the binding free energies of both SARS-CoV and SARS-CoV-2 complexes are stable at pH
values ranging from 7.5 to 10.5, which indicates that both SARS-CoV and SARS-CoV-2 have
a slight preference of weakly basic environment. Please note that the binding energies in
Figure 5 are relative values because we set the reference energy to be 0 kJ/mol when pH is
equal to 0. We did not calculate the absolute values of binding energies, since we focused
on the pH dependency of the binding stability.
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Figure 5. The relative binding energies of complexes at different pH values. All values are the
differences to the binding energy values at pH = 0, which means that positive values indicate that the
energies are higher than the folding energy at pH = 0, and negative values indicate that the energies
are lower than the folding energy at pH = 0. So, the larger absolute value is, the larger difference is.

Combining the folding energy (Section 2.4) and binding energy (Section 2.5) profiles,
we conclude that the best pH environment for both the SARS-CoV and SARS-CoV-2 is from
pH 7.5 to 9.

2.6. Hydrogen Bonds Analysis

To analyze the hydrogen bonds distributions on both S proteins RBDs and hACE2
RBD, we got the list of residues forming hydrogen bonds, which are over 50% frequency
during the MD simulations (Figure 6).

On average, SARS-CoV forms 16 pairs of hydrogen bonds with over 50% frequency
to hACE2, compared to 19 pairs between SARS-CoV-2 and hACE2. For the most essential
hydrogen bonds, we colored the top five pairs that were found in all three 100 ns simulations
for SARS-CoV and SARS-CoV-2 separately (Figure 7).

From Figure 7, SARS-CoV-2 shows a larger area of hydrogen bond distribution, com-
pared to SARS-CoV-2. When we analyze the key residues that form hydrogen bonds, we
noticed that in SARS-CoV-2 complex, two key residues of hACE2 have several acceptors,
while SARS-CoV has two stable pairs. The detailed analysis is shown in Table 1.

Table 1. Key residues involved in forming top 5 hydrogen bonds that were found in all three
independent 100-ns simulations. Note that SARS-CoV has two same pairs in three simulations, while
SARS-CoV-2 has one same pair and two essential residues (GLU37 and ASP38) that form several
different pairs in three simulations.

SARS-CoV SARS-CoV-2

Avg. Amount 16 19

Key residues

Virus hACE2 Virus hACE2

TYR408 ASP30

THR500 ASP355

TYR495
GLU37ARG403

ARG426 GLU329
TYR505

GLY496
ASP38TYR449
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Figure 6. Hydrogen bonds with the frequency above 50%. (A–C) Hydrogen bonds between SARS-
CoV and hACE2 with the frequency above 50% in three independent 100 ns simulations (M1, M2,
M3); (D–F) hydrogen bonds between SARS-CoV-2 and hACE2 with the frequency above 50% in three
independent 100 ns simulations (M1, M2, M3).

From Table 1, SARS-CoV prefer sticking to same pairs with strong occupancy while
SARS-CoV-2 tends to have a board range of choosing the hydrogen bond acceptors. In the
other words, SARS-CoV-2 tends to generate flexible pairs of hydrogen bonds.
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Figure 7. Essential hydrogen bonds distributions at binding interfaces. (A) Hydrogen bonds (ma-
genta) on between SARS-CoV RBD (blue) and hACE2 (grey); (B) hydrogen bonds (magenta and
green) between SARS-CoV-2 RBD (orange) and hACE2 (grey), where magenta colors the essential
hydrogen bond pairs found in all three 100 ns simulations, green colors the essential residues that
form hydrogen bonds in all three 100 ns simulations but have different pair combinations; (C) hy-
drogen bonds distribution (magenta) on the interface of SARS-CoV RBD (blue) and hACE2 (grey);
(D) hydrogen bonds distribution (magenta and green) on the interface of SARS-CoV-2 RBD (orange)
and hACE2 (grey), where magenta colors the essential hydrogen bond pairs found in all three 100 ns
simulations, green colors the essential residues that form hydrogen bonds in all three 100 ns sim-
ulations but have different pair combinations. Key residues colored in this figure are involved in
forming the top five hydrogen bonds that were found in all three 100 ns simulations for SARS-CoV
and SARS-CoV-2 separately.

3. Conclusions

In this work, we applied several computational methods, including MD simulations,
DelPhi, and DelPhiPKa, to study the electrostatic features of S proteins for SARS-CoV and
SARS-CoV-2. From our results, SARS-CoV and SARS-CoV-2 S protein RBDs both have
positively charged interfaces, which provides attractive interactions to hACE2 as hACE2
has negatively charged surface.

Additionally, we revealed the pH-dependence calculations of relative folding energy
for SARS-CoV and SARS-CoV-2 S protein RBDs. The best pH to stabilize SARS-CoV and
SARS-CoV-2 S protein RBDs is in the range of 6 to 9. The study on pH dependence of
binding energies revealed that the complex structures of hACE2 and S proteins of SARS-
CoV/SARS-CoV-2 are stable from pH 7.5 to 10.5. Therefore, SARS-CoV and SARS-CoV-2
survive in a similar pH environment. A pH from 7.5 to 9 is the best condition for both
SARS-CoV and SARS-CoV-2 to best perform their functions to bind with hACE2.

Furthermore, we analyzed the trajectories from three independent 100ns MD simula-
tions for each complex structure using NAMD and identified essential hydrogen bonds
with the involved key residues using VMD. This work mainly focuses on the analyses of
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hydrogen bonds. Our previous studies discussed ionic interactions in detail. From the MD
simulations, we found that SARS-CoV-2 forms an average of 19 pairs of hydrogen bonds
with high occupancy (>50%) to hACE2, compared to 16 pairs between SARS-CoV and
hACE2. Besides, SARS-CoV tends to stick to same hydrogen bond pairs, while SARS-CoV-2
tends to have a larger range of selections on hydrogen bonds acceptors. We also labelled key
residues involved in forming top 5 hydrogen bonds that were found in all three independent
100-ns simulations. This identification is important to potential drug designs for COVID-19
treatments. Our work will shed light on current and future coronaviruses-caused diseases.

4. Methods
4.1. Structure Preparation

The complex structures of SARS-CoV/hACE2 and SARS-CoV-2/hACE2 were down-
loaded from the Protein Data Bank (PDB ID 6ACG [32] and 7AD1 [33], respectively). Please
note that, in 7AD1, the mutations that the authors made during their experiments are not on
the interface area. Since we only focus on the interface area between S proteins and hACE2,
the mutations do not affect our results. In this work, we used the complex structures to
study the electrostatic binding interactions and the relative binding energies in different
pH environments between S proteins and hACE2 RBDs. For the missing loops in proteins,
we used MODELLER [34] to model the structures based on the sequences. To understand
the mechanisms of S protein binding to hACE2 at the interface particularly, S protein RBDs
were separated from the hACE2 binding domain by a distance of 10Å for the better results
and visualization. Figure 1 shows the SARS-CoV S protein structure.

4.2. Electrostatic Potential Calculation

To study the electrostatic features, DelPhi [35,36] was utilized to calculate the elec-
trostatic potential for the S proteins and hACE2 RBDs. In the framework of continuum
electrostatics, DelPhi calculates the electrostatic potential φ (in systems comprised of
biological macromolecules and water in the presence of mobile ions) by solving the Poisson–
Boltzmann equation (PBE):

∇·[ε(r)∇φ(r)] = −4πρ(r) + ε(r)κ2(r)sinh(φ(r)/kBT) (1)

where φ(r) is the electrostatic potential, ε(r) is the dielectric distribution, ρ(r) is the charge
density based on the atomic structures, κ is the Debye–Huckel parameter, kB is the Boltz-
mann constant, and T is the temperature. Due to the irregular shape of macromolecules,
DelPhi uses a finite difference (FD) method to solve the PBE.

For the preparation of DelPhi calculations, the PQR file of each trimer was generated
by PDB2PQR [37]. We used an AMBER [38] force field for PDB2PQR calculation and
removed water molecules. For better results, we ensured the new atoms were not rebuilt
too close to existing atoms and optimized the hydrogen bonding network.

During DelPhi calculations, the resolution was set as 0.5 grids/Å. The dielectric
constants were set as 2.0 for protein and 80.0 for the water environment, respectively. The
pH value for the solvent environment was set to be 7.0. The probe radius for generating the
molecular surface was 1.4 Å. Salt concentration was set as 0.15 M. The boundary condition
for the Poisson Boltzmann equation was set as a dipolar boundary condition. The calculated
electrostatic potential on the surface was visualized with Chimera (Figure 2). VMD was
used to illustrate electric field lines between S protein and hACE2 (Figure 3). The color
scale range was set to be from −1.0 to 1.0 kT/e for the best visual presentation.

4.3. Relative Folding Energy Calculation

We used DelPhiPKa [39,40] to calculate pKa values of DNA and UDG, given pH
ranging from 0 to 14 with interval of 0.5. During the calculations, we used AMBER force
field, and removed water molecules and HETATM. For the hydrogen of ASP and GLU
attached atom, we used OD1 and OE1, respectively. The variance of Gaussian distribution
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was set to be 0.7, salt concentration was 0.15, reference dielectric was 8.0, and external
dielectric was 80.0.

The net charges of proteins at the unfolded state were calculated using this equation:

Qu(pH) =
N

∑
i=1

10−2.3y(i)(pH−pKa(i))

1 + 10−2.3y(i)(pH−pKa(i))
(2)

where the summation is of all the titratable groups, and y(i) value is −1 for acidic groups
and +1 for basic groups, respectively. Charge–charge interactions between residues at the
unfolded state cause shifts in pKa from values of model compounds [41]. pKa shifts, in
turn, affect pH dependence of folding stability, which is governed by this equation [42]:

∆G(pH) = RT ln 10
∫ pH

pH0

(Q f −Qu)dpH (3)

where Q f and Qu stand for the net charge of folded and unfolded state, respectively. R is
the universal gas constant, taken as 1.9872× 10−3 kcal

Mol∗K . T is the temperature, with a value
of 300 K.

Please note that the algorithms we applied to calculate the folding energies are for the
relative values, that is, at pH = 0, the folding energy is 0, and at any other pH values, the
folding energies are the relative values to the pH = 0 condition. In Figure 4, all values are
the differences to the folding energy value at pH = 0, which means that positive values
indicate that the energies are higher than the folding energy at pH = 0, and negative values
indicate that the energies are lower than the folding energy at pH = 0. So, the larger absolute
value is, the larger difference is.

4.4. Relative Binding Energy Calculation

For the binding energy calculation, we involved two methods, which are DelPhiPKa
and MM/PBSA [43]. To calculate binding energy using DelPhiPKa, the following equation
was used:

∆N(pH) = RT ln 10
∫ pH

pH0

(Qt −Qv −Qr)dpH (4)

where ∆N(pH) is the binding free energy at different pH values, Qt is the total net charges
of complex structures (SARS-CoV/SARS-CoV-2 S protein RBD and ACE2 RBD), Qv is
the net charges of SARS-CoV/SARS-CoV-2 S protein RBD, and Qr is the net charges of
receptor (ACE2 RBD). R is the universal gas constant taken as 1.9872× 10−3 kcal

Mol∗K . T is the
temperature with a value of 300 K.

Please note that the algorithms we applied to calculate the binding energies are for the
relative values, that is, at pH = 0 the binding energy is 0 and at any other pH values the
binding energies are the relative values to the pH = 0 condition. In Figure 5, all values are
the differences to the binding energy value at pH = 0, which means that positive values
indicate that the energies are higher than the binding energy at pH = 0, and negative values
indicate that the energies are lower than the binding energy at pH = 0. So, the larger
absolute value is, the larger difference is.

4.5. Molecular Dynamic (MD) Simulations

To simulate the dynamic interactions between S proteins RBD and hACE2 protein, MD
simulations [15] were carried out using NAMD [30] with the help of GPUs on Lonestar5
clusters at the Texas Advanced Computing Center (TACC https://www.tacc.utexas.edu/
accessed on 31 March 2021). A 20,000-step minimization was performed for each simula-
tion, followed by 100 million steps, during which 20,000 frames were saved from 100 ns
simulations of both SARS-CoV and SARS-CoV-2 separately (1.0 fs per step, 1 frame at each
5000 steps, 100 million steps in total). During the MD simulations, we used CHARMM [44]
force field, the temperature was set to 300 K, and the pressure was set to standard using

https://www.tacc.utexas.edu/
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Langevin dynamics. We set the solvent temperature to 300K and solvent pH value to 7
in the MD simulations. In those two simulations, atoms that are not located in binding
domains were constrained within a margin of 10.0 Å of their natural movement maximum
length values. In order to obtain a more accurate result of the simulation, data of the last
50 ns of each simulation were selected and used for data analysis, since the structure of
the first 50 ns is not as stable as the last 50 ns of simulations. The simulation processes
are visualized in Videos S4 and S5, generated by VMD. Three independent 100ns MD
simulations for each complex structure were performed in this work.

To analyze the interaction between S proteins and hACE2, the hydrogen bonds that
formed within the distance of 4Å were extracted from the last 10,000 frames (50 ns) of
MD simulations.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pathogens11020238/s1, Figure S1: RMSD comparison of SARS-CoV/ACE2
and SARS-CoV-2/ACE2 complex structure, Figure S2: (A,B) The binding forces of SARS-CoV/hACE2
and SARS-CoV-2/hACE2 complexes. (C–H) X,Y,Z components of electrostatic binding forces. The
mass center line was set as the x axis. Video S1: SARS-CoV electrostatic surface, Video S2: SARS-
CoV-2 electrostatic surface, Video S3: hACE2 electrostatic surface, Video S4: SARS-CoV RBD/hACE2
complex simulation, Video S5: SARS-CoV-2 RBD/hACE2 complex simulation
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