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Abstract
Cerebral small vessel disease (CSVD) is composed of several diseases affecting the small arteries, arterioles, venules, and
capillaries of the brain, and refers to several pathological processes and etiologies. Neuroimaging features of CSVD include
recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy.
The main clinical manifestations of CSVD include stroke, cognitive decline, dementia, psychiatric disorders, abnormal gait, and
urinary incontinence. Currently, there are no specific preventive or therapeutic measures to improve this condition. In this
review, we will discuss the pathophysiology, clinical aspects, neuroimaging, progress of research to treat and prevent CSVD
and current treatment of this disease.
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Introduction

Cerebral small vessels comprise two components. First, the

leptomeninges vasoganglion, which is derived from subar-

achnoid space covering, and the convex surface of brain.

Second, perforating arteries are derived from anterior, mid-

dle, posterior cerebral arteries that supply the subcortical

parenchyma (Fig. 1). The cerebral small vessels are crucial

to maintenance of adequate blood flow to the sub-surface

brain structure. They include small arteries, arterioles,

venules, and capillaries which are commonly sized at

50–400 mm1,2.

Cerebral small vessel disease (CSVD) is a generic

term that refers to intracranial vascular disease based

on various pathological and neurological processes, as

well as a syndrome referring to different clinical man-

ifestations and neuroimaging features caused by the

structural changes of vascular and brain parenchyma.

Small vessel disease accounts for up to 25% of all

ischemic strokes3 but also put patients at twice the risk

for these conditions4. In addition, CSVD is a leading

cause of functional loss, disability and cognitive

decline in the elderly. Neuroimaging development

allows increased understanding of CSVD. Thus, a com-

prehensive knowledge of its pathophysiologic mechan-

ism, neuroimaging, and clinical features is imperative

to further study on possible preventive and therapeutic

measures.

Pathogenesis and Classification

The pathophysiologic mechanisms of CSVD are not yet

clear. The European small brain vascular disease expert

group puts forward the classification of CSVD based on

cerebrovascular pathologic changes as the following: Arter-

iolosclerosis, sporadic and hereditary cerebral amyloid

angiopathy, inherited or genetic small vessel diseases dis-

tinct from cerebral amyloid angiopathy, inflammatory and

immunologically-mediated small vessel diseases, venous

collagenosis, and other small vessel diseases such as post-

radiation angiopathy1. These various pathologic changes

cited by the European expert group do not only result in
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Fig. 1. Cerebral small vessel and its comprised compartments. (1): Posterior cerebral artery (2): Posterior communicating artery (3): Middle
cerebral artery (4): Anterior cerebral artery (5): Anterior communicating artery (6): Internal carotid artery (7): Basilar artery. Small vessel
atherosclerosis. (A). Eccentric atherosclerotic plaque in a perforating vessel in the putamen, causing significant narrowing of the lumen
(asterisk).
(Lammie, 20029 and Shi and Wardlaw, 201618)
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damage of brain parenchyma including neuronal apoptosis,

diffuse axonal injury, demyelination and loss of oligoden-

drocytes, but also result in a series of symptoms and unusual

neuroimaging findings.

CSVD is thought to result in reduced cerebral blood flow,

impaired cerebral autoregulation and increased blood–brain

barrier (BBB) permeability. However, the molecular

mechanisms underlying CSVD are incompletely understood.

Recent studies in monogenic forms of small vessel disease

(SVD), such as cerebral autosomal dominant arteriopathy

with subcortical infarcts and leukoencephalopathy (CADA-

SIL), and ‘sporadic’ SVD have shed light on possible disease

mechanisms in CSVD. Proteomic and biochemical studies in

post-mortem monogenic CSVD patients, as well as in animal

models of monogenic disease have suggested that disease

pathways are shared between different types of monogenic

disease, often involving the impairment of extracellular

matrix (ECM) function. In addition, genetic studies in

‘sporadic’ CSVD have also shown that the disease is highly

heritable, particularly among young-onset stroke patients,

and that common variants in monogenic disease genes may

contribute to disease processes in some CSVD subtypes5.

Arteriolosclerosis

Among the pathologic changes involved in CSVD, the two

most common are arteriolosclerosis and cerebral small

vascular atherosclerosis. Arteriolosclerosis, a vascular risk-

factor-related SVD, is known to be age-related, and is the

most common small vessel alteration in aged brains. The

severity of arteriolosclerosis increases with aging and is exa-

cerbated by hypertension and diabetes (Fig. 2)5. Thus, arter-

iolosclerosis is also named hypertensive SVD6. Cerebral

small vascular atherosclerosis, particularly in arterioles

smaller than 50 mm in diameter, is characterized by a loss

of smooth muscle cells from the tunica media, degeneration

of internal elastic lamina, proliferation of fibroblasts (Fig. 2),

deposits of fibro-hyaline material and collagens, thickening

of the vessel wall, formation of microatheroma, and narrow-

ing of the lumen1. With these changes, the vessels become

elongated, tortuous and inflexible (Fig. 2). In addition, wall

damage causes distension of its outer portions due to fibro-

sis, that is microaneurysm, and the stenosis or obstruction of

proximal lumen7. Ultimately, impaired autoregulation of

involved small vessel results in reduced cerebral blood flow

(CBF) and chronic cerebral hypoperfusion6. The occlusion

of arterial lumen leads to acute ischemia, causing lacunar

Fig. 2. The relationship between conditions such as diabetes, and hypertension influencing arteriolosclerosis. In addition, the figure shows
how cerebral small vessel atherosclerosis is characterized. A series of changes will lead to lacunar infarct.
CBF: cerebral blood flow.

Fig. 3. Occlusion of the vessel lumen is represented and acute
ischemia due to decreased flow in the vessel occurred.
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infarction (Figs. 2 and 3). Whereas, critical stenosis and

hypoperfusion involving multiple small arterioles, mainly

in deep white matter, lead to incomplete ischemia which are

visualized as White Matter Hyperintensities (WMH) on

neuroimaging8. The two pathophysiological pathways above

can often overlap, so lacunes and white matter lesions often

coexist in the same patient. Kuwabara and colleagues found

a 25% decreases in CBF in patients with both Alzheimer’s

and Binswanger’s diseases, with the use of positron emission

tomography with oxygen-15-labelled water9. Conventional

risk factors such as hypertension diabetes, smoking, high

homocysteine concentrations, obesity, and dyslipidemia

have been considered to lead to arteriolosclerosis. In addi-

tion, hematological disorders, infection, and hereditary dis-

eases are increasingly recognized in various studies10,11.

Cerebral Amyloid Angiopathy

Cerebral amyloid angiopathy (CAA) is the dominant cause

of lobar intracerebral hemorrhage. Not only does it result in

stroke and cognitive impairment in a significant proportion

of older patients, but it is an important component of the

senile plaques found in patients with Alzheimer’s dis-

ease12,13. CAA is characterized by the progressive accumu-

lation of congophilic, immunoreactive, amyloid protein in

the walls of small-to-medium-sized arteries and arterioles

predominantly located in the leptomeningeal space, cortex,

and, to a lesser extent, in the capillaries and veins1. A char-

acteristic ‘double-barrel’ lumen of involved vessels is seen

under light microscopy in leptomeninges and parenchyma

due to the splitting of the internal elastic lamina caused by

the deposition of hyaline material in the vessel wall. The

thickening vessel walls stained with Congo red, and with

thioflavin S and appear green birefringent under polarized

light and fluoresce under ultraviolet light, respectively1,12.

CAA appears in almost all elderly patients with demen-

tia, and accounts for about 64% to 84.9% of the elderly

without dementia14–16. Its distribution in the brain parench-

yma is mainly on the region of hippocampus and cortex17,

which may have a correlation with cognitive impairments

caused by CAA, without clear potential causative mechan-

isms known to date. Many studies indicate that diffuse

brain microbleeds, micro-infarcts, hypoperfusion, and

white matter hypoxia caused by vessel changes associated

with CAA may be responsible for cognitive decline and

dementia, independent of Alzheimer’s disease and Lewy

body pathology (Fig. 6)16,18–21.

Amyloid-beta protein accumulation in capillaries affects

BBB integrity, which leads to a loss of tight junction pro-

teins and increased BBB permeability (Fig. 4)22. Then,

perivascular edema and extravasation of toxic plasma com-

ponents caused by the disruption of BBB contributes to

localized damage to brain parenchyma and enlarged peri-

vascular spaces (Fig. 4)4,23. Extensive white matter lesions

can be found in patients with CAA, which carry an

increased risk of warfarin-related intracerebral hemorrhage

after ischemic stroke24.

CAA is not only a biomarker of cognition impairment,

but also found in some rare genetically transmitted dis-

eases25 such as Down’s syndrome26. Probably, CAA is an

expression of some systematic amyloid deposition diseases,

including hereditary amyloidosis, transthyretin familial

amyloid polyneuropathy27,28, plasma cell dyscrasia29, and

myogenic disease30.

Long-term and chronic oxidative stress in aging, and

hypertension lead to cerebral vascular dysfunction including

impaired neurovascular coupling, inward remodeling, rare-

faction, and BBB disruption, which result in brain injury and

cognitive dysfunction (Fig. 4)31. In the inherited or genetic

SVDs such as Fabry’s disease and CADASIL32,33, there is

Fig. 4. The increase of amyloid deposits in the perivascular space consequently leads to increase in BBB permeability and decrease in tight
junctions. The schematic effects of chronic oxidative stress in aging is shown.
BBB: Blood–brain barrier.
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still a controversy about the mechanisms of brain injury.

Moore and colleagues reported that the deposition of glo-

botriaosylceramide (Gb3) leads to altered vascular reac-

tivity, resulting in increased blood flow and metabolic

vulnerability in the deep white matter. These findings are

contrary to chronic cerebral hypoperfusion found in other

studies34–36.

Neuroimaging Features of CSVD

Due to mild clinical symptoms or lower mortality than

common stroke, the onset of CSVD was frequently

neglected. Thus, neuroimaging has become an important

tool in diagnosing CSVD and the silent neurovascular

disease, especially at early stage. Neuroimaging of CSVD

primarily involves visualizing recent small subcortical

infarcts, lacunar infarct, WMH, microbleeds, enlarged peri-

vascular spaces, and brain atrophy1 (Fig. 6).

Recent Small Subcortical Infarcts

Recent small subcortical infarcts are considered to result

from acute severe ischemia of a single perforating artery,

and are lesions occurring in the territory of one perforating

arteriole within the previous few weeks, with neuroimaging

evidence or clinical symptoms of recent infarction

(Fig. 5)37. Recent infarcts are regarded as round or ovoid

lesions less than 20 mm in maximal diameter in the white

matter, basal ganglia, or brainstem. They present hyperin-

tense on diffusion-weighted imaging (DWI), hypointense

on the apparent diffusion coefficient map, and either nor-

mal or hyperintense to a normal brain on fluid-attenuated

inversion recovery (FLAIR)/T2 imaging, and with less

hyperintensity than cerebrospinal fluid on T238,39. How-

ever, a number that can reach 50% of patients with acute

stroke may appear with no responsible lesions on computed

tomography (CT) and magnetic resonance imaging (MRI).

DWI is the most sensitive sequence for acute ischemic

lesions, allowing detection of acute ischemia within the

first few hours after stroke onset. With the increasing rec-

ognition of recent small subcortical infarcts, Gattringer and

colleagues recommended the new term ‘recent small sub-

cortical infarct’ instead of lacunar infarct40. From recent

small subcortical infarct to cavity formation, there are a

number of morphological changes, including volume and

diameter reductions, occurring within the first 90 days of

onset39,41. In the development of recent small subcortical

infarcts, more than one-third (39%) of the lesions recovered

with no residual cavities, and 40% of the infarct lesions

were located adjacent or fused in preexisting white matter

lesions39. It is reported that the incidence of cavity forma-

tion after recent small subcortical infarcts is in the broad

range of 28–94%41–44. There are three outcomes from

recent small subcortical infarcts: (1) A common lacuna

and/or (2) white matter hyperintensity without apparent

cavitation on T2-weighted sequences, and (3) less common

fates that disappearing with little visible consequence on

conventional MRI.

Lacunar Infarct

Lacunar stroke accounts for up to a quarter of all acute

ischemic strokes. it is a small fluid-filled cavity that was

thought to mark the healed stage of a small deep brain

infarct. In neuroimaging, a lacuna is a round or ovoid, sub-

cortical, fluid-filled cavity with similar signal to cerebrosp-

inal fluid (CSF) (Fig. 5). It measures between 3–15 mm in

diameter, which is consistent with a previous acute small

deep brain infarct or hemorrhage in the territory of one per-

forating arteriole37. Lacunar infarcts are typically located in

the basal ganglia, internal capsule, thalamus, corona radiata,

centrum semiovale (CSO), and brainstem. Poirier and col-

leagues divided the lacunas into three subtypes based on the

formation: Subtype I lacunas are secondary to old lacunar

infarction; subtype II lacunas secondary to old hemorrhagic

lesions; subtype III lacunas are secondary to enlarged peri-

vascular spaces. Herve and colleagues classified the lacunar

lesions by three-dimensional MRI reconstruction, according

to their shapes into four types: Slab, stick, multiple compo-

nents, or ovoid/spheroid, then proposing that most of lacunar

infarcts (83%) were ovoid or spheroid. Infarct lesions man-

ifest isolated, adjacent to or fused into white matter hyper-

intensity38. Moreau and colleagues found that lacunas almost

always present at 90 days after acute lacunar infarction and

appear as a central CSF-like hypointensity with or without a

surrounding border of hyperintensity on FLAIR sequence

but only CSF-like hypointensity and hyperintensity on T1-

weighted and T2-weighted, respectively. Moreover, the sen-

sitivity of FLAIR for cavitation was greatly lower than for

T1-weighted sequences41.

Fig. 5. Subcortical infarcts resulting from acute severe ischemia. It
also shows microbleeds occurring in the cerebral cortex and gray/
white matter junction due to deposition of amyloid. Cavitation is
also shown as a result of acute severe ischemia.
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White Matter Hyperintensities

The white matter is the most vulnerable region to suffer

hypoxia/hypoperfusion due to the watershed effect. WMH

are supposed to be comprehensive expressions including

disturbances of small blood vessels, breakdown of the BBB,

small infarcts in the white matter, glial activation, loss of

oligodendrocytes, and demyelination caused by chronic dif-

fuse hypoperfusion or reduced cerebral blood flow1,31. Bilat-

eral, mostly symmetrical hyperintensities on T2-weighted

and FLAIR MRI are characteristic features of white matter

lesions accompanied with some hypointensity different from

CSF on T1-weighted MRI and low density on cerebral CT in

most older individuals with or without cognition decline. In

addition to white matter, the hyperintensity lesions are also

located in subcortical gray matter structures, such as basal

ganglia, and brainstem37,45. However, whether the hyperin-

tensities of gray matter and brainstem should be adopted into

WMH is controversial37,46. To differ WMH from other

lesions, such as lacuna and atrophy, and then research their

specific role on dementia, diffusion tensor MRI (DT-MRI),

and magnetization transfer MRI (MT-MRI) were increas-

ingly used to give a quantitative information on the state

of the brain’s white matter.

Microbleeds

Cerebral microbleeds (CMBs) are magnetic resonance (MR)-

visible small (generally 2–5 mm in diameter, but up to 10

mm) areas of signal void caused by perivascular collections

of hemosiderin deposits that are foci of past hemorrhages

resulted from small vessels involved in CAA or arteriolo-

sclerosis (Fig. 5)18,37. Small hypointense lesions appear on

paramagnetic-sensitive MR sequences such as T2-weighted

gradient-recalled echo (GRE) or susceptibility-weighted

imaging sequences with a ‘blooming effect’ (larger or more

conspicuous on GRE than on spin-echo MRI)18, and are gen-

erally not seen on CT, or on FLAIR, T1-weighted, or T2-

weighted MR sequences. Microbleeds lesions, either round

or oval in shape, are most commonly located in the cortico-

subcortical junction, and deep gray or white matter in the

cerebral hemispheres, brainstem, and cerebellum. Lesions

were classified as three types according to location: lobar,

deep and subtentorial CMBs47. Lobar microbleeds are espe-

cially associated with a decline in executive functions, infor-

mation processing and memory function relative to a

decline in motor speed associated with deep or subtentor-

ial microbleeds48.

Enlarged Perivascular Spaces

Perivascular spaces, as well as Virchow–Robin spaces, are

extensions of the extracerebral fluid-filled spaces that follow

the typical course of a vessel as it goes through gray or white

matter49. These spaces follow the path of perforating arteries

including arteries, arterioles, veins, and venules. Given the

different imaging planes, the lesions appear linear, round or

ovoid CSF-like intensity on all MRI sequences, with the

diameter generally smaller than 3 mm50. Enlarged perivas-

cular spaces are predominantly located in the basal ganglia

and CSO, and with increased signal intensity equal to cere-

brospinal fluid on T2-weighted images, hypointensity on

T1-weighted and occasionally hypointensity on FLAIR

images without hyperintense rim to distinguish from old

lacunar infarcts49.

Brain Atrophy

Brain atrophy indicates a lower brain volume on neuroima-

ging that is not related to definitive macroscopic focal injury

Fig 6. Gradient echo magnetic resonance imaging (left image) in a patient with small vessel disease and lacunar stroke showing microbleeds
(arrowed) in the subcortical region not seen on fluid-attenuated inversion recovery (right image).
Patel B, Markus HS. Magnetic resonance imaging in cerebral small vessel disease and its use as a surrogate disease marker. Int J Stroke. 2011
Feb;6(1):47–59.
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such as trauma or infarction. Characteristic manifestations of

atrophy are symmetrical or asymmetrical decreased total

volume, increased ventricular volumes, enlarged superficial

sulci, and decreased specific gray or white matter volumes.

The hippocampus is an example on imaging examinations

that include cranial CT or MRI that has characteristic man-

ifestations of atrophy51,52. Brain atrophy frequently occurs

together with WMH in elderly, and is greatly associated with

cognitive decline, and dementia. Some investigators studied

the association between brain atrophy and WMH and indi-

cated that increased hyperintensities would accelerate brain

atrophy. This was especially true by visualizing the loss of

deep tissue demonstrated by an increase in ventricular

size52,53.

Clinical Manifestation of CSVD

The clinical manifestations of CSVD vary depending on the

specific cause of the disease, as well as the brain regions

affected. Individuals may present sudden onset stroke

symptoms, progressive cognitive deterioration, dementia,

gait disorder, sphincter dysfunctions, and psychiatric

disorders, etc.54–56.

Cognitive Decline and Dementia

SVD is thought to be among the main causes of vascular

cognitive impairment, and is thought to account for about

45% of dementia cases, which is also associated with so-

called silent lacunar infarcts which are asymptomatic

infarcts with definite lesions on neuroimaging57–60. Cogni-

tive decline caused by CSVD presents with executive dys-

functions, attention and memory decline, set-shifting

disabilities, slower speed of information processing, decline

of verbal fluency, and delayed recall. On the behavior area,

symptoms showed apathic, mood disorder, depression and

daily living disability1,54,56. Among others, some clinical

features include sleep disorders, vertigo, tinnitus, and hear-

ing disorder.

Neuropsychiatric Symptoms

Neuropsychiatric symptoms resulting from SVD mainly

include hallucination, agitation, depression, anxiety, disin-

hibition, apathy, irritability, sleep disturbance, and appetite

changes61. It is found that the presence of multiple cerebral

microbleeds, particularly multiple lobar microbleeds, is

associated with higher global neuropsychiatric burden, par-

ticularly with depression and disinhibition. Tang and col-

leagues reported that the emotional disinhibition was

associated with CMBs, while the behavioral disinhibition

symptoms are commonly found among patients with Alzhei-

mer’s disease62.

Urinary disturbances are common in cerebral vascular

pathology, which mainly include nocturia, incontinence, urin-

ary frequency, and urgency. In the LADIS (Leukoaraiosis

And Disability) study62, Poggesi and colleagues researched

639 individuals with age-related white matter changes

(ARWMC) ranging from mild to severe, and reported that

70% of the participants complained of at least one urinary

symptom. In addition, 60% suffered from nocturia, and

approximately 20% reported urinary frequency, incontinence,

and urgency. Urinary frequency and nocturia are more pre-

valent in men, whereas incontinence is more frequent in

women. Urinary urgency is associated with the severity of

ARWMC, while urinary frequency is only associated with the

stroke history. In patients with Alzheimer’s disease, larger

ARWMCs in volume were found to be associated with urin-

ary incontinence.

Gait disturbance (GD), characterized by impairment of

locomotion, equilibrium and gait ignition, is another com-

mon manifestation of CSVD63. Both White Matter Lesions

(WMLs) and lacunar infarcts are independently associated

with several gait parameters including a lower gait velocity,

a shorter stride length and a reduced cadence64. De Laat and

colleagues offered the first indication that microbleeds may

be associated with GDs, independent of other coexisting

markers of CSVD including white matter lesions and lacunar

infarcts. They suggested that a higher number of microbleeds

was associated with a shorter stride length, a lower gait

velocity and a longer double-support time65.

Preventive and Therapeutic Measures
of CSVD

The precise diagnosis of CSVD depends on neuropathologi-

cal examination, which is difficult in clinical practice.

Therefore, the clinical diagnosis bases on clinical features,

neuroimaging of the brain parenchyma, and the ancillary use

of other investigative techniques, such as ultrasonography

(carotid and cardiac), combining with the risk factors. The

prognosis is better than other strokes in the short term after

onset, because the primary lesion is small, and the rate of

recovery is often rapid.

Risk factors for lacunar infarcts include non-modifiable

risk factors (age, regional distribution, sex) and acquired risk

factors (hypertension, cigarette smoking, diabetes, atrial

fibrillation, hyperhomocysteinemia, chronic kidney disease,

high circulatory phosphate level and obesity)66–69. Control-

ling or removing risk factors is important for the prevention

of CSVD. Hypertension is the most prevalent and important

risk factor for stroke in general, as well as the most treatable

factor. Many studies showed that lowering blood pressure

reduces stroke70, and dementia or cognitive decline in

patients who have had a stroke and in those without cere-

brovascular disease. In a recent study, researchers drew a

conclusion that targeting a systolic blood pressure of <120

mmHg, as compared with <140 mmHg, had a non-

significant 11% lower incidence of stroke in patients at high

risk for cardiovascular events but without diabetes71. Simi-

larly, the patients whose intensive systolic blood pressure

goal was <130 mmHg in the Secondary Prevention of Small

Li et al 1717



Subcortical Strokes trial, and <120 mmHg in the ACCORD

trial had a non-significant 19% and a significant 41% lower

incidence of stroke, respectively, than the incidence with

higher targets70. Statins, primarily used to lower low density

lipoprotein cholesterol levels, have been reported as having

cardiovascular benefits in recent years. Statins may improve

vasomotor reserve capacity72 and cerebral endothelial func-

tion by inhibiting cerebral vascular superoxide production73,

enhancing endothelial-derived Nitric Oxide bioavailability

and decreasing oxidative stress, thus protecting against cer-

ebral ischemia. In the Stroke Prevention by Aggressive

Reduction in Cholesterol Levels (SPARCL) study, patients

with stroke or transient ischemic attack were treated by ator-

vastatin, and therefore had a significant reduction in stroke74

while high-dose atorvastatin (80 mg/d) may increase the

incidence of hemorrhagic stroke75.

Intravenous tissue plasminogen activator (t-PA) is the

gold standard of treatment of acute ischemic stroke, but the

role of t-PA in patients with lacunar infarction has been

debated due to the different pathomechanisms compared

with common stroke related to large-vessel changes and

increasing risks of hemorrhage in patients with WMH or

CMB. Some investigators have found that the increased risk

of symptomatic Intra Cerebral Hemorrhage (ICH) attribu-

table to CMB is small and unlikely to exceed the benefits of

thrombolytic therapy76,77 while there is significantly higher

risk of ICH in patients with multiple CMBs78,79. A higher

number of microbleeds (>10 CMBs) is associated with a

higher risk for symptomatic ICH after intravenous thrombo-

lysis (IVT) when compared with patients with 0 to 10 CMBs

or 1 to 10 CMBs on pretreatment MRI. Thus, high micro-

bleed burden may be included in individual risk stratification

scores predicting ICH risk following IVT for AIS80.

Anti-platelets are generally used in ischemia stroke. The

Guidelines for management of ischemic stroke and transient

ischemic attack in 2008 by the European Stroke Organiza-

tion Executive Committee81. However, Lundström and col-

leagues reported that non-responsiveness to clopidogrel or

clopidogrel resistance presented in the patients with CSVD,

not carotid atherosclerosis, after minor ischemia stoke and

transient ischemic attack, possibly because of glucose intol-

erance and insulin resistance82. In the Secondary Prevention

of Small Subcortical Strokes (SPS3) trial, the results showed

no benefit of dual antiplatelet treatment on the prevention of

recurrent stroke, and there was no significant different rate of

recurrence between the patients on dual therapy (2.5%) and

those taking aspirin (2.7%)83. Pearce and colleagues

reported that neither dual antiplatelet treatment nor the lower

blood pressure target was associated with the difference in

the change of cognitive function during up to 5 years of

follow up83.

There are some other therapeutic measures except for the

usual methods above. Homocysteine lowering using

B-vitamins was proved to reduce WMH volume increment

in those with severe baseline SVD84. In addition, vitamin E

tocotrienols were recently found to attenuate the progression

of WMH among healthy subjects with WMH85. In the study

of spontaneously hypertensive stroke-prone rats, which is the

best model to simulate human cerebrovascular disease, it had

been reported that chronic spironolactone treatment

increased tone and reactivity of cerebral vascular and alters

vascular structure of the middle cerebral artery (MCA) by

increasing the lumen and outer diameter, without any change

in blood pressure. Thus, these changes may enhance the

autoregulatory behavior of the MCA, therefore helping to

protect the brain in the event of an ischemic stroke7. In a

randomized double-blind trial in CADASIL, Dichgans and

colleagues reported that donepezil does not result in cogni-

tion impairment at week 18; however, improvements were

detected in executive function and processing speed, but

there was no additional benefit of donepezil at week 24

compared with week 1885.

CSVD is a relatively homogeneous disease process and

an important cause of stroke, cognitive decline, and age-

related disability. Although there have been a large number

of researches on CSVD, the mechanism of vascular pathol-

ogy and brain injury is still not clear, and there are numerous

controversies on the prevention and management. More

attention and targeted efforts are needed to better define the

clinical consequences of these diseases. The main difficulty

of investigating CSVD is the frequent coexistence of differ-

ent forms including white matter lesions, lacunar infarcts,

and microbleeds. Furthermore, more clinic trails should be

investigated to study the diagnostic criteria of CSVD and the

preventive and therapeutic measures to reduce the burden of

disability or dementia caused by CSVD, and animal models

should be established to study the specific pathogenesis of

different forms of CSVD.
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