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Mechanisms underlying severe male infertility are still largely elusive. However,

recently, a single-cell transcription study by our group identified several

differentially expressed coding genes in all the somatic cell types in testes of

patients with idiopathic germ cell aplasia (iGCA). Here, we leverage this work by

extending the analysis also to the non-coding portion of the genome. As a

result, we found that 43 LncRNAs were differentially expressed in the somatic

cells of these patients. Interestingly, a significant portion of the overexpressed

LncRNAs was found to be a target of TAF9B, a transcription factor known to be

involved in germ cell survival. Moreover, several overexpressed LncRNAs were

also found to be activated in a mouse model of Sertoli cells treated with

bisphenol A, a widespread environmental contaminant, long suspected to

impair male fertility. Finally, a literature search for MEG3, a maternally

imprinted LncRNA overexpressed as well in our patients, found it to be

involved, among other things, in obesity and inflammation, known

comorbidities of iGCA, ultimately suggesting that our findings deepen the

understanding of the molecular insights coupled not only to the

pathogenesis, but also to the clinical course of this class of patients.
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Introduction

The successful completion of spermatogenesis relies on the availability of

spermatogonial stem cells, along with their capability to proliferate and to transform,

first, into progenitor spermatogonia and, then, into spermatozoa (Oatley and Brinster,

2008). Sertoli-cell-only (SCO) syndrome, also known as germ cell aplasia (GCA),

represents a condition of the testes where only Sertoli cells line the seminiferous
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tubules, ultimately leading to the most severe form of male

infertility, the non-obstructive azoospermia (NOA) (Ramphul

and Mejias, 2021).

While a genetic component has been determined for NOA

(Nakamura et al., 2017), it is becoming clear that, in the vast

majority of cases, there is not an evident underlying cause,

leading to the broad definition of those cases as the wide

group idiopathic NOA (iNOA) (European Association of

Urology, 2022). Instead, there is overwhelming evidence that

the male infertility status, and mainly in NOA cases, is linked

with an augmented risk of diseases associated with aging, like

type II diabetes, cardiovascular disease, autoimmune disease,

obesity and cancers (Eisenberg et al., 2015). All this has

brought to the development of a new conceptualization of the

male fertility status as a proxy of the overall men’s health (Salonia

et al., 2009).

Recently, single-cell RNA-sequencing (scRNA-seq) analysis

from our group identified eight cell clusters in the testicular

somatic cells populations of iGCA patients (Alfano et al., 2021).

Thanks to the use of cell type marker genes on these clusters, the

main somatic cell populations were recognized, Leydig (LEY),

myoid (MYD), Sertoli (SRT) and endothelial (END) cells.

Moreover, immune cells were also recognized, like

macrophages (MCR) and T-cells (TCL). Finally, the stromal

(STRO) cluster was assigned to pericytes or vascular smooth

muscle cells, whereas one cluster, lacking clear marker genes,

remained undetermined (UND). Identification of DE (DE)

coding genes, lead to the identification of molecular pathways

related to aging, inflammation and DNA damage, offering

molecular insights into the pathogenesis of iGCA.

In the present study, we dissected the dysregulation of the

non-coding transcripts in iGCA by focussing our attention to the

analysis of the LncRNAs of our dataset. As a result, we found

43 DE LncRNAs in iGCA patients. Our analysis revealed a close

connection between differential LncRNAs and several features of

this disease, such as the survival of germ cells and the presence of

comorbidities, like obesity and inflammation. Also, an

environmental contribution to the disease insurgence was

found to be highly consistent with our data.

Methods

Identification of DE LncRNAs

Tissue processing, ethical approval and the scRNA-seq

procedure were already described (Alfano et al., 2021). DE

LncRNAs in iGCA patients of this study were identified by

mining DE transcript names in Supplementary Dataset 29 for

the presence of the term “lncRNA” in the “gene_type” field of the

“gencode.v39. annotation.gtf” file from the GENCODE project

(www.gencodegenes.org). Normalized transcript expression data

were extracted and used to build the heat map and the dot plot

shown, respectively, in Figure 1A and Figure 1B. Normalized

expression counts, along with pertinent sample metadata, are

available as Supplementary Data respectively in the files

“Normalized_LncRNA_counts.csv” and “Sample-phenotypes.

csv”. Upstream and downstream transcripts of the DE

LncRNAs located within 500 Kb of the beginning of each

locus were obtained from the ‘gencode.v39. annotation.gtf’ file.

Literature search

In order to evaluate the consistency of the MEG3 role in (IR)

injury, we performed a literature search on 11 February

2022 using the keywords “MEG3 AND Reperfusion Injury”,

“MEG3 AND infarction” and “MEG3 AND organ failure”.

Both titles and abstracts were retrieved and, whenever it

deemed to be necessary, also the full article was analyzed. A

similar search strategy was used for evaluating the correlation

between MEG3 expression and obesity/diabetes with Pubmed

abstracts being retrieved using the keywords “MEG3 AND

obesity” and “MEG3 AND diabetes”. Statistical significance

was calculated by using a binomial test.

Identification of signatures associated to
DE LncRNAs

All the datasets (C1—> C8 plus the hallmark gene set) from

the MSigDB 7.5.1 database (Liberzon et al., 2015) were searched

for overlaps with our DE LncRNAs using the “Investigate Gene

Set” option with a FDR of 0.001. A custom R script was used to

analyze a non-redundant, 147 libraries dataset available at the

Enrichr resource (Xie et al., 2021) through the CRAN library

“enrichr”. Differential expression of the LncRNAs was measured

using the “FindMarkers” program from the R Seurat software

package (Satija et al., 2015), using default parameters (Alfano

et al., 2021). Differerential expression for the TAF9B transcript in

the LEY and MYD cell types was measured using the

‘FindMarkers’ program as well, except that the

“logfc.threshold” parameter, controlling the minimum

differential expression fold change cutoff to be used between

the two groups of cells, was set to zero instead of the default value

of 0.25.

Results

Identification of DE LncRNAs in idiopathic
germ cell aplasia patients

We searched our previously identified (Alfano et al., 2021)

dataset of DE transcripts in iGCA patients for the presence of

LncRNAs. This dataset profiled, by means of scRNA-seq, gene
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expression in each somatic cell type in testes of men with iGCA

(Alfano et al., 2021). As a result, 43 LncRNAs were found to be

DE in one or more cell types, as shown in the heatmap in

Figure 1A and in Table 1. Further details on their genomic

localization and on their differential expression are reported,

respectively, in Supplementary Table S1 and in the dot plot

comparison in Figure 1B, with the dot color intensity

proportional to the average expression level for each group

and the dot size related to the percentage of expressing

samples. Among these transcripts, differential expression was

very consistent, with 21 LncRNAs being downregulated in one or

more cell types and 21 LncRNAs being instead upregulated in

one or more cell types. Only the LncRNA NEAT1 presented a

mixed expression, being downregulated in endothelial cells and

upregulated in Sertoli cells (Figure 1B and Table 1).

Enrichment of DE LncRNAs in biological
signatures

To evaluate the enrichment of the DE LncRNAs in specific

lists or biological signatures, all the datasets from the Molecular

Signature Database (Liberzon et al., 2015) were firstly searched.

Since some of our cell types were not amenable to meaningful

searches because they contained only a few DE LncRNAs, like for

example STRO cells possessing only three downregulated

FIGURE 1
Differential expression of 43 LncRNAs in iGCA patients. (A)Heatmap showing the quantification of the differentially expressed LncRNAs in each
cell type in patients (orange horizontal bar) vs. healthy controls (blue horizontal bar). (B) Dot plot comparison of DE LncRNAs. Dot color intensity is
proportional to the average expression level for each group and the dot size is related to the percentage of expressing samples. Indicated cell types
are: Leydig (LEY), myoid (MYD), endothelial (END) cells, macrophages (MCR), stromal (STRO) and Sertoli (SRT) cells, T-cells (TCL),
undetermined (UND).
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LncRNAs (see Table 1), a pool of all cell types was used in our

searches. To compensate for this added heterogeneity, a rather

highly stringent FDR threshold, 0.001, was used. As a result,

while no significant enrichment was found in the downregulated

LncRNAs, the overexpressed ones were found to be significantly

enriched in chromatin immunoprecipitation targets of the

TATA-Box Binding Protein Associated Factor 9b (TAF9B), a

basal component of the nuclear transcription machinery

(Frontini et al., 2005), as shown in Table 2. Previous analysis

(Alfano et al., 2021) was unable to detect any upregulation of

TAF9B in cell types overexpressing a significant fraction of its

target LncRNAs: LEY (6 target LncRNAs) and MYD (7 target

LncRNAs). However, this analysis was performed using a

relatively large log fold change (FC) cutoff, 0.25. Since for

regulatory molecules, like TAF9B, even smaller FC can have a

great significance in high throughput, transcriptional profiling

experiments (Dalman et al., 2012), we repeated the analysis

without employing this cutoff. As a result, it was found that

TAF9B was significantly overexpressed, albeit with a lower log

FC, both in LEY andMYD cell types, as shown in Supplementary

Table S2, ultimately supporting its potential role as a

transcriptional activator of DE LncRNAs in iGCA.We also

looked for enrichments of our DE LncRNAs in the several

datasets available at the Enrichr resource (Xie et al., 2021).

Also in this case, no hit was found for the downregulated

ones, but, as shown in Table 2, a highly significant

enrichment was found with the genes overexpressed in a

mouse model of Sertoli cells treated with Bisphenol A (BPA)

(Tabuchi et al., 2006), a compound employed in the preparation

of various plastics and known to be an endocrine disruptor,

exhibiting weak estrogenic, anti-thyroid and anti-androgenic

activities (Peretz et al., 2014). Similar results were obtained

using single, i.e., no pooled, cell types harboring a high

number of DE LncRNAs, like LEY (n = 16) and MYD (n =

18) cells (Supplementary Table S3).

Literature survey and meta-analysis of the
LncRNA MEG3

A bibliographical search, aimed at evaluating possible

relationships of the DE LncRNAs to disease features, was also

undertaken. We started our analysis with the MEG3 LncRNA

because it had a relatively high number of abstracts available in

Pubmed (#931, as of 11 February 2022). MEG3, overexpressed in

LEY, MYD and STRO cell types of our patients, was an

interesting molecule also because of its role as a maternally

imprinted transcript (Schmidt et al., 2000). Moreover, given

the relevant role played by inflammation in the testes of our

patients (Alfano et al., 2021), it was i intriguing that, recently,

MEG3 was found to promote pyroptosis, i.e., a form of cell-death

associated with inflammatory signals, in testicular ischemia-

reperfusion (IR) injury (Ning et al., 2021). In order to

evaluate the consistency of the MEG3 role in IR injury, we

performed a literature search using pertinent keywords (see

Methods). A total of 29 experimental, non-redundant articles

were retrieved and the direction ofMEG expression (up or down)

was evaluated. Results, shown in Table 3, indicated that

MEG3 expression was upregulated in all cases, strongly

TABLE 1 LncRNAs differentially expressed in idiopathic germ cell
aplasia (iGCA) patients. The number of cell types showing
differential expression is reported, along with the direction of
expression (“UP” or “DOWN”) and the cell type where differential
expression occurs.

1 SNHG14 UP MYD

1 HCP5 UP END

1 SNHG16 UP LEY

2 HYMAI UP LEY, MYD

2 MIR99AHG UP LEY, MYD

2 DIO3OS UP LEY, MYD

2 DNM3OS UP LEY, MYD

2 MEG8 UP LEY, MYD

2 SNHG1 UP MYD, END

2 KCNQ1OT1 UP LEY, MYD

3 MIR100HG UP LEY, MYD, UND

3 FTX UP LEY, MYD, STRO

3 NORAD UP LEY, MYD, MCR

3 MEG3 UP LEY, MYD, STRO

4 SNHG29 UP LEY, MYD, MCR, STRO

7 SNHG5 UP LEY, MYD, END, MCR, STRO, SRT, UND

7 SNHG6 UP LEY, MYD, END, MCR, STRO, SRT, UND

7 GAS5 UP LEY, MYD, END, MCR, STRO, SRT, UND

2 NEAT1 UP/DOWN END, SRT

TABLE 2 Significative enrichments in public datasets of the differentially expressed LncRNAs i pooled cell types.

Source Gene Set
Name

Overlap p-value FDR
q-value

Hits

C3 (MsigDB) TAF9B_TARGET_GENES 8/569 3.68E-10 1.21E-05 FTX;GAS5;KCNQ1OT1;NEAT1;NORAD;
SNHG1;SNHG5;SNHG6

Drug_Perturbations_from_GEO_up Bisphenol A 6623 mouse
GSE4650 sample 3575

5/225 3.88E-06 9.67E-04 SNHG1;SNHG6;NEAT1;SNHG5;GAS5
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TABLE 3 MEG3 expression direction in Pubmed articles related to IR Injury, infarction and organ failures.

Reference DOI MEG3 Organ/
Tissue

Disease/Condition CellularModel AnimalModel ClinicalSamples

Ding, H et al.
(2020)

10.21037/jtd-19-2472 UP Aorta IRI via chronic intermittent
hypoxia

NA Mouse NA

Liang, J et al.,
2020

10.1016/
j.expneurol.2019.113139

UP Brain Cerebral ischemia-
reperfusion

Neurocytes Rat NA

Zhou, X et al.,
2018

10.1002/jcb.28075 UP Brain Hypoxic-ischemic brain
damage

NA Mouse NA

Zhan, R et al.,
2017

10.1016/j.bbrc.2017.06.104 UP Brain Oxygen-glucose
deprivation/reoxygenation

Rat endothelial cells NA NA

Yan, H et al.,
2017

10.1038/s41419-017-0047-y UP Brain Ischemic stroke N2a Mouse NA

Yan, H et al.,
2016

10.1016/
j.neuroscience.2016.09.017

UP Brain Ischemic neuronal death in
stroke

NA Mouse NA

Luo, H et al.,
2020

10.1074/jbc.RA119.010946 UP Brain Ischemic stroke NA Mouse NA

Shen, J et al.,
2018

10.1080/
21691401.2018.1471483

UP Brain Cerebral infarction NA Rat NA

Deng, D et al.,
2020

10.1080/
21691401.2020.1725533

UP Brain Hypoxic-ischaemic brain
damage

PC12 NA NA

Xiang, Y et al.,
2020

10.18632/aging.102790 UP Brain Ischemic stroke N2a Mouse NA

Li, T et al.,
2020

10.1152/
japplphysiol.00433.2020

UP Brain Polarization of microglia in
cerebral IR injury

NA Mouse NA

Xie, B et al.,
2021

10.12659/MSM.929435 UP Brain Intracerebral hemorrage NA Rat NA

You, D et al.,
2019

10.1016/
j.biopha.2018.12.067

UP Brain Cerebral ischaemia
riperfusion injury

NA Rat NA

Liu, X et al.,
2016

10.3389/fncel.2016.00201 UP Brain Neuron apoptosis by
hypoxia

HT22 Mouse NA

Chen, C et al.,
2021

10.4081/ejh.2021.3224 UP Brain Ferroptosis NA Rat NA

Zhou, Y et al.,
2021

10.3892/mmr.2020.11656 UP Heart Hypoxiainduced injury in
rat cardiomyocytes

H9c2 Rat NA

Wu, H et al.,
2018

10.1038/s41434-018-0045-4 UP Heart Myocardial infarction NA Mouse Heart failure

Zhang, J et al.,
2019

10.1038/s41598-018-
36369-1

UP Heart Cardiac hypertrophy Cardiomyocytes Mouse NA

Jinwen Su
et al., 2018

10.1093/abbs/gmy133 UP Heart Hypoxic cardiac progenitor
cells

Cardiomyocytes NA NA

Li, X et al.,
2019

10.1111/jcmm.14714 UP Heart Myocardial infarction,
hypoxic cardiomycytes

Cardiomyocytes Mouse NA

Xue, Y et al.,
2020

10.1111/jcmm.15720 UP Heart Viral myocarditis Cardiac tissue
macrophages

Mouse NA

Piccoli, M
et al., 2017

10.1161/
CIRCRESAHA.117.310624

UP Heart Cardiac remodelling Cardiac fibroblasts NA NA

Li, W et al.,
2021

10.3892/etm.2021.10704 UP Heart Hyperhomocysteinemia
cardiac fibrosis

Cardiac fibroblasts NA NA

Liu, D et al.,
2021

10.1038/s41419-021-
03466-5

UP Kidney IRI HK-2 Mouse NA

Mao, H et al.,
2021

10.1002/jbt.22649 UP Kidney Hypoxia/reoxygenation
induced apoptosis

HK-2 NA NA

Deng, J et al.,
2021

10.3389/fphys.2021.663216 UP Kidney LPS-Induced Acute Kidney
Injury

Renal tubular
epithelial cells

Mouse NA

Yang, R et al.,
2018

10.1002/jcb.27163 UP Kidney LPS-induced apoptosis in
renal tubular epithelial cells

TKPTS Mouse NA

UP Lung NA Mouse NA

(Continued on following page)
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validating it as a potential therapeutic target in our patients.

Given the relevant role of the body-mass index (BMI), obesity

and diabetes as comorbidities in iGCA (Boeri et al., 2022), we also

performed a literature search in order to determine

MEG3 direction of expression in these circumstances. Also in

this case, albeit not exclusively, MEG3 upregulation was found to

be correlated to these diseases (p = 0.02), as shown in

Supplementary Table S4.

Discussion

Here, we present a follow-up study to our previous

characterization of the transcriptional atlas of the testicular

somatic cell populations linked to human iGCA (Alfano et al.,

2021). Previous work had indeed determined the contribution of

several coding genes to the pathological status of these patients,

underlying their relevance for frequently observed features in

iGCA, like senescence of the testicular somatic cells, immaturity

of LEY cells, persistent inflammation, DNA damage and defects

in gene imprinting. The current work extends the previous

analysis by looking also at the non-coding portion of the

genome. While the inevitably low depth of the scRNA seq

approaches somehow limits the identification of weakly

expressed molecules like ncRNAs (Pokhilko et al., 2021), we

still were able to identify 43 LncRNAs DE in iGCA patients. Also,

in light of the extensive spectrum of comorbidities observed in

unfertile males (Salonia et al., 2009; Shiraishi and Matsuyama,

2018; Boeri et al., 2022), the study of regulatory transcripts, like

LncRNAs, in this class of patients appears to be of paramount

importance.

Overexpressed LncRNAs in our patients were found to

overlap a small, but biologically very relevant number of lists.

For instance, the overlap with the target genes of TAF9B, a

component of TFIID upregulated during the germline

development (Gura et al., 2020), is rather intriguing.

Indeed, it is in keeping with recent findings showing that

cells of the germline use a highly specialized form of TFIID, the

transcription initiation complex of nuclear genes that once

was thought to be, instead, rather general and ubiquitous in all

tissues (Hoey et al., 1990). Interestingly, TAF9B is also within

the network of proteins regulated by the gene Deleted in

Azoospermia Like (DAZL), whose function is essential for

spermatogenesis and meiosis completion (Zagore et al., 2018;

Li et al., 2019). Summing up, while the formal proof of the

transcriptional activation of the identified LncRNAs by

TAF9B must await further studies, present data are already

suggestive of an involvement of this transcription factor

in iGCA.

Of interest also appears the overlap with the transcripts

stimulated by BPA exposure in mouse Sertoli cells, since the

impact of the environment on reproductive health has been

reported as an explanation for idiopathic infertility (Shi et al.,

2017). It will be interesting to see if BPA can induce also the

expression of the identified LncRNAs in human testicular

somatic cells in ex-vivo experiments. BPA, along with its

analogs, is present in several daily use products, like

manufactured plastics, cans and paper (Wong and Durrani,

2017). It is known to possess a variety of deleterious effects on

human health, including male reproduction and fertility

(Siracusa et al., 2018). A replacement of BPA with more

chemically stable analogs has been attempted in the

manufacturing process. However, these analogs have proved

to be both worse in terms of biodegradability and better in

terms of dermal penetration (Liao et al., 2012). BPA, along

with its analogs, contaminate the environment, including air,

water, food and house dust (Wu et al., 2018). Therefore, the

primary intake of bisphenols in humans is likely to occur

through the diet, mainly through the consumption of canned

foods or drinking bottled water (Eladak et al., 2015). All this

ultimately suggests a limitation of their use, also in

consideration of the wide spectrum of comorbidities

being associated to BPA usage (Ma et al., 2019; Barra et al.,

2022), even through the maternal route (Blaauwendraad et al.,

2022).

A literature survey also found MEG3 consistently linked to

IR injury and obesity/diabetes, validating it, or molecules in its

pathway, as a therapeutic target in IGCA. MEG3 contribution to

the inflammatory phenomena of this disease could be, indeed,

rather important. Recently, inflammation induced by

lipopolysaccharides (LPS) in Leydig cells was found to

decrease both testosterone levels and cell viability, along with

aMEG3 transcriptional activation (Zhou et al., 2021). Ablation of

MEG3 expression in this setting attenuated the inflammatory

TABLE 3 (Continued) MEG3 expression direction in Pubmed articles related to IR Injury, infarction and organ failures.

Reference DOI MEG3 Organ/
Tissue

Disease/Condition CellularModel AnimalModel ClinicalSamples

Zou, D et al.,
2020

10.1016/
j.ajpath.2019.12.013

Hyperoxia-Induced Lung
Injury

Ning, J et al.,
2021

10.3389/fcell.2021.671613 UP Testis Testicular torsion GC-1 Mouse NA

IRI, Ischemia Reperfusion Injury; LPS, Lipopolysaccharide.
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response and increased testosterone levels through the sponging

effect on miR-93-5p (Zhou et al., 2021). The sponging

capabilities of MEG3, mainly related to the RI phenomenon,

have been shown also in several other works (reviewed in Zhao

et al., 2022). Therefore, miRNAs in its pathway are likely to be

therapeutic targets as well in inflammatory phenomena and

should be considered for therapeutic intervention.
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