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Abstract

High-resolution experimental structural determination of protein–protein
interactions has led to valuable mechanistic insights, yet due to the massive

number of interactions and experimental limitations there is a need for com-

putational methods that can accurately model their structures. Here we

explore the use of the recently developed deep learning method, AlphaFold, to

predict structures of protein complexes from sequence. With a benchmark of

152 diverse heterodimeric protein complexes, multiple implementations and

parameters of AlphaFold were tested for accuracy. Remarkably, many cases

(43%) had near-native models (medium or high critical assessment of predicted

interactions accuracy) generated as top-ranked predictions by AlphaFold,

greatly surpassing the performance of unbound protein–protein docking (9%

success rate for near-native top-ranked models), however AlphaFold modeling

of antibody–antigen complexes within our set was unsuccessful. We identified

sequence and structural features associated with lack of AlphaFold success,

and we also investigated the impact of multiple sequence alignment input.

Benchmarking of a multimer-optimized version of AlphaFold (AlphaFold-

Multimer) with a set of recently released antibody–antigen structures con-

firmed a low rate of success for antibody–antigen complexes (11% success),

and we found that T cell receptor–antigen complexes are likewise not accu-

rately modeled by that algorithm, showing that adaptive immune recognition

poses a challenge for the current AlphaFold algorithm and model. Overall, our

study demonstrates that end-to-end deep learning can accurately model many

transient protein complexes, and highlights areas of improvement for future

developments to reliably model any protein–protein interaction of interest.

1 | INTRODUCTION

Protein–protein interactions are the basis of many critical
and fundamental cellular and molecular processes,
including inhibition or activation of enzymes, cellular
signaling, and recognition of antigens by the adaptive

immune system. High-resolution structural characteriza-
tion of these interactions provides insights into their
molecular basis, as well as structure-guided design of
binding affinities and identification of inhibitors. How-
ever, structures for large numbers of molecular interac-
tions remain undetermined experimentally, due to
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limitations in resources, and the challenges of structural
determination techniques.

In response to this need, numerous predictive com-
putational methods to model structures of protein–
protein complexes have been developed over several
decades, including protein docking methods that use
unbound or modeled component structures as input to
perform rigid-body global searches in six dimensions,1–5

and template-based modeling methods that generate
models of complexes based on known structures.6,7

Challenges for docking algorithms include side chain
and backbone conformational changes between
unbound and bound structures, large search spaces, and
inability to capture key energetic features in grid-based
and other rapidly computable functions, leading to false
positive models among top-ranked models or lack of any
near-native models within large sets of predicted
models. Developments such as explicit side chain flexi-
bility during docking searches,8 use of normal mode
analysis to represent protein flexibility,9,10 clustering11,12

or re-scoring13–16 docking models to improve ranking of
near-native models, and use of experimental data as
restraints for docking17 have led to some improvement
in docking success, and examples of these and other
advances specifically designed to address the challenge
posed by protein backbone flexibility are highlighted in
a recent review.18 However, the Critical Assessment
of Predicted Interactions (CAPRI) blind docking predic-
tion experiment19 and several protein docking
benchmarks,20,21 which have enabled the systematic
assessment of predictive docking performance, revealed
persistent shortcomings of current computational dock-
ing approaches. Several protein–protein complex targets
had no accurate model generated by any teams in a set
of recent CAPRI rounds,22 while benchmarking of mul-
tiple docking algorithms in 2015 showed no accurate
models within sets of top-ranked predictions for many of
the test cases.20 A more recent benchmarking study with
67 antibody–antigen docking test cases highlighted the
limited success for current global docking approaches,
which was more pronounced for cases with more con-
formational changes between unbound and bound
structures.23

The recently developed AlphaFold algorithm
(AlphaFold v.2.0) performs end-to-end modeling with a
deep neural network to generate structural models from
sequence,24 showing unprecedentedly high modeling
accuracy and substantially surpassing the performance of
other teams in the most recent critical assessment of
structural prediction (CASP) round (CASP14).25 An
important element of the AlphaFold algorithm is the
combinatorial use of row-wise, column-wise and triangle
self-attention to iteratively infer residue distance and

evolutionary information from multiple sequence align-
ments (MSAs), building on previous work demonstrating
the use of coevolution in contact prediction.26,27 The
resulting feature representations are further processed by
a geometry-aware attention-based structure module that
rotates and translates each residue to produce a 3D pro-
tein structure prediction. After the remarkable success of
AlphaFold in CASP14, a separate team of researchers
developed RoseTTAFold,28 which likewise takes MSAs as
input, and outputs 3D structural predictions, using
attention-based deep learning architecture. Unlike
AlphaFold, RoseTTAFold utilizes a “three-track”
approach, allowing for concurrent updates within and in-
between 1D amino acid sequence, 2D pairwise distances
and orientations between residues, and 3D structural
coordinates.

The reported capability to model homomultimers,24

as well as a recently reported adaptation of AlphaFold to
enable modeling of heteroprotein assemblies,29 raises the
question of how accurately AlphaFold can model tran-
sient heteroprotein complexes, including classes of com-
plexes that have challenged previously developed and
currently available docking approaches. As the Alpha-
Fold deep learning model was trained using experimen-
tally determined structures of individual protein chains,24

and its accuracy was partly enabled by residue distances
within tertiary structures inferred from MSA, it is not
clear whether it can reliably generate protein–protein
interface structures, particularly for transient protein
complexes which have distinct physicochemical proper-
ties than protein interiors30 and obligate protein–protein
interfaces,31,32 as well as a lack of explicit MSA signal
from pairs of residues across the protein–protein inter-
face in the sequences.

Here we report a systematic assessment of the accu-
racy of AlphaFold in performing end-to-end modeling of
transient protein complexes, using 152 heterodimeric test
cases from Protein–Protein Docking Benchmark version
5.5 (BM5.5)20,23 which represent three previously estab-
lished docking difficulty levels, and classes of interactions
including enzyme-containing complexes, antibody–
antigen complexes, as well as a range of other complex
types. Comparison of AlphaFold performance with the
performance of a global protein-docking algorithm,
ZDOCK33 showed remarkable and superior accuracy
across the benchmark, even with only five models gener-
ated per test case. Determinants of modeling success were
assessed by case category and other features, and a
number of scoring functions, in addition to predicted
TM-score (pTM34 corresponding to overall topological
accuracy) and predicted local difference distance test
(pLDDT35 corresponding to local structural accuracy)
scores generated by AlphaFold, were tested to find
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optimal scoring criteria to identify correct docking
models from AlphaFold. We also tested a recently
released version of AlphaFold, named AlphaFold-Multi-
mer, that was specifically trained to model protein–
protein complexes.36 These results illustrate that while
not successful for all cases and complex types, AlphaFold
is a powerful tool for complex modeling, showing the
power and advantage of end-to-end deep learning versus
previous docking approaches. Our results also highlight
areas for future optimization and developments in this
framework, or other end-to-end deep learning frame-
works, to effectively and reliably model most or all-
transient protein–protein complexes.

2 | RESULTS

2.1 | Performance of AlphaFold on
protein–protein complex prediction

To assess the accuracy of AlphaFold in predicting struc-
tures of transient protein–protein complexes, we used
Protein–Protein Docking Benchmark 5.5 (BM5.5),20,23

which contains complexes spanning many classes of
interactions that were identified from the Protein Data
Bank37 using an automated pipeline followed by manual

inspection and curation. All heterodimeric protein–
protein complexes from that benchmark were identified
for this analysis, corresponding to 152 test cases
(Table S1). Based on levels of binding conformational
changes and previously defined criteria,38 the cases had
unbound docking difficulty classifications of Rigid
(95 cases), Medium difficulty (34 cases) and Difficult
(23 cases). Sequences of the two chains from each test
case were input to AlphaFold, which generated structural
models of the protein complexes using unpaired MSAs,
without the use of templates. Additionally, the
“advanced” interface in ColabFold29 was utilized to gen-
erate protein complex models using the AlphaFold frame-
work. ColabFold uses different databases and a different
MSA generation algorithm, but its speed and web accessi-
bility make it a useful alternative to a locally installed full
AlphaFold pipeline. To permit comparison with a current
docking approach, the rigid-body docking program
ZDOCK (version 3.0.2)33 and the IRAD scoring function
were used to perform global docking and rank models for
all complexes, using unbound protein structures as input.

The performance of AlphaFold, ColabFold, and
ZDOCK was assessed by comparison of models with
experimentally determined structures of the bound com-
plexes; overall success rate comparisons are shown in
Figure 1a, for top 1 (T1) and top 5 (T5) ranked models

FIGURE 1 Transient protein–protein complex structure prediction success by AlphaFold, ColabFold and ZDOCK. End-to-end modeling

using AlphaFold24 and ColabFold29 was performed on 152 complex test cases (details in Figure S1). AlphaFold failed to generate predictions

for three complexes, thus AlphaFold predictions were obtained for 149 complexes; these 149 test cases were used to calculate success rates in

this figure. Docking models were also generated with ZDOCK,33 using unbound protein structures as input. All sets of models were assessed

for near-native predictions using CAPRI criteria for high, medium, and acceptable accuracy. (a) Complex prediction success of AlphaFold,

ColabFold, and ZDOCK for the top 1 (T1) and top 5 (T5) models considered. AlphaFold and ColabFold models were ranked by AlphaFold

pTM scores, and ZDOCK models were ranked by IRAD scores.39 The percent success was calculated as the percentage of test cases with a

given model accuracy from the top N models considered. Bars are colored according to the CAPRI quality classes. (b) Example of an

accurately predicted complex structure (PDB code: 2X9A) by AlphaFold. This model has high accuracy by CAPRI criteria (I-RMSD = 0.47)

and has the highest pTM score (pTM = 0.77) of all five models generated for this complex. Structures are superposed by Phage G3P, with the

model and the X-ray structure chains are colored separately as indicated. For clarity, regions modeled by AlphaFold but unresolved in the

X-ray structure are not shown in the figure
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for each test case, with per-case performance shown in
Figure S1. Models were assessed as acceptable, medium,
or high accuracy, or incorrect, based on using CAPRI
criteria,22 which are based on comparison of models with
corresponding experimentally determined structures
using ligand root mean square distance (L-RMSD), inter-
face residue root mean square distance (I-RMSD), and
fraction of native interface residue contacts (fnat) metrics.
While acceptable accuracy models can include moderate
deviation from known structures (including models with
up to 10 Å L-RMSD), medium and high-accuracy models
are more reflective of previously utilized model accuracy
cutoffs, such as the 2.5 Å I-RMSD cutoff used for near-
native models by Chen and Weng40; accordingly, multi-
ple studies have used the medium accuracy cutoff to
identify near-native models.41,42 Remarkably, AlphaFold
was able to generate models with acceptable or higher
accuracy for approximately half (51%) of the 149 test
cases for which models were generated, and for many of
those cases, medium or better accuracy (43%) or high
accuracy (21%) models were generated. Additionally, the
top-ranked model (T1) based on AlphaFold pTM score
often represented the highest accuracy level for each
case, and only a modest improvement in success was
observed when allowing five predicted models per case
(T5) (54%, 44%, and 23% success rates for acceptable
accuracy or better, medium accuracy or better, or high
accuracy, respectively). The success rate for ColabFold
was similar to the success of AlphaFold, indicating that
the different sequence databases and MSA procedure did
not reduce or otherwise alter the capability of the Alpha-
Fold deep learning model to generate near-native com-
plex models. Inspection of per-case performance
(Figure S1) confirmed that ColabFold and AlphaFold
success was highly correlated across the test cases. Rigid-
body global docking success from ZDOCK was consider-
ably lower than AlphaFold and ColabFold, particularly
for medium and high accuracy models (13% acceptable
or higher accuracy, 9% medium or higher accuracy, 1%
high accuracy success for top-ranked models), although
a subset of cases was successful for ZDOCK while not
successfully predicted by AlphaFold or ColabFold
(Figure S1). A representative successfully modeled com-
plex from AlphaFold is shown in comparison with the
experimentally determined structure of the complex
(PDB code 2X9A; Escherichia coli TolA/Phage G3B
complex) in Figure 1b, demonstrating modeling of a
virus-host protein–protein interaction with atomic-level
accuracy. As that complex structure was released in
2010, it is possible that one or both of the component
proteins were part of the AlphaFold training set, how-
ever the protein–protein interface and binding orienta-
tion were not.

2.2 | Determinants of successful and
unsuccessful AlphaFold performance

To investigate the determinants of successful perfor-
mance for AlphaFold, we compared performance across
subsets of cases divided by various biological and struc-
tural properties (Figure 2). As expected, previously
assigned test case difficulty classifications, which are
based on binding conformational change between
unbound and bound structures,20,23 did not markedly
impact the success of AlphaFold; for acceptable or higher
accuracy predictions in the set of five models, success
rates for AlphaFold were found to be 47%, 55%, and 78%
for rigid, medium, and difficult docking difficulty catego-
ries, respectively (Figure 2a). The increase in AlphaFold
success for cases in the Difficult docking case category
relative to the other two categories was less pronounced
or not observed for more stringent model accuracy cri-
teria of medium and high accuracy. AlphaFold medium
or higher model accuracy success rates for the difficulty
categories were 39% (rigid), 48% (medium), and 57% (dif-
ficult), while high accuracy model success rates were 27%
(rigid), 16% (medium), and 17% (difficult). For the dock-
ing algorithm ZDOCK, which unlike AlphaFold used
unbound protein structures as input, success rates for the
top 5 ranked models were 36% (rigid), 19% (medium),
and 0% (difficult) for acceptable or higher accuracy
models. This reduced success of ZDOCK for progressively
higher docking difficulty categories is in accordance with
previous benchmarking studies with ZDOCK and other
methods that use unbound structures as input.20,23 While
the “fold-and-dock” approach in AlphaFold is likely at
least partly responsible for improved modeling context-
specific conformations versus the reliance of unbound
structures for rigid-body docking, it remains possible, as
noted above, that some bound conformations of individ-
ual protein components in B5.5 are part of the AlphaFold
training set, which would provide an additional advan-
tage for AlphaFold versus the use of the unbound struc-
tures, or models of unbound structures, as input for
complex assembly.

Performance across benchmark cases was also
assessed by complex category, as well as protein source
(Figure 2b,c). Notably, the antibody–antigen complexes
had no successfully generated models, while other com-
plex categories considered all showed approximately
commensurate levels of AlphaFold performance. There
was no major difference observed in AlphaFold success
for prediction of complexes with proteins from eukaryotic
or bacterial organisms, and while there was a slight
reduction in overall success when the two proteins in a
complex came from different organisms (which theoreti-
cally could impact a cross-interface signal of an MSA),
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the success for high quality models was approximately
the same (�25%) regardless of single versus multiple
source organism, or source organism type.

We performed analysis of a series of geometric and
other protein complex properties to identify possible

relationships with AlphaFold modeling success. Com-
puted interface features were assessed for association
with incorrectly modeled cases versus cases with near-
native AlphaFold complex models (medium and/or high
CAPRI accuracy) (Figure 3, Table S2). Greater interface

FIGURE 3 Assessing test case features associated with AlphaFold success. Protein complex and MSA feature values were computed for

all cases, which are shown according to AlphaFold success (best AlphaFold model accuracy in the five models for that case). Features shown

are interface buried surface area (BSA), MSA depth (Neff) for the ligand or receptor (minimum value of the two), total number of residues,

and percent of total residues in the protein–protein interface. Statistical significance values (Wilcoxon rank-sum test) were calculated

between feature values for sets of cases with incorrect versus medium and incorrect versus high- CAPRI accuracy, as noted at top (ns:

p > .05, *p ≤ .05, **p ≤ .01, ***p ≤ .001)

FIGURE 2 Determinants of successful performance. (a) Prediction success of AlphaFold and ZDOCK, grouped by docking difficulty.

Based on binding conformational changes as defined by BM5.5,20,23 cases are categorized into “rigid,” “medium,” and “difficult” docking
difficulty levels. To evaluate the success rate, all five models from AlphaFold and top five ZDOCK models were considered. (b) Prediction

success of AlphaFold and ZDOCK grouped by complex category. To evaluate the success rate, all five models from AlphaFold and top

25 ZDOCK models were considered. The number of ZDOCK models was increased to 25 to allow for sufficient success rates to show its

relative performance among the categories. (c) Prediction success of AlphaFold and ZDOCK grouped by protein source organism(s). To

evaluate the success rate, all five models from AlphaFold and top 25 ZDOCK models were considered. Based on the source of subunit

proteins in the complex structures, each case is classified as either “single, eukaryotic” (SE, denoting proteins from the same eukaryotic

organism), “single, bacterial” (SB, denoting proteins from the same bacterial organism), “multiple, eukaryotic” (ME, denoting proteins from

different eukaryotic organisms), or “multiple, mix” (MM, denoting proteins from mixed origins). Two additional protein source classes,

corresponding to proteins from different bacterial organisms, and proteins of viral origin, were omitted from the success plot due to limited

representation in each category (four and two cases in those classes, respectively). Bars are colored by model accuracy as indicated in (a).

The horizontal stacked bars below each success rate plot denote the composition of the categories by class
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size, measured by buried surface area (BSA), was found
to be associated with AlphaFold success for incorrect ver-
sus medium/high-accuracy cases (p = .007; Table S2),
and incorrect versus medium accuracy cases (p ≤ .001;
Figure 3), yet this trend was not observed when compar-
ing incorrect versus high accuracy cases. To account for
possible bias from antibody–antigen features and their
pronounced lack of AlphaFold success noted above, com-
parisons were made with antibody–antigen cases
excluded (Figure S2), yielding essentially the same results
as with all cases (Figure 3). Limited MSA depth for either
or both partner proteins was explored as a possible factor
in poor predictive performance, but it was not found to
have a significant impact (Figure 3). Among the case fea-
tures analyzed, we found that larger protein sizes, and a
relatively small interface in comparison to protein size
(measured either by number of residues or solvent acces-
sible surface area), were most associated with poor com-
plex modeling performance (Figure 3, Table S2).

We also explored the accuracy of individual chain
structural modeling and MSA depth (Figure S3); while a
range of chain alignment depths (number of effective
sequences [Neff]) were observed, in most cases the indi-
vidual ligand and receptor chains were modeled accu-
rately (backbone RMSD with bound component chains
<2.5 Å). Protein complex model accuracies based on
interface residue RMSD (I-RMSD) and CAPRI criteria
did not show a relationship with maximum subunit chain
RMSD (Figure S3c), indicating that incorrect binding
mode, versus inaccurate chain folding, was the primary
cause of incorrect AlphaFold complex models. AlphaFold
models representing incorrect binding mode and inaccu-
rate chain folding are shown in Figure S3d and
Figure S3e, respectively.

2.3 | Impact of alternative AlphaFold
parameters and input

Given the success of AlphaFold with unpaired MSAs,
consisting of individual MSAs for each protein, we tested
the impact of the use of paired sequences, which repre-
sent both chains as a single sequence in the MSA, within
the input MSAs. Due to its capability to provide a coevo-
lution signal between protein residues across an inter-
face, which can then be inferred as cross-interface
contacts, use of paired sequences in MSAs has shown
promise previously for protein complex structure predic-
tion.28,43,44 MSAs with paired sequences were obtained
from the ColabFold Google Colab site (on September
4, 2021);29 these sequence pairs were generated with an
automated algorithm intended for prokaryotic proteins,
thus a set of 17 cases from BM5.5 was tested that contain

two prokaryotic proteins from the same organism. As
shown in Figure 4, the addition of paired sequences did
not appear to improve AlphaFold performance over use
of unpaired MSAs as input, while use of paired sequences
alone was detrimental to successful complex modeling in
some cases. One notable exception was test case 1F6M,
which had a relatively high number of paired sequences
in the MSA. When paired sequences alone were used,
high accuracy models were obtained for test case 1F6M,
whereas no hits were obtained when unpaired sequences
were included. For comparison, the same paired-only
MSAs were input to RoseTTAFold,28 which according to
its authors can utilize paired MSAs to predict complex
structures; while some accurate models were obtained,
we observed lower overall success for the models gener-
ated with that method.

We separately compared the use of paired sequences,
unpaired sequences, or both as MSA input for
AlphaFold-Multimer,36 which was trained specifically to
model protein–protein complexes (Figure S4). The
paired-only results showed accuracy improvements in
some cases versus the unpaired-only baseline, as well as
unpaired + paired inputs (e.g., 1F6M, 1ZHH), while loss
of near-native models for paired-only was observed for
two cases with very low-paired MSA depths (1FFW,
1PXV). Thus it seems possible that AlphaFold-Multimer
can better utilize paired-only inputs (with sufficient
sequences) for complex modeling than AlphaFold, how-
ever it should be noted that the overlap of the set of com-
plexes in this test set with the AlphaFold-Multimer
training set (both interfaces and component proteins)
may mask comparative differences among MSA inputs
and likely leads to high overall baseline performance in
Figure S4.

We also tested altered parameters for the number of
iterative refinement cycles (Ncycle) and MSA ensemble
size (Nensemble) in AlphaFold, for a subset of the docking
test cases selected to represent the antibody, enzyme, and
“other” protein complex types, and observed very little
effect on predictive performance (Figure S5).

2.4 | Docking model discrimination by
scoring metrics

Given the reported success of AlphaFold in predicting
the quality of its monomeric protein models through
scores representing local accuracy (pLDDT) and global
accuracy (pTM),24 we tested the discriminative capabili-
ties of these values in the context of protein complex
modeling (Figure 5). Average pLDDT scores and pTM
scores for AlphaFold complex models were both found to
discriminate incorrect versus higher model accuracy

6 of 19 YIN ET AL.



classifications, with pTM scores performing moderately
better (Figure 5a). Comparison of pTM with complex
model TM-scores34 showed a relatively strong correlation
of the predicted with the calculated accuracy value
(r = .82; p < .001; Figure 5b), while pTM exhibited a
significant, though moderately weaker, correlation with
I-RMSD of AlphaFold models (r = �.55, p < .001;
Figure 5c).

While pTM and pLDDT showed some capability to
identify correct versus incorrect complex structural
models, the overlap in scores between accuracy catego-
ries (Figure 5a) led us to explore additional scoring func-
tions to predict the structural quality of AlphaFold
models (Figure 6, Table 1). Given the likely importance
of interface residue contacts and packing, versus the fold-
ing accuracy of interface-distal protein regions, in dis-
crimination of correct versus incorrect docking models,
we tested two residue-level predicted accuracy metrics
from AlphaFold, PAE (Predicted Aligned Error, corre-
sponding to expected error in the position of one residue
with respect to another residue in a model)44 and
pLDDT, for predicted protein–protein interface residues
alone, to assess model discrimination capabilities.

Alternative formulations of these metrics were tested
with more permissive interface definitions, versus the
originally tested 4 Å interface cutoff, but no major differ-
ence in model assessment accuracy was observed
(Figure S6, Table S3). Interface PAE and interface
pLDDT values showed major improvement compared
with average pLDDT and pTM from AlphaFold in dis-
criminating accurate complex models, based on receiver
operating characteristic area under the curve (AUC) met-
rics (Table 1), particularly for the discrimination of
models in the most populous and divergent incorrect and
high model accuracy categories (AUCs of 0.93 and 0.97
for interface PAE and interface pLDDT, respectively).
Relatively high-AUC values were also observed for previ-
ously reported docking model ranking methods
ZRANK215 and IRAD29 (Table 1), while an interface
energy score from Rosetta45 (cross-interface binding
energy) resulted in the highest model classification accu-
racy, based on the binary classification AUC metrics
(Table 1). However, estimated 95% confidence intervals
(95% CI) (included in Table 1) showed overlap between
AUC value ranges for ZRANK2, IRAD, and Rosetta
cross-interface binding energy for incorrect versus

FIGURE 4 The impact of MSA pairing on prediction accuracy. MSAs were generated using MMseqs2 using the “advanced” interface of
ColabFold.29 Pairing was performed in ColabFold on a total of 17 cases whose ligand and receptor proteins come from the same prokaryotic

organism. Cases in the heatmap were sorted by the paired MSA depth (Neff; see Material and Methods for details) from the largest to the

smallest values. Structural predictions were generated with the “advanced” interface of ColabFold, and RoseTTAFold28 (through the Robetta

server). All models were assessed for near-native predictions within the top-ranked (T1) and top 5 (T5) models using CAPRI criteria.

Complex category: Enzyme-inhibitor (EI), enzyme complex with a regulatory or accessory chain (ER), enzyme-substrate (ES), others,

receptor-containing (OR); others, miscellaneous (OX)
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medium or high accuracy models, indicating that their
performance is essentially equivalent for that model
accuracy discrimination. Based on discrimination of
incorrect versus medium and high accuracy models and
maximization of sensitivity and sensitivity, possible score

FIGURE 5 Association between AlphaFold predicted scores

and docking model quality. (a) Average pLDDT and pTM per

CAPRI criteria. Statistical significance (Wilcoxon rank-sum test)

between average pLDDT or pTM of incorrect versus acceptable,

incorrect versus medium and incorrect versus high CAPRI criteria

is indicated at the top (ns: p > .05, *p ≤ .05, **p ≤ .01, ***p ≤ .001).

(b) Comparisons between pTM and calculated TM-score and

(c) between pTM and I-RMSD are shown as scatter plots. All

5 models for 149 cases are shown as points, colored by model

quality by CAPRI criteria. Linear regression is shown along with

the 95% confidence interval (orange area), and Pearson's correlation

coefficients and correlation p-values are denoted in (b) and (c). In

(c), the dashed green line indicates a possible pTM score cutoff

(pTM = 0.8) for selection of accurate docking models, based on

optimization of sensitivity and specificity for incorrect versus

medium and high model discrimination

FIGURE 6 Association between alternative scoring metrics

and docking model quality. (a) Distributions of interface pLDDT

(4 Å), IRAD, Rosetta cross-interface binding energy, and number of

interface residues for AlphaFold models grouped by CAPRI criteria.

An interface pLDDT score of 0 was assigned to models without any

interface contacts within the distance cutoff (4 Å). Constrained

local minimization was performed using Rosetta FastRelax65 to

resolve unfavorable local geometries or clashes in models, and post-

relaxation models were scored with IRAD and the Rosetta45

InterfaceAnalyzer protocol, with the latter used to calculate cross-

interface binding energy scores (based on the Rosetta REF15 energy

function66) and the number of interface residues. Statistical

significance values (Wilcoxon rank-sum test) between scores of

incorrect versus acceptable, incorrect versus medium, incorrect

versus high CAPRI criteria are indicated at the top of each plot

(***p ≤ .001). Each point corresponds to one AlphaFold model, and

all five AlphaFold models for 149 test cases are represented.

(b) ROC curves among the scoring metrics for classifying incorrect

versus high accuracy models by CAPRI criteria, with corresponding

AUC values denoted in parentheses
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cutoffs for model selection are pTM = 0.8 (shown as
dashed line in Figure 5c), interface pLDDT = 84,
IRAD = �128, and Rosetta cross-interface binding
energy = �16. While performing lower than the Rosetta
binding energy score, some relatively simple protein
interface assessments, such as the number of interface
hydrogen bonds, showed some capability to classify the
accuracy of AlphaFold models.

2.5 | Expanded antibody–antigen
complex benchmarking

Due to the lack of any successful structural prediction of
11 antibody–antigen complexes from the BM5.5 set, we
assembled a set of 20 additional nonredundant antibody–
antigen complexes with known structures to assess
AlphaFold accuracy (Table S4). These complexes include
a variety of antigens, and as the BM5.5 heterodimer set
included only nanobodies, a number of single-chain anti-
bodies with both heavy and light chains represented were
selected for the additional cases (comprising 17 out of
20 of the cases), while the remaining three cases include
single-domain nanobodies. While AlphaFold modeling of
most of those complex structures resulted in no accurate
predictions, surprisingly two of the antibody–antigen

complexes were modeled accurately, with medium
CAPRI accuracy models ranked #1 for each complex
(Table S4, with models shown in Figure 7a,b).

Inspection of AlphaFold models of antibody–antigen
complexes indicated that many of the inaccurate models
had few or no contacts between antibody and antigen
chains; one example is shown in Figure 7c). Indeed, anal-
ysis of the percentage of models with no atomic contacts
between chains showed that antibody–antigen cases had
relatively high rates of such models in comparison with
the other protein complex categories in the benchmark
(Figure S7).

2.6 | AlphaFold performance for non-
immunoglobulin antibody–antigen
complexes

After confirming the limited success of AlphaFold in pre-
dicting antibody–antigen complex structures, we per-
formed additional modeling assessments in AlphaFold to
identify factors responsible for that performance. While
smaller interface size and larger complex structure size
were found to be associated with lower AlphaFold suc-
cess for the overall set of cases (Figure 3, Table S2), addi-
tional features specific to antibody–antigen complex

TABLE 1 Area under the ROC curve (AUC) values and 95% confidence intervals (shown in parentheses) for protein quality classes as a

function of different scoring metrics

Scorea

Binary classificationb

Multiclass classificationcIncorrect vs. high Incorrect vs. medium and high

Average pLDDT 0.66 (0.60–0.72) 0.59 (0.54–0.63) 0.64 (0.58–0.67)

Average resolved pLDDT 0.81 (0.76–0.85) 0.69 (0.64–0.72) 0.69 (0.65–0.73)

pTM 0.92 (0.89–0.95) 0.89 (0.86–0.91) 0.80 (0.76–0.82)

Interface PAE (4 Å) 0.93 (0.89–0.96) 0.90 (0.87–0.92) 0.81 (0.77–0.83)

Interface pLDDT (4 Å) 0.97 (0.95–0.98) 0.90 (0.87–0.92) 0.84 (0.82–0.85)

IRAD 0.96 (0.95–0.98) 0.97 (0.95–0.97) 0.80 (0.76–0.82)

ZRANK 0.95 (0.93–0.96) 0.95 (0.94–0.96) 0.77 (0.73–0.79)

Cross-interface binding energy 0.99 (0.99–1.00) 0.97 (0.95–0.98) 0.84 (0.81–0.86)

Interface area 0.90 (0.88–0.93) 0.92 (0.90–0.94) 0.77 (0.73–0.79)

Number of interface hydrogen bonds 0.96 (0.95–0.98) 0.94 (0.92–0.95) 0.81 (0.78–0.83)

Number of interface residues 0.84 (0.80–0.87) 0.87 (0.84–0.89) 0.73 (0.66–0.74)

Shape complementarity 0.91 (0.88 to 0.93) 0.85 (0.81–0.87) 0.79 (0.76–0.81)
aScoring methods. “average resolved pLDDT”: average pLDDT on the resolved region, “interface PAE (4 Å)”: average PAE of pairs of interface residues within
4 Å distance cutoff, “interface pLDDT (4 Å)”: average pLDDT of interface residues within 4 Å distance cutoff. “cross-interface binding energy,” “interface
area,” “number of interface hydrogen bonds,” “number of interface residues” and “shape complementarity” were calculated using the Rosetta
InterfaceAnalyzer (see Methods for details).
bThe AUC values of the binary classification were calculated using the pROC package73 in R. The 95% confidence intervals were calculated by pROC.
cThe AUC values of the multi-class classification were calculated with multiROC package74,75 in R. The 95% confidence intervals of multi-class AUC values
were calculated with the boot package73,72 in R with adjusted bootstrap percentile (BCa) interval.
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structures or sequences likely reduce AlphaFold perfor-
mance for that class. To assess whether the immunoglob-
ulin architecture shared by the antibodies impacted
AlphaFold performance, we modeled a set of complexes
containing nonimmunoglobulin receptors in complex
with protein targets using AlphaFold (Table S5). These
receptors correspond to variable lymphocyte receptors
(VLRs), which are adaptive immune receptors found in
jawless vertebrates (e.g., sea lampreys), and recognize
protein and nonprotein antigens with leucine-rich repeat
architectures.47 Three complex structures with VLR-based
receptors, referred to as repebodies,48 were also included
in this set of cases. Only one out of the seven VLR and
repebody complexes tested had any correct models from
AlphaFold (Table S5), indicating that the immunoglobu-
lin architecture was not responsible for the observed lim-
ited AlphaFold success for antibody–antigen complexes.

2.7 | AlphaFold-Multimer performance
for antibody–antigen and T cell receptor
complex modeling

After observing limited success of AlphaFold for model-
ing of antibody–antigen complexes, we tested modeling
of that class of complexes with AlphaFold-Multimer.36 As
AlphaFold-Multimer training included protein–protein

interfaces from structures released before May 2018,36

the test set included only antibody–antigen complexes
from May 2018-present that are not redundant with pre-
May 2018 structures, generated as part of an update to
our recently reported set of antibody–antigen docking
test cases.23 Additionally, to investigate the impact of
MSAs on antibody–antigen performance, we modeled the
antibody–antigen complex structures with and without
MSA input. In this context, we allowed the use of struc-
tural templates for each chain, in order to focus on com-
plex modeling accuracy without reduction of tertiary
structure fidelity due to the lack of MSAs. Out of seven
antibody–antigen complexes in the test set (Table 2), one
complex (6U54) contains a nanobody. For comparison,
recently released nonantibody complex structures from
the “Benchmark 2” set described by Ghani et al.49 were
also tested. ColabFold was used to run AlphaFold-
Multimer for these cases, due to its previously observed
performance commensurate with full AlphaFold
(Figure 1, Table S1), and the capability to remove MSA
input features (noted in Methods).

Results from this assessment, shown in Table 2, high-
light a major difference in overall predictive success for
standard AlphaFold-Multimer (with MSA input) between
non-antibody success (13/17 cases, or 76%, with a
medium/high accuracy model ranked #1) versus
antibody–antigen case success (2/7 cases, or 29%, with a

FIGURE 7 Examples of antibody–antigen complex structure predictions by AlphaFold. (a) Native and top-ranked AlphaFold model

(pTM = 0.78) for PDB 4NIK (F5 antibody/human gankyrin complex). This model is of medium accuracy by CAPRI criteria (I-

RMSD = 1.52 Å). Modeled and X-ray complex structures are colored as indicated and shown superposed by gankryin. Unresolved regions

modeled by AlphaFold are not shown. (b) Native and top-ranked AlphaFold model (pTM = 0.61) for PDB 6OAN (053054 antibody/P vivax

DBP complex). This model is of medium accuracy by CAPRI criteria (I-RMSD = 2.12 Å). Modeled and X-ray structures are colored as

indicated, shown superposed by DBP, and unresolved regions modeled by AlphaFold are not shown. (c) Native and top-ranked AlphaFold

model (pTM = 0.66) for PDB 3RJQ (A12 nanobody/HIV C186 gp120 complex), superposed by C186 gp120. This AlphaFold model does not

have contacting residues between the proteins within a 5 Å distance cutoff. Structures are colored as indicated in the figure, and unresolved

regions modeled by AlphaFold on C186 gp120 are shown in light green
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medium/high accuracy model ranked #1). Furthermore,
our results indicate that while the lack of MSA input and
corresponding residue coevolutionary signal has a pro-
nounced impact on near-native accuracy (CAPRI
medium/high models) for non-antibody complexes, it
appears to have less of impact on antibody–antigen com-
plex structure prediction. Additional AlphaFold-
Multimer modeling of the same set of antibody–antigen
complexes with no subunit templates and with MSA
input did not affect predictive performance (Table S6).
Taken together with the results for the non-
immunoglobulin (VLR) cases, it appears that the limited
success of antibody–antigen complex modeling Alpha-
Fold and AlphaFold-Multimer is largely due to the lack

of coevolution signal, demonstrated by the lack of effect
of MSA input, versus structural or geometric features of
those interfaces. Of relevance, others have recently noted
the importance of MSAs and coevolution signals in
AlphaFold's global conformational search.50 As the
AlphaFold-Multimer algorithm generates an interface
pTM score (ipTM) which is used in conjunction with
pTM to compute model scores,36 we examined the use of
ipTM score alone in model accuracy discrimination for
models from the set of cases in Table 2, and ipTM alone
showed promising model discrimination accuracy, with
an ipTM score threshold of approximately 0.75 corre-
sponding to a possible model confidence cutoff
(Figure S8).

TABLE 2 AlphaFold-Multimer performance for recently released antibody–antigen and non-antibody complex structures, with and

without multiple sequence alignment input

With MSAa No MSAa

Set Case T1 T5 T1 T5

Antibody–antigen complexes 6A4K Incorrect Incorrect Incorrect Incorrect

6HX4 Medium Medium Incorrect Incorrect

6P50 Incorrect Incorrect Incorrect Incorrect

6PXH Incorrect Incorrect Incorrect Incorrect

6Q0O Acceptable Acceptable Incorrect Incorrect

6U54 Medium Medium Medium Medium

6ZTR Incorrect Incorrect Incorrect Incorrect

Other complexes (non-antibody) from Ghani et al.49 5ZNG Incorrect Incorrect Incorrect Incorrect

6A6I Acceptable Acceptable Incorrect Incorrect

6GS2 Medium Medium Incorrect Incorrect

6H4B Medium High Incorrect Incorrect

6IF2 Medium Medium Incorrect Incorrect

6II6 High High Incorrect Incorrect

6ONO Medium Medium Incorrect Incorrect

6PNQ Incorrect Incorrect Incorrect Incorrect

6Q76 High High High High

6U08 High High Incorrect Incorrect

6ZBK High High Acceptable Acceptable

7AYE High High Acceptable Acceptable

7D2T High High Incorrect Incorrect

7M5F Medium Medium Incorrect Incorrect

7 N10 High High Incorrect Incorrect

7NLJ Incorrect Incorrect Incorrect Incorrect

7P8K Medium Medium Incorrect Incorrect

aModeling was performed using AlphaFold-Multimer36 in ColabFold,29 with multiple sequence alignment (“With MSA”) or without multiple sequence alignment
(single sequence, “No MSA”) feature input. Shown are CAPRI model accuracy levels for top-ranked model (T1) and five models (T5) for each case, with medium
and high accuracy levels highlighted with light red and dark red cell shading, respectively. Structural templates for subunits were enabled for all runs, to allow for
accurate modeling of individual chains in the absence of MSAs, with a date cutoff of 4/30/2018 to avoid use of the bound complex subunit structures as templates.
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Due to the relatively limited number of antibody–
antigen cases tested initially with AlphaFold-Multimer
(Table 2), we assembled a larger set of 100 recently
released antibody–antigen complex structures for bench-
marking AlphaFold-Multimer for predictive performance
with that class of complexes. All of the structures were
recently released (May 2018 or later), and they contain
complexes with heavy-light chain antibodies (73 com-
plexes) and nanobodies (27 complexes) (Table S7). In
order to model the large number of cases, all complexes
were modeled with AlphaFold-Multimer in ColabFold,
due to its effciency and comparable success to that of the
full AlphaFold pipeline (Figure 1, Figure S1). Success
rates for this set were found to be low, with 6% of cases
with medium or high accuracy models ranked #1, and
11% of cases with medium or high accuracy models in
one or more of the five models generated per case
(Figure 8). This is in accordance with the limited success
for antibody–antigen complex modeling briefly noted by
the AlphaFold-Multimer developers,36 and is similar to
the success observed for the non-antibody–antigen cases
noted above without MSA input (1 out of 17 cases, or 6%
success; Table 2).

Having determined the predictive performance of
AlphaFold-Multimer for antibody–antigen complexes,
we tested that algorithm for its capability to model T
cell receptor-peptide–major histocompatibility complex
(TCR-pMHC) structures, to further delineate its model-
ing accuracy for adaptive immune recognition.
Although most TCRs share a general binding site and
orientation over the pMHC,50 their diversity of pMHC
recognition modes, mediated by flexible and variable
complementarity determining region loops, pose a chal-
lenge for predictive modeling methods, of which several
have been developed based on docking41 and template-
based assembly.51,52 We assembled a set of 14 Class I
TCR-pMHC complexes with known structures that were
released in May 2018 or later, and modeling of those
complexes with AlphaFold-Multimer showed a success
rate of 2 out of 14 complexes (14%) with near-native
(medium or high-CAPRI accuracy) ranked at #1 or
within the five models for each case (Table S8). This
highlights another class of complexes that is challenging
for the current implementation of AlphaFold-Multimer,
likely in part due to the limited coevolution signal in
the interface. While there is evidence that TCR genes
have co-evolved with MHC genes to promote TCR-
pMHC interactions,53 the critical peptide–MHC and
TCR-peptide interfaces in TCR-pMHC complexes are
not guided by coevolution, and the accurate modeling
of the bound peptide as well as the correctly docked
TCR presents a clear challenge in a fold-and-dock
scenario.

3 | DISCUSSION

Our extensive testing of AlphaFold performance on a
nonredundant benchmark of protein–protein complexes
indicates that AlphaFold is largely successful at predict-
ing binary transient protein complex structures. How-
ever, some complexes were not successfully modeled,

FIGURE 8 AlphaFold-Multimer modeling success for an

expanded set of recently released antibody–antigen complex

structures. A benchmark set of 100 recently released antibody–
antigen complex structures was modeled with AlphaFold-

Multimer, and all five models from AlphaFold-Multimer per test

case were assessed for accuracy using CAPRI criteria. AlphaFold-

Multimer was run in ColabFold with MSA input and with the use

of structural templates released before April 30, 2018, and models

were ranked by pTM score. Success for top 1 and top 5 (T1, T5)

ranked predictions is shown, colored by CAPRI model accuracy as

indicated in the key on right (Hits). “Type” distinguishes complexes

containing heavy-light chain antibodies (“Antibody”) and single-

chain nanobodies (“Nanobody”).
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most notably antibody–antigen and other adaptive
immune interactions, while other categories of test cases
showed upper limits of success as well. The limited num-
ber of antibody–antigen complex structures that were
successfully modeled show that antibody complex model-
ing can be performed in some cases with the AlphaFold
framework, while many of the incorrect models seem to
be readily identifiable based on AlphaFold metrics of pre-
dicted interface residues, or previously developed energy-
based scoring functions.

While protein complex and interface size showed
some associations with AlphaFold success for complexes
in general, we found that the lack of useful coevolution
signals in the MSAs for antibody–antigen complexes was
likely responsible for the limited success of those cases,
as shown by the lack of effect on performance when
removing the MSA input signal. We tested this using a
recently optimized version of AlphaFold for protein–
protein interfaces, named AlphaFold-Multimer,36 and the
antibody–antigen modeling success with that version of
AlphaFold was reflective of our results with the previous
AlphaFold release (AlphaFold2),24 and in accordance
with the observation that AlphaFold-Multimer is “gener-
ally not able to predict” antibody–antigen complex struc-
tures noted by the AlphaFold-Multimer authors.36 While
some antibody–antigen interfaces have been reported to
undergo coevolution in vivo, in particular with evolving
viral antigens,53,54 it is unlikely that corresponding sets of
sequences are available for many antibody–antigen pairs
in the AlphaFold and ColabFold sequence databases, or
in general. However, as noted above, the geometric and
structural elements of the AlphaFold and AlphaFold-
Multimer framework appear sufficient to construct some
antibody–antigen complex structures with high accuracy,
and through further training and optimization, success
can potentially be improved for such complexes.

Although protein–protein interfaces were not used for
training of AlphaFold v.2.0, it is possible that individual
chain structures from BM5.5 complex structures were
part of the AlphaFold training set, which could influence
the predicted conformations of the subunits and indi-
rectly influence the complex structure models. Bench-
marking of this AlphaFold model with recently released
complex structures that have no related complexes
released prior to the AlphaFold training date addresses
this concern, and results with such a set were reported by
Evans et al. in the AlphaFold-Multimer study,36 as well
as this study. As most complexes in our BM 5.5 set are
classified as rigid-body (64%), with minimal conforma-
tional change between unbound and bound structure,
the knowledge and possible use of the bound conforma-
tion, if used for training of the AlphaFold model, may
have little effect or bias versus use of the unbound or
accurately modeled unbound structure for that large

subset of cases. Benchmarking of traditional docking
methods with unbound-bound cases (with one input pro-
tein taken from the bound complex structure rather than
an unbound structure) could better reflect the use of
knowledge of at least one bound component.

While this manuscript was under review, a separate
study57 was published that also reported benchmarking of
AlphaFold with a set of protein–protein complexes. While
the authors used a distinct test set of 216 protein complexes
from the Dockground protein docking benchmark,21 and
employed a different MSA-generation method, they
reported a 63% success rate for acceptable or higher model
quality, which is similar to our observed 51% success for
models of that quality from AlphaFold. Furthermore, as in
our study, the authors found that larger interface sizes
were associated with improved AlphaFold success, and
that interface residue-based pLDDT scores were useful in
model selection. However, Bryant et al. noted that size of
paired MSAs resulted in improved AlphaFold success, as
well as a possible greater dependence of protein source on
AlphaFold success; those differences with our observations
may be in part due to their use of their own optimized
paired MSAs as AlphaFold input,57 while we obtained
paired MSAs from ColabFold.29

AlphaFold's end-to-end modeling approach repre-
sents a major advance and performance improvement
over traditional protein–protein docking methods, serv-
ing as a proof of concept and a possible framework for
optimization to accurately model most or all protein–
protein interactions. While optimization of AlphaFold for
protein complexes (AlphaFold-Multimer) was recently
reported and released by the DeepMind team36 and was
tested in this study, another team showed that combina-
tion of AlphaFold with a previously developed protein
docking method was able to achieve an improvement in
docking success,49 and others have shown the effects of
optimized MSAs in AlphaFold complex modeling perfor-
mance.57 Notably, a recent study used a combination of
AlphaFold and RoseTTAFold to model structures of a
large set of eukaryotic protein complexes.58 Prospective
developments that build upon and optimize the Alpha-
Fold framework, or utilize other geometric deep learning
methods, can bring the field closer to solving the long-
standing challenge of predictive protein docking.

4 | MATERIALS AND METHODS

4.1 | Protein–protein complex
benchmark and additional antibody–
antigen test cases

A test set of heterodimeric protein complexes was
obtained from Protein–Protein Docking Benchmark 5.5
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(BM5.5).20,23 BM5.5 is a set of structures of nonredundant
transient protein–protein complexes from the PDB,37

assembled for testing of predictive protein–protein com-
plex modeling algorithms. By filtering for heterodimeric
protein–protein complexes in BM5.5, we obtained a total
of 152 cases, consisting of 12 antibody–antigen com-
plexes, 72 enzyme-containing complexes and 68 other
types of protein complexes. Docking difficulty classifica-
tions for test cases were obtained from the BM5.5 site
(https://zlab.umassmed.edu/benchmark/), and are based
on the extent of binding conformational changes for each
complex.20 Annotations of protein source organisms were
obtained from the PDB, and confirmed by manual
inspection. BSA for each complex interface was obtained
from the BM5.5 site.

Twenty additional antibody–antigen modeling test
cases (Table S4) were selected from antibody–antigen
complex structures in the SAbDab database,59 screened
by resolution (< 3.25 Å) and nonredundancy with any
BM5.5 test cases by antibody chain sequences (< 90%
antibody variable domain sequence identity) or antigen
chain sequence (no hit to antigen chains using default
parameters) using the “blastp” executable from the
BLAST + suite.60 VLR-antigen complex structure test
cases (Table S5) were identified from the PDB and
inspected manually for nonredundancy. Recently
released antibody–antigen docking benchmark cases
obtained from a preliminary update of BM5.5 (Table S6)
and antibody–antigen complex structures identified from
the SAbDab database (Table S7), filtered to remove com-
plexes redundant with any complex structures that were
released in the PDB before May 2018, were assembled for
AlphaFold-Multimer testing. As an additional nonredun-
dancy check for the latter set of cases, we removed any
antibody–antigen complexes with antigen BLAST hits
(E-value cutoff 5, and ≥ 40% identity) to antibody–
antigen complex structures from pre-May 2018, along
with similar docking orientation (< 5 Å RMSD for heavy
chain variable domain orientation after superposition of
antigens using FAST structural alignment61) and > 70%
sequence identity for heavy chain variable domain, light
chain variable domain, or combined CDR sequences. For
modeling efficiency, recently released and additional
(non-BM5.5) antibody structures were modeled with vari-
able domains only.

TCR-pMHC complex structures for AlphaFold-
Multimer benchmarking were identified from Class I
TCR-pMHC complex structures in the TCR3d database,60

and were originally obtained from the PDB. TCR-pMHC
complex structures were selected from structures released
in the PDB after April 2018, with no redundancy (< 90%
TCR variable domain sequence identity, in addition to
< 95% sequence identity to any individual TCR α or β

variable domain) with any Class I TCR-pMHC complex
structures released before May 2018, and no redundancy
with any of the complex structures in the benchmark set.
Complexes with noncanonical or modified amino acids
in peptides were excluded, and a resolution cutoff of
3.25 Å was applied (in accordance with the other bench-
marks in this study), except for the 7RM4 TCR-pMHC
complex structure which was retained due to its resolu-
tion being close to the cutoff (3.33 Å). TCR α, TCR β, pep-
tide, and MHC chains were input as separate sequences
to AlphaFold-Multimer. For efficiency, only TCR variable
domain sequences, and peptide-binding domains of
MHCs (α1 and α2 domains), were used for modeling.

4.2 | Complex modeling with AlphaFold

AlphaFold was downloaded from Github (https://github.
com/deepmind/alphafold) and installed on a local com-
puting cluster. Sequences of protein chains for the
protein–protein complexes were obtained from the PDB
“seqres” file and used as input for each complex model-
ing job. Raw MSAs were prepared for each chain with
the downloaded published AlphaFold pipeline,24 query-
ing the full databases (UniRef90 version 2020_01, MGnify
version 2018_12, Uniclust30 version 2018_08 and BFD).
The resulting raw MSAs of the interacting chains were
subsequently combined to form the unpaired MSA inputs
for complex structure prediction. To generate MSA lines
of the same length, gaps equal to the length of the inter-
acting chain were added before or after each sequence.
To avoid implicitly biasing the complex structure predic-
tions with knowledge of individual bound protein chain
conformations, the use of structural templates was dis-
abled in this study.

To introduce chain breaks, a residue index shift of
200 was added to the junction of interacting chains, as
recently implemented in ColabFold.29 Following the pub-
lished AlphaFold pipeline, AlphaFold generated five
models for each complex, which were ranked in this
study by pTM score (which is a measure of predicted
structure accuracy generated by AlphaFold). After struc-
tural predictions were generated, model relaxation by the
Amber program,63 which as reported by Jumper et al.24

was used to ameliorate minor structural defects without
impacting accuracy, was replaced by the constrained
FastRelax protocol in the Rosetta program,46 as detailed
below. To test the impact of varying the ensembling
(Nensemble) and recycling (Ncycle) parameters on complex
modeling accuracy, we increased Nensemble or Ncycle by
modifying those parameters in the AlphaFold Python
code, while keeping the input MSAs and sequences/
features the same.

14 of 19 YIN ET AL.

https://zlab.umassmed.edu/benchmark/
https://github.com/deepmind/alphafold
https://github.com/deepmind/alphafold


Three out of the 152 test cases failed to complete in
the AlphaFold pipeline due to GPU memory limits dur-
ing structure prediction, or errors during feature prepara-
tion: 1ZM4, 2OZA, and 1B6C. AlphaFold structure
prediction runs were performed on an NVIDIA Titan
RTX or NVIDIA Quadro 6,000 GPU.

4.3 | Complex modeling with ColabFold
and RoseTTAFold

Protein–protein complex predictions were generated in
ColabFold29 using its “advanced” interface (https://colab.
research.google.com/github/sokrypton/ColabFold/blob/
main/beta/AlphaFold_advanced.ipynb). Input protein
sequences were identical to those used for AlphaFold
modeling. The MMseqs2 method62 was selected on
ColabFold to generate the MSAs, and Amber relaxation
of models was disabled. The unpaired MSA predictions
were generated between August 20 and August 24, 2021.

ColabFold enables users to pair alignments for differ-
ent protein sequences based on UniProt accession num-
bers; this is a selectable option on the ColabFold
interface.29 Since the protocol is designed to pair prokary-
otic protein sequences, MSA pairing was only performed
on a subset of cases where both protein chains of the het-
erodimer complex come from the same prokaryotic
organism. Prefiltering of MSAs was enabled prior to pair-
ing, with the minimum coverage with query of 50% and
minimum sequence identity with query of 20%. Struc-
tural predictions based on paired MSAs were generated
on September 4, 2021. The resulting paired MSAs were
also used as input to RoseTTAFold28 on the Robetta web
server (https://robetta.bakerlab.org/submit.php) to gener-
ate complex models.

All models generated with AlphaFold, ColabFold and
RoseTTAFold are made available to the public at: https://
piercelab.ibbr.umd.edu/af_complex_models.html.

4.4 | Complex modeling with AlphaFold-
Multimer

AlphaFold-Multimer36 modeling was performed with
AlphaFold downloaded from https://github.com/
deepmind/alphafold on November 2, 2021, and local
ColabFold downloaded from https://github.com/
sokrypton/ColabFold on January 12, 2021. Input MSA fea-
tures were generated by either the AlphaFold-Multimer
pipeline described in Evans et al.,36 or by local Colab-
Fold29 using the “MMseqs2 (Uniref + Environmental)”
MSA mode. By default, the MSAs constructed contain
both unpaired (per-chain) and paired sequences. To

generate AlphaFold-Multimer predictions using alterna-
tive MSA pairing modes (“unpaired only,” “paired only,”
or “no MSA”), local ColabFold was used. Specifically,
MSA pair mode was set to “Paired” to generate “paired
only” predictions. The MSA pair mode was set to
“unpaired + paired” to generate “unpaired only” predic-
tions, and “paired” to generate “no MSA” predictions,
after modifying the “get_msa_and_templates” function in
“batch.py” of local ColabFold, so the list variable “paire-
d_a3m_lines” contains only the query sequences, instead
of paired sequences generated by MMSeqs2. While “no
MSA” (a.k.a. “single sequence”) and “unpaired” options
are available in the ColabFold Google Colab interface, we
found the above modification necessary in the version of
the ColabFold code that we downloaded at the time. To
avoid implicitly biasing the structural predictions with
knowledge of known conformations, a template release
date cutoff of April 30, 2018 was applied when the use of
templates was enabled.

4.5 | Docking model generation with
ZDOCK

To enable comparison against a rigid-body docking algo-
rithm, we generated docking models using ZDOCK ver-
sion 3.0.2.33 Unbound protein structures from BM5.5,
with HETATMs removed, were used as inputs to
ZDOCK. Dense rotational sampling was used, generating
54,000 predictions per complex. The integration of
residue- and atom-based potentials for docking (IRAD)39

scoring function was used to rank the ZDOCK output
models.

4.6 | Docking model accuracy
assessment

Docking models were assessed using the CAPRI criteria22

using custom scripts. Based on the structural similarity
between docking models and native structures, docking
models were classified into four accuracy classes: “high,”
“medium,” “acceptable” and “incorrect”. Such structural
similarity is assessed by a combination of interface RMSD
(I-RMSD), ligand RMSD (L-RMSD), and fnat. Backbone
atoms were used in the I-RMSD and L-RMSD calculations.

4.7 | Interface pLDDT and interface PAE
calculation

To calculate the interface pLDDT, we averaged the per-
residue pLDDT of interface residues. Interface residues
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are defined as residues with atomic contacts across the
interface within the specified distance cutoff. Interface
PAE was calculated by averaging the PAE of cross-
interface residue pairs with atomic contacts within a
given distance cutoff. The interface distance cutoffs tested
range from 4 to 10 Å. An interface pLDDT score of 0 and
an interface PAE score of 35 was assigned to models
without any interface contacts within the distance cutoff.

4.8 | Structure relaxation using Rosetta

To resolve possible unfavorable geometries or clashes in
experimentally determined complex structures and
AlphaFold models, the Rosetta FastRelax protocol64 was
applied to the predicted structures prior to scoring of the
models using interface analysis protocols (IRAD,
ZRANK2, and Rosetta). Parameter flags used in FastRe-
lax (“relax” executable in Rosetta 3.1244) are:

-relax:constrain_relax_to_start_coords
-relax:coord_constrain_sidechains
-relax:ramp_constraints false
-ex1
-ex2
-use_input_sc
-no_optH false
-flip_HNQ
-nstruct 1

4.9 | Complex and docking model
scoring with IRAD, ZRANK2, and Rosetta
InterfaceAnalyzer

Post-relax complex structures were used as inputs to
obtain IRAD,39 ZRANK2,15 and Rosetta46 InterfaceAnaly-
zer protocol scores. IRAD and ZRANK2 scores were
obtained from the downloaded “irad” executable pro-
gram. InterfaceAnalyzer scores were obtained using the.
“InterfaceAnalyzer” executable in Rosetta v. 3.12, with
default parameters; the InterfaceAnalyzer protocol com-
putes and outputs interface energetic scores using the
Rosetta REF15 function,67 along with REF15 component
terms and other interface structure metrics.

4.10 | Number of effective sequences

The Neff is used as a measure of the MSA depth. Neff score
is defined as the number of clusters after the raw MSA
inputs were clustered at the 62% sequence identity using
CD-HIT66 with the word length of 4, as used previously.67

4.11 | TM-score calculations

TM-scores were calculated using TM-score executable34

by comparing the structural similarity between experi-
mentally determined structures and AlphaFold models.
Residues that were unresolved in experimentally deter-
mined structures were removed from AlphaFold models
before the calculation of TM-scores.

4.12 | Figures, statistical analysis, and
AUC calculations

Figures of structures were generated using PyMOL ver-
sion 2.4 (Schrodinger, Inc.). Box plots, line plots and bar
plots were generated with the ggplot2 package68 in R
(r-project.org), and heatmaps were generated with the
ComplexHeatmap package69 in R. Pearson correlations
and their p values were calculated with ggpubr package
in R. Wilcoxon rank-sum test was performed using
ggsignif package in R. Binary and multi-class ROC curves
with AUC values were calculated with the “pROC” and
“multiROC” packages, respectively, in R. 95% CI values
for binary ROC AUC values were calculated using the
“ci.auc” function in pROC, with 2000 stratified boostrap
replicates, and multi-class ROC AUC confidence interval
values were calculated using the “boot” R package70 with
the adjusted bootstrap percentile method. Calculations of
possible score thresholds for model selection were per-
formed using the “cutpointr” package,71 with maximiza-
tion of the sum of the sensitivity and specificity, based on
discrimination of incorrect versus medium/high-CAPRI
accuracy models.
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