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Development of machine 
learning‑based clinical decision 
support system for hepatocellular 
carcinoma
Gwang Hyeon choi1,3, Jihye Yun2,3, Jonggi Choi1, Danbi Lee1, Ju Hyun Shim1, Han Chu Lee1, 
Young‑Hwa Chung1, Yung Sang Lee1, Beomhee Park2, Namkug Kim2* & Kang Mo Kim1*

There is a significant discrepancy between the actual choice for initial treatment option for 
hepatocellular carcinoma (HCC) and recommendations from the currently used BCLC staging system. 
We develop a machine learning‑based clinical decision support system (cDSS) for recommending 
initial treatment option in HCC and predicting overall survival (OS). From hospital records of 1,021 
consecutive patients with HCC treated at a single centre in Korea between January 2010 and October 
2010, we collected information on 61 pretreatment variables, initial treatment, and survival status. 
Twenty pretreatment key variables were finally selected. We developed the CDSS from the derivation 
set (N = 813) using random forest method and validated it in the validation set (N = 208). Among 
the 1,021 patients (mean age: 56.9 years), 81.8% were male and 77.0% had positive hepatitis B 
BCLC stages 0, A, B, C, and D were observed in 13.4%, 26.0%, 18.0%, 36.6%, and 6.3% of patients, 
respectively. The six multi‑step classifier model was developed for treatment decision in a hierarchical 
manner, and showed good performance with 81.0% of accuracy for radiofrequency ablation (RFA) or 
resection versus not, 88.4% for RFA versus resection, and 76.8% for TACE or not. We also developed 
seven survival prediction models for each treatment option. Our newly developed HCC‑CDSS model 
showed good performance in terms of treatment recommendation and oS prediction and may be used 
as a guidance in deciding the initial treatment option for HCC.
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Hepatocellular carcinoma (HCC) is the third and seventh most common malignancy in men and women world-
wide, respectively, and its incidence continues to  increase1. The American Association for the Study of Liver 
Diseases and the European Association for the Study of the Liver currently endorse the Barcelona Clinic Liver 
Cancer (BCLC) staging system as a primary prognostic model and a allocating tool of HCC  treatment2,3.

However, there is a significant discrepancy in the initial treatment choice for HCC between the recommenda-
tions from the BCLC system and real clinical  practice4,5. This is partially because treatment decision for HCC 
is highly multifactorial, in which physicians need to take into consideration the HCC stage, baseline liver func-
tion, and performance status. Moreover, other factors such as location and distribution of tumour, presence of 
intermediate nodule, comorbidities, socio-economic status, availability of potential living related-donors, and 
the invasiveness and feasibility of each treatment option play critical roles in determining the clinical outcomes 
of patients with HCC. Such complex nature of HCC treatment decision has hindered large-sized clinical studies, 
because conventional statistical methods fall short of aptly controlling multiple variables and factors.

Recent attempts on applying the artificial intelligence (AI) technique to clinical practice have focused on using 
AI to develop clinical decision support system (CDSS)6–11. For this study, we reasoned that machine learning, 
an application of AI that self-improves by learning from large amounts of data, would be useful for generating 
an algorithm for that evaluates multiple pretreatment variables to recommend optimal treatment options for 
 HCC12. We believed that a good-quality database is essential, and the definition and selection of pretreatment 
variables are also significantly important for clinically plausible results. In this study, we thus gathered a team 
of well experienced hepatologists and AI scientists at our centre and developed a CDSS algorithm that can rec-
ommend optimal initial treatment for patients with HCC and predict the overall survival (OS) of patients after 
treatment, based on our centre’s experiences.

Methods
Study population. We retrospectively reviewed hospital records of 1,650 consecutive patients who were 
newly diagnosed with HCC at Asan Medical Center (Seoul, Korea) between January and October 2010 (Sup-
plementary Fig. 1). Patients who had a treatment history of HCC (N = 356), those who received HCC treatment 
at other hospitals (N = 138), those who had a metastatic liver cancer (N = 71), those with secondary malignancies 
that might affect survival (N = 36), those with combined hepatocellular-cholangiocarcinoma (N = 21), and those 
with incidentally detected HCC after transplantation (N = 7) were excluded from the study. Consequently, the 
study cohort included 1,021 patients with HCC.

All enrolled patients were diagnosed with HCC using liver protocol computed tomography or magnetic 
resonance imaging or liver biopsy according to the current guidelines of the American Association for the Study 
of Liver  Diseases13. Patients were randomly allocated to the derivation or validation set at a ratio of 4:1. The 
protocols of this study were approved by the Institutional Review Board of Asan Medical Center (IRB number: 
2017-0188), and the requirement for informed consent from patients was waived due to the retrospective nature 
of the study. All methods were performed in accordance with the relevant guidelines and regulations.

Data collection. We used our institutional database to collect information on the initial treatment option, 
initial treatment response, and OS of all patients. We retrospectively collected pre-treatment demographic, clini-
cal, and imaging variables (Supplementary Table S1), treatment information and survival status of all the 1,021 
patents from our centre’s database. The following demographic factors were assessed: age, sex, Eastern Coopera-
tive Oncology Group (ECOG) score, aetiology of liver disease, presence of potential liver-related donor, body 
mass index (BMI), occupation, resident area, patients’ educational attainment, maximum tumour size, tumour 
number, tumour type (infiltrative or nodular), tumour enhancement pattern, tumour distribution, portal vein 
invasion, hepatic vein or inferior vena cava invasion, bile duct invasion, extrahepatic metastases, presence of 
dysplastic nodule, radiofrequency ablation (RFA) feasibility, presence of cirrhosis, Child–Pugh class, presence 
of varix, laboratory findings including alpha-feto protein (AFP) level, within or above the Milan criteria, ini-
tial treatment option, initial treatment response, and OS. RFA feasibility was defined as a size or location of 
the tumour to receive percutaneous RFA successfully without significant complications, evaluated by a single 
hepatologist, G.H.C. Tumour location adjacent to the large vessel, bile duct, hepatic hilum, liver capsule or 
extrahepatic organ was classified as an RFA non-feasible lesion. OS was defined as the time form date of imaging 
diagnosis of HCC to the date of death due to any cause.

Among the 61 initial pretreatment variables, 20 key variables (Table 1) were selected based on the impor-
tance scores calculated using the automated classifier model and the survival prediction model in the deriva-
tion set. Specifically, 14 variables were patient-related factors (age, BMI, Child–Pugh class, presence of varix, 
presence of ascites, ECOG score, haemoglobin level, platelet count, albumin level, prothrombin time, alanine 
aminotransferase [ALT] level, total bilirubin level, creatinine level, and AFP level), and six were tumour-related 
factors (tumour number, maximal tumour size, tumour distribution, presence of portal vein invasion, presence 
of metastasis, and RFA feasibility). Using these 20 variables, random forest and random survival forest methods 
were trained and evaluated again to recommend treatment options and to predict OS respectively in both the 
derivation and validation sets.

Treatment options were classified as follows: transplantation, surgical resection, RFA or percutaneous ethanol 
injection therapy (PEIT), transarterial chemoembolisation (TACE), TACE combined with external beam radio-
therapy (EBRT), sorafenib treatment, supportive care, and other therapies, which included combined therapy (e.g. 
surgical resection with intraoperative RFA, TACE combined with sorafenib), palliative resection, intra-arterial 
cytotoxic chemotherapy, clinical trials, and EBRT alone. Database review was performed by one hepatologist 
(G.H.C.) to avoid inter-observer bias.
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Figure 1.  Conceptual frame of the clinical decision support system (CDSS) model for hepatocellular 
carcinoma. The input patient- and tumor-related variables (N = 20) were processed with the algorithm for 
treatment recommendation with multi-step classifiers in a hierarchical manner. Once the treatment option is 
selected, the CDSS model generates the predicted survival curve for each patient.

Table 1.  Key 20 variables for hepatocellular carcinoma-clinical decision support system model. AFP alpha-
fetoprotein, ALT alanine aminotransferase, ECOG Eastern Cooperative Oncology Group, RFA radiofrequency 
ablation. *RFA feasibility was defined as a size or location of the tumour to receive percutaneous RFA 
successfully without significant complications.

Patient-related factors (14)

Age Value

Body mass index, kg/m2 Value

ECOG performance status score 0, 1, 2, 3, 4

Child–Pugh score 5–14

Varix Absence / presence

Ascites Absence / controlled uncontrolled

AFP, ng/mL Value

Haemoglobin, g/dL Value

Platelet count, × 109/mm3 Value

ALT, U/L Value

Total bilirubin, mg/dL Value

Albumin, mg/dL Value

Prothrombin time, INR Value

Creatinine, mg/dL Value

Tumour-related factors (6)

Tumour number 1, 2, 3, 4 or more

Maximum tumour size, cm Value

Distribution Single segmental / unilobar / bilobar

Portal vein invasion Absence / unilateral / main portal or both portal vein

Metastasis Absence / presence

RFA feasibility* Feasible / non-feasible
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Machine learning for CDSS development in HCC. The primary outcomes were accuracies of treat-
ment recommendation and survival prediction. The index date was defined as the date when patients underwent 
their first liver protocol computed tomography or magnetic resonance imaging. The follow-up period for each 
patient was estimated from the index date to the date of death or the last follow-up date.

Due to large differences in survival between treatments, it was difficult to train a machine learning-based 
model of treatment recommendation and survival prediction in an integrated way. Therefore, treatment recom-
mendation and survival prediction models were separately designed and trained. Treatment recommendation 
models were hierarchically designed with six classifiers in the same manner as treatment planning in clinical 
practice. Supervised learning was adapted to prefer curative modalities using a classifier method. Transplantation 
option was not included in the treatment decision algorithm due to the medical environment of severe shortage 
of deceased liver donor. Although transplantation was not included in the classifier model, transplantation was 
suggested as an option, when it met the Millan criteria. Because factors affecting the prognosis were different 
for each treatment, we developed survival prediction models for each treatment. Our CDSS system operated by 
sequentially using treatment recommendation and survival prediction models.

To develop the treatment recommendation and survival prediction model, random forest model was 
employed. Random forest, which is one of the representative ensemble methods, is widely used because it is 
powerful and relatively lighter than other ensemble  methods14,15. Random forest constructs a number of tree-
type base models and forms an ensemble through a technique called bootstrap aggregating or bagging. As the 
splitting rules for random forests, Gini impurity and log-rank test were used for treatment recommendation 
and survival prediction models, respectively. Other possible combinations of hyperparameters of models were 
investigated by grid search using GridSearchCV library in Scikit-learn package.

Figure 1 shows the schematic diagram for the construction of the CDSS model for HCC. The model comprised 
six multi-step classifiers and seven OS prediction sub-models. The input variables (N = 20) were processed with 
the algorithm for treatment recommendation with multi-step classifiers. The CDSS model for HCC was designed 
to prefer curative modalities (transplantation, resection, RFA or PEIT). Once a treatment option is selected, the 
model demonstrates the predicted OS curve for each patient. Additionally, if another treatment option is avail-
able, our CDSS model for HCC can suggest another predicted OS curve after the alternative treatment. Therefore, 
the model can predict different OS curves of the same patient with different treatments, which could be helpful 
when clinicians made treatment decisions in actual clinical setting.

Statistical analyses. Baseline characteristics of the patients were compared using the chi-square test for 
categorical variables and the Mann–Whitney U test for continuous variables. Survival distributions were com-
pared using the Kaplan–Meier method with a log-rank test. Patients in our follow-up programme who were not 
confirmed deceased were recorded as censored.

In the initial phase of model development, we fitted a univariate Cox proportional hazards model to the treat-
ment decision and survival endpoints. To select variables, we employed a two-step variable selection approach. 
The first step was to fit a random forest model to compute a variable importance score, and the second step was 
to compute a relative selection frequency based on a bootstrap resampling  method16,17.

For the validation data sets, per-patient based analysis was performed from probability values using accuracy, 
sensitivity, specificity, positive predictive value, and negative predictive value for each classifier. The accuracy 
was defined as the percentage of correctly classified instances and calculated as follows: accuracy = (TP + TN)/
(TP + TN + FP + FN), where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative, 
respectively. Each survival prediction model was validated using bootstrapping to correct for optimistic bias. 
Time-dependent concordance (C)-index was used to evaluate predicted survival times, which were ranked in 
accordance with the observed survival times. All P-values were two-sided and P < 0.05 were considered signifi-
cant. The outcome of implicit feature selection of the random forest was visualised using the Gini  importance18. 
SPSS version 21 (SPSS, Inc., Chicago, IL), open-source Scikit-learn package in python version 0.19.119, and ran-
dom Forest SRC package in R version 3.4.1 (R Core Team, Vienna, Austria)20 were used for statistical analyses.

Results
Characteristics of the study patients. We trained our CDSS system using the derivation set (N = 813) 
and validated it in the validation set (N = 208). Two sets were divided by stratified random splits. The same deri-
vation and validation sets were used for both treatment recommendation and survival prediction models. A total 
of 460 and 128 patients died during the median follow-up periods of 37.8 (interquartile range [IQR], 8.3–84.7) 
and 48.6 (IQR, 8.3–83.1) months, respectively. Patients’ baseline demographics of patients are summarised in 
Table 2. Of the total 1,021 patients (mean age, 56.9 years), 81.8% were male, and 77.0% had positive hepatitis 
B virus surface antigen. Moreover, 76.3% of patients were classified with Child–Pugh class A, and 75.1% had 
ECOG score of 0. Regarding tumour-related factors, 41.7% of patients had multiple tumours, and the median 
maximal tumour diameter was 4.0 cm (IQR 2.3–8.5). Portal vein invasion and distant metastasis were confirmed 
in 22.8% and 12.2% of patients, respectively. BCLC stages 0, A, B, C, and D were observed in 13.4%, 26.0%, 
18.0%, 36.6%, and 6.3% of patients, respectively. As an initial treatment, transplantation was performed in 4.5%, 
resection in 32.9%, RFA or PEIT in 7.5%, TACE in 31.5%, TACE combined with EBRT in 6.6%, sorafenib treat-
ment in 3.0%, supportive care in 10.1%, and other therapies in 3.8% of patients. Among the other therapies, 
nine patients underwent resection combined with intraoperative RFA, nine underwent palliative resection, eight 
underwent EBRT to liver, six underwent TACE combined with sorafenib or cytotoxic chemotherapy, and four 
underwent intra-arterial cytotoxic chemotherapy. Moreover, three patients were enrolled in clinical trials and 
underwent systemic therapy. There was no significant difference between the derivation and validation set with 
respect to patient-, tumour-, or treatment-related variables.
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Table 2.  Baseline characteristics of the patients, tumors, and initial treatment options. AFP alpha-fetoprotein, 
ALT alanine aminotransferase, BCLC barcelona clinic liver cancer, EBRT external beam radiotherapy, ECOG 
Eastern Cooperative Oncology Group, HBV hepatitis B virus, HCV hepatitis C virus, INR international 
normalized ratio, PEIT percutaneous ethanol injection, RFA radiofrequency ablation, TACE transarterial 
chemoembolization. *Variables are presented as mean ± standard deviation or median (IQR). † RFA feasibility 
was defined as a size or location of the tumor to receive percutaneous RFA successfully without significant 
complications.

Characteristics
All patients
(N = 1,021)

Derivation set
(N = 813)

Validation set
(N = 208)

Age, year 56.9 ± 10.5 56.9 ± 10.4 57.0 ± 10.8

Gender Male 835 (81.8) 658 (80.9) 177 (85.1)

Female 186 (18.2) 155 (19.1) 31 (14.9)

ECOG performance status 0 767 (75.1) 615 (75.6) 152 (73.1)

1 or 2 224 (20.9) 164 (20.2) 50 (24.0)

3 or 4 40 (3.9) 34 (4.2) 6 (2.9)

Aetiology of liver disease HBV 786 (77.0) 631 (77.6) 155 (74.5)

HCV 71 (7.0) 49 (6.0) 22 (10.6)

Others 164 (16.0) 133 (15.4) 31 (14.9)

Heavy alcohol consumption Yes 168 (16.5) 130 (16.0) 38 (18.3)

Ascites Present 173 (17.0) 143 (17.6) 30 (14.4)

Varices Present 312 (30.6) 252 (30.9) 60 (28.8)

Child–Pugh class A 779 (76.3) 620 (76.3) 159 (76.4)

B 205 (20.1) 163 (20.1) 42 (20.2)

C 37 (3.6) 30 (3.6) 7 (3.4)

Body mass index, kg/m2 24.0 (22.1–26.0) 24.0 (22.1–26.0) 24.0 (22.1–25.8)

Tumour number 1 595 (58.3) 471 (57.9) 124 (59.6)

2–3 217 (21.2) 178 (22.9) 39 (18.7)

 ≥ 4 209 (20.5) 164 (20.2) 45 (21.6)

Maximal tumour size, cm 4.0 (2.3–8.5) 4.0 (2.3–8.6) 4.0 (2.5–7.6)

Distribution Single segmental 475 (46.5) 378 (46.5) 98 (47.1)

Unilobar 245 (24.0) 196 (24.1) 49 (23.6)

Bilobar 300 (29.4) 239 (29.4) 61 (29.3)

Distant metastasis Present 125 (12.2) 99 (12.2) 26 (12.6)

Vascular invasion Unilateral 150 (14.7) 115 (14.1) 35 (16.8)

Main or bilateral 83 (8.1) 65 (8.0) 18 (8.7)

RFA  feasibility† Feasible† 226 (22.1) 183 (22.5) 43 (20.7)

BCLC stage 0 134 (13.1) 102 (12.5) 32 (15.4)

A 265 (26.0) 218 (26.8) 47 (22.6)

B 184 (18.0) 152 (18.7) 32 (15.4)

C 374 (36.6) 287 (35.3) 87 (41.8)

D 64 (6.3) 54 (6.6) 10 (4.8)

Laboratory findings AFP, ng/mL 42.1 (6.7–838.2) 41.9 (7.0–827.3) 42.4 (6.9–636.1)

Haemoglobin, g/dL 13.5 (12.2–14.6) 13.5 (12.2–14.7) 13.5 (12.2–14.5)

Platelet count, × 109/mm3 143 (97–197) 145 (97–197) 138 (98–199)

ALT, U/L 37 (25–53) 37 (25–53) 39 (25–59)

Total bilirubin, mg/dL 1.0 (0.7–1.4) 1.0 (0.7–1.4) 1.0 (0.8–1.5)

Albumin, mg/dL 3.6 (3.2–4.0) 3.6 (3.2–4.0) 3.7 (3.2–4.0)

Prothrombin time, INR 1.07 (1.01–1.17) 1.07 (1.01–1.17) 1.07 (1.01–1.18)

Creatinine, mg/dL 0.8 (0.7–0.9) 0.8 (0.7–0.9) 0.8 (0.7–0.9)

Initial treatment Transplantation 46 (4.5) 36 (4.4) 10 (4.8)

Resection 336 (32.9) 268 (33.0) 68 (32.7)

RFA or PEIT 77 (7.5) 61 (7.5) 16 (7.7)

TACE 322 (31.5) 254 (31.2) 68 (32.7)

TACE combined with EBRT 67 (6.6) 53 (6.5) 14 (6.7)

Sorafenib treatment 31 (3.0) 24 (3.0) 7 (3.4)

Supportive care 103 (10.1) 86 (10.6) 17 (8.2)

Other therapies 39 (3.8) 31 (3.8) 8 (3.8)
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Survival of the study patients according to the initial treatment. Supplementary Figure S2 shows 
the Kaplan–Meier survival curve according to the initial treatment in all patients. The 5-year survival rates of 
transplantation, resection, and RFA/PEIT were 86.5%, 73.7%, and 70.5%, respectively. The median survival of 
TACE, TACE + EBRT, sorafenib treatment, and other therapies and supportive care were 32.7 (95% confidence 
interval [CI] 27.0–38.4), 9.5 (95% CI 7.3–11.7), 4.2 (95% CI 2.7–5.8), 10.6 (95% CI 5.9–15.4), and 2.3 months 
(95% CI 1.6–3.1), respectively.

Performance of the treatment recommendation classifier of the CDSS model for HCC. Table 3 
shows the accuracy of the six classifier models trained from the derivation set. The recommended treatment 
from the model was compared with the treatment used in real clinical practice in the validation set. Overall, our 
CDSS classifier model for HCC was well generalised and showed good performance, and its standard deviations 
were higher in the lower branches of the treatment (e.g. sorafenib treatment, supportive care, other therapies) as 
the number of patients were relatively smaller. The accuracies of classifiers 1, 2, 3, 4, and 5 were 81.0% (curative 
treatments versus not curative treatments), 88.4% (resection versus RFA/PEIT), 76.8% (TACE vs. or not TACE), 
76.6% (TACE + EBRT versus not TACE + EBRT), 80.0% (sorafenib treatment versus not sorafenib treatment), 
and 80.1% (supportive care versus other therapies), respectively. Supplementary Figure S3 shows the importance 
of the features ranked by the Gini importance that calculates reduced impurity in all trees.

Performance of survival prediction of the CDSS model for HCC. Figure 2 shows predicted survival 
curves of each recommended treatment in the validation set. The ‘Ground truth curves’ represent the Kaplan–
Meier survival curve of patients in the validation set in real clinical practice. The C-index values for the derived 
models of OS for RFA/PEIT, resection, TACE, TACE + EBRT, sorafenib treatment, supportive care, transplanta-
tion, and other therapies were 0.725 (95% CI, 0.708–0.741), 0.695 (95% CI, 0.680–0.709), 0.803 (95% CI, 0.796–
0.809), 0.676 (95% CI, 0.658–0.694), 0.684 (95% CI, 0.648–0.720), 0.710 (95% CI, 0.689–0.730), 0.959 (95% CI, 
0.949–0.969), and 0.850 (95% CI, 0.835–0.884), respectively. Supplementary Figure S4 shows the importance of 
the features for OS prediction in each recommended treatment.

Discussion
In the present study, we developed a machine learning-based CDSS algorithm for recommending initial treat-
ment option for HCC by employing clinical data from 1,021 patients. Treatment recommendations made by the 
CDSS model for HCC showed high accordance with the actual treatment choices, and the OS prediction was 
also highly associated with the observed 5-year survival rates.

We present a detailed example of the application of the CDSS model for HCC (Fig. 3). A 43-year-old male 
patient had Child–Pugh class A and a 2-cm-sized single HCC without evidence of vascular invasion and extra-
hepatic metastasis. The patient’s clinical details were as follows: ECOG score 0, haemoglobin 12.2 g/dL, platelet 
count 92 × 109/mm3, albumin 3.4 g/dL, ALT 46 U/L, total bilirubin 1.0 mg/dL, creatinine 0.7 mg/dL, and AFP 
42.4 ng/mL. The HCC CDSS model recommended resection as the initial treatment and the predicted 3-year and 
5-year survival rates were 90.2% and 83.4%, respectively. The CDSS model for HCC also provided an estimated 
survival rate for RFA and transplantation, for which the predicted 5-year survival rates were 51.5% and 94.7%, 
respectively. In real clinical practice, this patient initially underwent resection, experienced HCC recurrence 
3.2 year after the resection, received subsequent multiple on-demand TACE treatments, and still survived for a 
total of 6.9 years following resection.

For the development of the CDSS model for HCC, we adapted the machine learning method to overcome 
the complexity of treatment decision for HCC. We took special care in selecting the proper pretreatment vari-
ables and constructing high-quality database in order to ensure that the algorithm training goes well to produce 
applicable results. We first recruited 61 variables that are known to influence HCC treatment decision in daily 
clinical practice, and inputted them in a hierarchical classifier model. Through a refinement process, we finally 

Table 3.  Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for the six 
classifier models in the validation set. EBRT external beam radiotherapy, NPV negative predictive value, PEIT 
percutaneous ethanol injection therapy, PPV positive predictive value, RFA radiofrequency ablation, TACE 
transarterial chemoembolisation. *Variables are presented as mean ± standard deviation.

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

Classifier 1
(RFA/PEIT or resection vs. not RFA/PEIT or resection) 81.0 ± 2.6 77.4 ± 4.1 83.7 ± 3.3 77.8 ± 3.6 83.5 ± 2.5

Classifier 2
(RFA/PEIT vs. resection) 88.4 ± 3.1 56.2 ± 11.6 95.8 ± 2.7 76.8 ± 12.1 90.6 ± 2.3

Classifier 3
(TACE vs. not TACE) 76.8 ± 2.9 82.3 ± 4.1 69.3 ± 5.5 78.3 ± 4.0 74.6 ± 4.9

Classifier 4
(TACE + EBRT vs. not TACE + EBRT) 76.6 ± 4.7 43.9 ± 12.6 89.4 ± 3.9 61.6 ± 10.8 80.4 ± 4.3

Classifier 5
(Sorafenib vs. Not sorafenib) 80.0 ± 4.2 12.3 ± 13.3 95.0 ± 4.0 44.0 ± 37.7 83.1 ± 3.0

Classifier 6
(Supportive care vs. Other therapies) 80.1 ± 6.3 53.0 ± 17.6 90.4 ± 5.2 67.7 ± 15.8 83.7 ± 5.6
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selected 20 key pre-treatment variables with the highest importance in our model, and the resulting CDSS model 
proved to have good prediction ability for both treatment option and OS in the validation set.

Figure 2.  True and predicted overall survival according to the initial treatment in the validation set. 
(A) Radiofrequency ablation/percutaneous ethanol injection therapy. (B) Resection. (C) Transarterial 
chemoembolisation (TACE). (D) TACE combined with external beam radiotherapy. (E) Sorafenib treatment. 
(F) Supportive care. (G) Transplantation. (H) Others thepies.
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To the best of our knowledge, this is the first description of a machine learning-based CDSS model devel-
oped for treatment decision and survival prediction in HCC. Our CDSS model for HCC not only provides the 
best treatment option, but also suggests alternative treatment and predicts prognosis after each treatment. Our 
results show that the CDSS model for HCC may be used as a supplementary system for physicians in deciding 
the treatment option for HCC and explaining their choice to the patients. Future multicentre studies using the 
HCC-CDSS model would allow for a more powerful comparison in the treatment patterns between centres and 
recommend treatment options with relative strength according to each centre.

Previous studies that used AI to study HCC have primarily focused on prognosis prediction after resection 
or  TACE6,9,10,21,22. A recent study employed deep learning to identify multi-omics features associated with the 
differential survival of patients with  HCC23. Compared to the algorithms used in previous studies, our algorithm 
focused more on the clinical and radiological parameters and could thus be more easily used in daily clinical 
practice. The integration of individual genetic information to the HCC CDSS model would enable physicians to 
make a more accurate selection for HCC treatment in each patient.

The Watson for Oncology, a cognitive computing system trained at the Memorial Sloan Kettering Cancer 
Center (New York, USA), uses natural language processing and machine learning to provide treatment recom-
mendations. The Watson system processes structured and unstructured data from medical literature, treatment 
guidelines, medical records, imaging, laboratory and pathology reports, and the expertise of the physicians at 
Memorial Sloan Kettering to formulate therapeutic  recommendations24. However, the Watson system has yet to 
be adapted for use in HCC, which may partially be due to complexity of factors that affect the treatment deci-
sion in HCC.

Our algorithm adapted manual database input in the development, and human efforts are certainly required 
during data acquisition. However, we already started another AI study, allowing us to automatically learn the 
radiological information of HCC, and training our algorithm more easily in the future learning process.

Our algorithm could not properly classify patients who received living related donor liver transplantation 
(LDLT) in the derivation set. As a possible explanation, it was generated in the medical environment of severe 
shortage of deceased liver donor. LDLT is the main method used when performing liver transplantation in 
our centre. Decision process of LDLT could be significantly different from that of other treatments, probably 

Figure 3.  Example of application of the clinical decision support system (CDSS) model for hepatocellular 
carcinoma (HCC). A 43-year-old male patient with Child–Pugh class A liver function. (A) Arterial phase of 
liver protocol computed tomography showed approximately 2 cm sized single HCC. (B) Predicted survival 
curve after resection, which is the preferred option according to the CDSS model for HCC. (C) Predicted 
survival curve after radiofrequency ablation. (D) Predicted survival curve after transplantation.
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because not only availability of living donors and ethical and economic problems but also treatment willingness 
of the patients could influence significantly more to the decision of LDLT. Therefore, our algorithm could not 
recommend LDLT in the relevant patients. Hence, a different process in the decision of LDLT in patients with 
HCC within the Milan criteria should be considered. However, our algorithm could even predict the survival of 
a patient if he/she has a certain condition that requires LDLT as an initial treatment.

The present study has the following limitations. First, in this study, we trained our algorithm only for the 
initial treatment option and not for subsequent treatments after recurrence. Moreover, our algorithm was trained 
using a database from a single centre located in a HBV-endemic area with mostly male patients. Therefore, the 
HCC-CDSS model may show less power when used in centres with different demographics (e.g. ethnicity, aetiol-
ogy, level of hospital facility, socio-economic status of the country, and even reimbursement policy), where the 
optimal treatment option would be different. Second, this study comprised a relatively small sample size included 
for each treatment specially transplantation, RFA, and sorafenib treatment. Although the c-index of the survival 
prediction model for these treatments was at an acceptable level, additional validation is required. Therefore, 
we look forward to expanding our database with the collaboration with diverse medical centres through online 
web-site, allowing and to make our algorithm to be more suitable for use in diverse clinical environments. Finally, 
although patient’s preference is one of the important factors in making treatment decisions, this variable was 
not included in this model. However, this cannot be quantified only by the patient’s age and financial status. 
Therefore, we tried to compensate it by presenting the survival curve of preferred and alternative treatments.

We are more than willing to share our algorithm from the web-site with any centre worldside baseed on col-
laboration. This algorithm was built basically from our clinical practice and could function differently in other 
centres, but, hopefully, a future multicentre study could widen the usefulness of our algorithm as a method of 
efficacy comparison between different centres.

In conclusion, we developed HCC CDSS model for treatment decision and prognosis prediction in patients 
with HCC. This algorithm is considered benefical to physicians when discussing with HCC patients and when 
establishing a treatment decision for the appropriate initial treatment based on the estimated survival according 
to each treatment option, specially in HBV-endemic area. Further CDSS model with the integration of genetic 
information and automatically acquired imaging data could enable more individualised treatment to each patient.
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