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Abstract: The hydrophobic azo dye 6-hexyl-4-(2-thiazolylazo)resorcinol (HTAR, H2L) was studied
as part of a system for the centrifuge-less cloud point extraction (CL-CPE) and spectrophotometric
determination of traces of cobalt. The extracted 1:2 (Co:HTAR) complex, [CoIII(HL−)(L2−)]0, shows
an absorption maximum at 553 nm and contains HTAR in two different acid–base forms. Optimum
conditions for its formation and CL-CPE were found as follows: 1 × 10−5 mol L−1 of HTAR, 1.64%
of Triton X-114, pH of 7.8, incubation time of 20 min at ca. 50 ◦C, and cooling time of 30 min at
ca. −20 ◦C. The linear range, limit of detection, and apparent molar absorptivity coefficient were
5.4–189 ng mL−1, 1.64 ng mL−1, and 2.63× 105 L mol−1 cm−1, respectively. The developed procedure
does not use any organic solvents and can be described as simple, cheap, sensitive, convenient, and
environmentally friendly. It was successfully applied to the analysis of artificial mixtures and real
samples, such as steel, dental alloy, rainwater, ampoules of vitamin B12, and saline solution for
intravenous infusion.

Keywords: cobalt; cloud point extraction; green analytical chemistry; azo dye; spectrophotometric
determination

1. Introduction

Cobalt is a group 9 first-row transition metal with atomic number 27. It is a hard,
lustrous, silvery-gray, corrosion-resistant ferromagnetic material, recognized as a new
element (1735) by the Swedish chemist Georg Brandt. Pure metal is not found in nature,
but its compounds are part of most rocks and soils [1,2]. It is classified as a dispersed
element with an average content in the upper crust of 17.3 ppm [3,4]. Cobalt is the essen-
tial ingredient of 72 approved minerals in the International Mineralogical Association’s
database [5], the most important of which are cobaltite (CoIIIAsS), glaucodot (CoIIIFeAsS),
erythrite (CoII

3(AsO4)2·8H2O), and skutterudite (CoIIIAs3). However, its economically
viable deposits are few and cobalt is usually produced as a by-product of other metals
(e.g., Ni, Cu, and Ag) [6,7].

The main applications of cobalt are in rechargeable batteries, superalloys, steels,
magnets, pigments, chemicals, ceramics, catalysts, oil drying agents (siccatives), and
nutrients [7–9]. As the need for rechargeable batteries continues to grow, some economists
expect a significant increase in demand for this element in the coming years [8,10].

Cobalt is an essential trace element for many organisms, including humans. It is
utilized by animals only in the form of vitamin B12 (cobalamin), synthesized by specific
microorganisms in the presence of sufficient cobalt. This vitamin is important for the
development, myelination and function of the central nervous system, DNA synthesis, and
red blood cell formation [11]. Cobalt deficiency in humans can lead to health problems,
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such as pernicious anemia, nerve damage, and reduced resistance to parasite and microbial
infections [12,13]. On the other hand, excessive cobalt, which is often the result of human
activity, can cause systemic toxicity affecting multiple organ systems [14,15].

Numerous spectroscopy techniques have been used for the determination of cobalt,
including flame atomic absorption spectrometry (FAAS) [16–19], graphite furnace atomic
absorption spectrometry (GFAAS) [20], inductively coupled plasma mass spectrometry
(ICP-MS) [21], inductively coupled plasma optical emission spectrometry (ICP-OES) [22],
and thermal lens spectrometry [23].

UV/Vis spectrophotometry is considered a good alternative for the determination of
inorganics, thanks to its simplicity, low cost, versatility, energy efficiency, sensitivity, and
availability [24–26]. It can be easily combined with various sample preparation techniques
to improve analytical characteristics and extend the scope of application. The list of such
techniques comprises liquid–liquid extraction [27], dispersive liquid–liquid microextrac-
tion [28], continuous sample drop flow-based microextraction [29], deep eutectic solvent
microextraction [30], and cloud point extraction (CPE) [31–44].

CPE is a modern variant of the classical liquid–liquid extraction, which minimizes
(or completely ignores) the use of organic solvents. It complies with the Green Analytical
Chemistry principles [45] and is often defined as an “eco-friendly tool” [46]. The application
of CPE to trace element analysis usually requires the conversion of the analyte into a
hydrophobic electroneutral complex [47–49] that enters the surfactant-rich phase (SRP).
This phase is typically separated by centrifugation [49,50], but sometimes a simpler option
is possible: separation based on gravitational forces. Given the proper choice of reagent(s)
and experimental conditions, gravitational (centrifuge-less, CL) separation is convenient
and advantageous, and the time required for the process to complete is not very long.

The aim of this work was to develop a CL-CPE–spectrophotometric procedure for the
determination of traces of cobalt, using 6-hexyl-4-(2-thiazolylazo)-resorcinol (HTAR). This
novel hydrophobic reagent (Figure 1) has recently been applied in our laboratory for the
CL-CPE of vanadium(IV,V) [51] and copper(II) [52].
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2. Results and Discussion
2.1. Optimimum Conditions

A single factor optimization was carried out in this study. The influence of the follow-
ing experimental parameters was examined and optimized at room temperature: wave-
length of spectrophotometric measurement, pH, HTAR concentration, and TX-114 mass
fraction. The effect of incubation time at elevated temperature (50 ◦C) was also investigated.

Spectra of the extracted species are shown in Figure 2. The Co–HTAR coordination
compound obtained in neutral or basic media shows an absorption maximum (λmax)
at 553 nm (1). Spectral characteristics do not change when a strong oxidizing agent
(e.g., ammonium persulfate, APS) is added to the system (the resulting spectral line is
identical to spectrum 1). This suggests that the central atom is Co(III), a statement consis-
tent with the literature describing a spontaneous Co(II)→ Co(III) oxidation reaction with
the dissolved oxygen in systems containing azo dyes [53–58].

Molecules 2022, 27, x FOR PEER REVIEW 3 of 14 
 

 

2. Results and Discussion 
2.1. Optimimum Conditions 

A single factor optimization was carried out in this study. The influence of the fol-
lowing experimental parameters was examined and optimized at room temperature: 
wavelength of spectrophotometric measurement, pH, HTAR concentration, and TX-114 
mass fraction. The effect of incubation time at elevated temperature (50 °C) was also in-
vestigated. 

Spectra of the extracted species are shown in Figure 2. The Co–HTAR coordination 
compound obtained in neutral or basic media shows an absorption maximum (λmax) at 553 
nm (1). Spectral characteristics do not change when a strong oxidizing agent (e.g., ammo-
nium persulfate, APS) is added to the system (the resulting spectral line is identical to 
spectrum 1). This suggests that the central atom is Co(III), a statement consistent with the 
literature describing a spontaneous Co(II) → Co(III) oxidation reaction with the dissolved 
oxygen in systems containing azo dyes [53–58]. 

In acidic solutions, the recorded spectrum of the Co–HTAR complex (2) changes to 
λmax = 524 nm. This hypsochromic shift can be attributed to the lower absorbance of the 
blank (2’), which is determined by the existence of the HTAR reagent mainly in its neutral 
form (H2L) at pH < 6.7 [52]. The addition of APS does not affect the position of λmax, but 
the absorbance becomes higher (compare spectra 2 (Co-HTAR) and 2” (Co-HTAR-APS)). 
This is consistent with the fact noted by many authors that the oxidation of Co(II) is not 
as fast and easy at lower pH values. 

 
Figure 2. Absorption spectra of the complex (1, 2, 2”) and the blank (1’, 2’) at two different pH values 
(ammonium acetate buffer): 7.8 (1, 1’) and 4.7 (2, 2’, 2”). 2.25 × 10−6 mol L−1 of Co(II), 1 × 10−5 mol L−1 
of HTAR, 1.64% of TX-114, t = 20 min at 50 °C. The concentration of APS (2”) was 1.6 × 10−4 mol L−1. 

The effect of pH on the absorbance at 553 nm is shown in Figure 3. An ammonium 
acetate buffer (3 mL) was used to adjust the pH. The absorbance is maximal and constant 
in a wide pH range (from 6.0 to 8.3). Further studies were performed at pH 7.8. This pH 
value was chosen based on the following considerations: (a) it is far from the limit values 
(6.0 and 8.3); (b) the absorbance of the blank (at λ = 553 nm) is weakly sensitive to acci-
dental pH deviations. 

Figure 2. Absorption spectra of the complex (1, 2, 2”) and the blank (1’, 2’) at two different pH
values (ammonium acetate buffer): 7.8 (1, 1’) and 4.7 (2, 2’, 2”). 2.25 × 10−6 mol L−1 of Co(II),
1 × 10−5 mol L−1 of HTAR, 1.64% of TX-114, t = 20 min at 50 ◦C. The concentration of APS (2”) was
1.6 × 10−4 mol L−1.

In acidic solutions, the recorded spectrum of the Co–HTAR complex (2) changes to
λmax = 524 nm. This hypsochromic shift can be attributed to the lower absorbance of the
blank (2’), which is determined by the existence of the HTAR reagent mainly in its neutral
form (H2L) at pH < 6.7 [52]. The addition of APS does not affect the position of λmax, but
the absorbance becomes higher (compare spectra 2 (Co-HTAR) and 2” (Co-HTAR-APS)).
This is consistent with the fact noted by many authors that the oxidation of Co(II) is not as
fast and easy at lower pH values.

The effect of pH on the absorbance at 553 nm is shown in Figure 3. An ammonium
acetate buffer (3 mL) was used to adjust the pH. The absorbance is maximal and constant in
a wide pH range (from 6.0 to 8.3). Further studies were performed at pH 7.8. This pH value
was chosen based on the following considerations: (a) it is far from the limit values (6.0
and 8.3); (b) the absorbance of the blank (at λ = 553 nm) is weakly sensitive to accidental
pH deviations.

The effect of HTAR concentration is displayed in Figure 4. The chosen optimal
concentration was 1.0 × 10−5 mol L−1. At concentrations above (1.5–2.0) × 10−5 mol L−1,
a slight decrease in absorption is observed.
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Figure 4. Effect of HTAR concentration: 1.6% of TX-114, 3.2 × 10−6 mol L−1 of Co, pH 7.8, t = 20 min
at 50 ◦C, λ = 553 nm.

The effect of the Triton X-114 (TX-114) mass fraction is demonstrated in Figure 5.
Further studies were performed in the presence of 8.2 mL (≈8.2 g) of the surfactant solution,
which corresponds to an approximate mass fraction of 1.64%.
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Figure 5. Effect of TX-114 mass fraction: 3.2 × 10−6 mol L−1 of Co, 1 × 10−5 mol L−1 of HTAR,
pH 7.7, t = 20 min at 50 ◦C, λ = 553 nm.

The reported heating temperatures for CPE systems based on the same surfactant,
TX-114, are commonly between 40 ◦C and 65 ◦C [23,31,32,35,36,38,39,59–61]. The results
of our experiments at 50 ◦C are represented in Figure 6. As can be seen, the minimum
incubation time required is ca. 15 min. To avoid accidental errors caused by insufficient
heating, further studies were performed at an incubation time of 20 min.
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The last step of the developed CL-CPE procedure is cooling. The samples were kept in
a refrigerator (at ca. −20 ◦C) for 30 min, as in our previous work on Cu(II) extraction with
the same surfactant (TX-114) and reagent (HTAR) [52].

The selected optimal CL-CPE–spectrophotometric conditions are summarized in Table 1.

Table 1. The CL-CPE–spectrophotometric optimization.

Parameter Optimization Range Optimal Value Figure

Wavelength, nm Visible range 553 1
pH 3.4–10.0 7.8 2

Concentration of HTAR, mol L−1 (0.1–4) × 10−5 1.0 × 10−5 3
Mass fraction of TX-114, % 0.2–2.4 1.64 4

Incubation time at 50 ◦C, min 5–40 20 5

2.2. Composition of the Complex, Formula, Extraction Equation, and Equilibrium Constant

The complex stoichiometry was determined by the mole-ratio method [62] and the
mobile equilibrium method [63] at two different pH values (7.8 and 4.7). A molar ratio of
1:2 (Co:HTAR) was found regardless of pH (Figures 7 and 8).
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Based on the electroneutrality requirement and the lack of indications that the compo-
nents of the buffer are included in the complex, one can suggest the following formula of
the extracted coordination compound: [CoIII(HL–)(L2–)]0. Complexes with such a general
formula, containing one deprotonated (L2–) and one monoprotonated (HL–) azo dye, have
been partially extracted in water–chloroform systems involving similar thiazolylazo dyes,
such as 4-(2-thiazolylazo)resorcinol (TAR) [55] and 5-methyl-4-(2-thiazolylazo)resorcinol
(MTAR) [58].
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The extraction process in the studied system (at the optimum pH range, 6.0–8.3) can
be expressed by the following equation, involving oxidation of Co(II) to Co(III):

CoII
(aq) + 2 HL−(aq) → [CoIII(HL−)(L2−)](SRP) + H+

(aq) + e−

At lower pH values, the complexation is hampered by HL– deficiency (H2L is the
dominant species) and incomplete Co(II) oxidation. At higher pH values, the main obstacles
may be hydrolysis [64] and HL− deficiency (due to an increase in the L2− fraction).

The equilibrium constant characterizing this equation was calculated by the Harvey–
Manning method [65], logKex = 12.1 ± 0.2 (mean ± standard deviation).

2.3. Analytical Characteristics, Effect of Foreign Ions and Application

The relationship between the absorbance and concentration of Co(II) was investigated
under the optimal conditions given in Table 1. Good linearity was found in the range of
5.4–189 ng mL−1, R2 = 0.9992 (n = 8). The regression equation was A = 4.460γ + 0.0047, where
γ is the concentration in µg mL−1. The standard deviations of the slope and intercept were
0.052 and 0.0049, respectively. The molar absorption coefficient was 2.63 × 105 L mol−1 cm−1,
and the limits of detection (LOD) and quantitation (LOQ), calculated as 3- and 10-times
standard deviation of the blank divided by the slope, were 1.64 ng mL−1 and 5.4 ng mL−1,
respectively. The preconcentration factor defined as the ratio between the masses of the
sample (50 g ≈ 50 mL; the density is close to unity) and the diluted SRP phase (5 g) was 10.0.
A similar value (10.8) was calculated by dividing the slopes obtained in the presence and
absence of TX-114.

The effect of foreign ions is shown in Table 2. The most serious interferences are caused
by Cu(II), Ni(II), and Zn(II). Under the established optimum conditions, these ions form
colored complexes with absorption maxima at 547 nm (Cu), 554 nm (Ni), and 533–543 nm
(Zn). The interfering effect of V(V) and Fe(III) is smaller. If necessary, Fe(III) can be masked
with HPO4

2− [66] or separated by the fluoride method [67], as described below.
The developed procedure was used to determine Co in artificial mixtures and real

samples. As a first step, artificial mixtures imitating cobalt-based dental and super-alloys
were analyzed: Marranium CC, EOS CobaltChrome SP2, Vitallium, and Stellite 6. The
results were statistically identical to those obtained with the same amount of Co(II) (4.7 µg)
and the absence of ions corresponding to the alloying elements. The relative standard
deviation (RSD) was in the range of 1.2–1.7% (n = 4).
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Table 2. Effect of foreign ions on the determination of 4.7 µg Co(II).

Foreign Ion (FI)
Added

Added Salt
Formula

Amount of FI
Added, mg

FI: Co Mass
Ratio

Amount of Co
found, µg R, %

Al(III) Al(NO3)3·9H2O 0.47 100 4.6 98.2
Ba(II) Ba(NO3)2 47 10,000 * 4.9 105
Ca(II) Ca(NO3)2 47 10,000 * 4.7 99.5
Cd(II) CdCl2 0.094 20 4.9 105
Cr(III) Cr2(SO4)3 0.094 20 4.5 95.0

Cr(VI) K2CrO4
1.18
4.7

250
1000 *

4.7
4.5

101
95.8

Cu(II) CuSO4·5H2O 0.0024 0.5 4.7 100
F– NaF 47 10,000 * 4.9 105

Fe(III) Fe2(SO4)3 0.024 5 4.8 103
HPO4

2– Na2HPO4·12H2O 9.4 2000 4.6 97.6
Hg(II) Hg(NO3)2 0.235 50 4.6 97.1
Mg(II) MgSO4·7H2O 47 10,000 * 4.8 101
Mn(II) MnSO4·H2O 0.094 20 4.8 102
Mo(VI) (NH4)6Mo7O24·4H20 2.35 500 * 4.8 101

Na+ NaCl 47 10,000 * 4.7 99.0
Ni(II) NiSO4·7H2O 0.0047 1 4.9 105
NO3

− NH4NO3 47 10,000 * 4.6 97.2
Re(VII) NH4ReO4 4.7 1000 * 4.5 96.0
Pb(II) Pb(NO3)2 0.047 10 4.5 95.8
V(V) NH4VO3 0.0094 2 4.9 103

W(VI) Na2WO4·2H2O 2.35 500 * 4.7 100
Zn(II) ZnSO4·7H2O 0.0047 1 4.7 100

* Higher FI: Co mass ratios have not been investigated.

Tables 3 and 4 show the results of the analysis of real samples: steel, dental alloy, and
injection ampoules of Vitamin B12. They characterize the developed procedure as accurate
and precise. The results for the cobalt content of the injection ampoules were additionally
confirmed by ICP-MS.

Table 3. Determination of cobalt in steel and dental alloy (n = 4).

# Sample Cobalt Content, % Content of Other Elements
(Manufacturer’s Data) Cobalt Found *, %

1 Steel 4.71
17.7% W, 4.21% Cr, 1.58% V,

0.35% Mn, 0.081% C, 0.18% Si,
and the balance Fe

4.77 ± 0.08

2 Dental alloy
(Wirobond®C) 63.3 24.8% Cr, 5.3% W, 5.1% Mo, 1.0%

Si, and Ce 62.8 ± 0.9

* Mean ± standard deviation (SD).

Table 4. Determination of cobalt in 1-mL Vitamin B12 (1000 µg) injection ampoules * (n = 6).

# Present Method,
µg Co per ampoule RSD, % ICP-MS **,

µg Co per ampoule RSD, %

Sample 1 44 4.4 45 5.5
Sample 2 44 5.9 45 5.5

* The calculated content of Co in 1000 µg of Vitamin B12 (C63H88CoN14O14P) is 43.5 µg. ** The analysis was
performed in another laboratory.

Table 5 includes the results of analysis of rainwater and saline solution for intravenous
infusion obtained by the addition–recovery method. The RSD in these determinations
ranged from 2.4% to 27%, and the recoveries were between 98.2% and 106%.
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Table 5. Addition–recovery of Co(II) from the rainwater and saline solution for intravenous infusion
(n = 4).

Sample
Co(II) Concentration, ng mL−1

Recovery, %
Added Found *

Rainwater

0 <LOQ –
20 21.5 ± 5.6 106
40 41.1 ± 3.9 103
60 59.3 ± 6.3 98.2

Saline solution for infusion

0 <LOQ –
20 20.8 ± 5.7 104
40 40.9 ± 1.0 102
60 59.6 ± 2.1 99.4

* Mean ± standard deviation (SD).

2.4. Comparison with Existing Methods

Table 6 summarizes data on CPE–spectrophotometric procedures for the determination
of cobalt. The present CL-CPE procedure can be described as simple, cheap, sensitive,
convenient, and environmentally friendly. The reagent is commercially available and does
not need to be synthesized. It is not necessary to add electrolyte to increase the extraction
efficiency [36,37,40,41] or organic solvent to provide synergistic extraction [33] or to reduce
the viscosity of the SRP [31–41].

Table 6. Comparison with reported CPE–spectrophotometric procedures for the determination of
cobalt(II).

Reagent(s) Surfactant
SRP

Diluting
Agent

Sample Wavelength,
nm

Linear
Range,

ng mL−1

LOD,
ng mL−1 Ref.

ACDA TX-114 DMF Water 452 20–200 7.5 [31]
APDC +

C16MeImCl TX-114 Ethanol Water and
alloy 598 150–2000 70 [41]

BTANP TX-114 Methanol Water 549 10–300 1.5 [35]
15-Crown-5 TX-114 Ethanol Food 290 500–5000 400 [38]

MSE TX-100 Ethanol
Water,

biological
samples

292 500–10,000 12 [40]

NaSCN CTAB +
SDS Methanol Tap and sea

water 618 5890–35,400 6.18 [39]

N-BAEH TX-100 Ethanol – 294 500–10,000 12.7 [37]

PAN TX-114 Ethanol Water and
urine 621 5–250 – [32]

PAN TX-114 +
octanol

1 mol L−1

HNO3 in
methanol

Water 450 2–300 0.6 [33]

Salen TX-100 DMF Wastewater 378 10–70 2.2 [34]

TPY TX-114 +
DOSS Methanol Tap and sea

water 514 3140–18,960 4.54 [36]

HTAR TX-114 Water

Dental alloy,
steel, vitamin
B12, rainwater,

saline
solution for

infusion

553 5.4–189 1.64 This
work

Abbreviations: ACDA, 2-amino-cyclopentene-1-dithiocarboxylic acid; APDC, ammonium pyrrolidine dithiocar-
bamate; BTANP, 2-(benzothiazolylazo)-4-nitrophenol; C16MeImCl, 1-hexadecyl-3-methylimidazolium chloride;
CTAB, cetyltrimethylammonium bromide; DOSS, docusate sodium salt; MSE, methyl stearate ester; N-BAEH,
N-benzoyl-L-arginine ethylester hydrochloride; PAN, 1-(2-pyridylazo)-2-naphthol; SDS, sodium dodecyl sulphate;
TPY, 2,2’,6’,2”-terpyridine; TX-100, Triton X-100; TX-114, Triton X-114.

3. Materials and Methods
3.1. Chemicals and Instrumentation

The chemicals were purchased from Merck (Germany). The stock Co(II) solution
(1000 mL, 1 mg mL–1) was prepared by dissolving cobalt(II) sulfate heptahydrate in
water containing 2 mL of conc. H2SO4 [24]. Working 4 × 10−4 mol L−1 Co(II) solu-
tions were obtained by appropriate dilution with water. An aqueous solution of HTAR
(2 × 10−3 mol L−1) was prepared in the presence of KOH [52]. Laboratory grade TX-114
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was used. It was diluted with water at a mass fraction of 10%. Buffer solutions were
made by mixing appropriate volumes of aqueous solutions (2 mol L−1) of ammonia and
acetic acid. Distilled or deionized (ELGA-Veolia LabWater, UK) water was used during
the experiments.

An Ultrospec 3300 pro (United Kingdom), equipped with 1 cm path-length cells, was
used for the spectrophotometric measurements. The pH was checked with a WTW InoLab
7110 pH meter (Germany). The samples were heated in a GFL 1023 water bath (Germany).
An Ohaus Pioneer PA214C analytical balance (USA) was used to measure the mass.

3.2. Samples and Sample Preparation

A saline solution of 0.9% NaCl for intravenous infusion (1000 mL) and 1.0-mL am-
poules of vitamin B12 (solution for injection, 1000 µg vitamin B12) were purchased from
a local pharmacy. A dental alloy (Wirobond®C) was kindly provided by the Research
Institute at Medical University of Plovdiv. A standard steel sample (4.71% Co) was supplied
by the KCM S.A.–Plovdiv.

Rainwater (pH ca. 6.0) was sampled in the outskirts of Plovdiv, Bulgaria (12 June 2022)
during the Mediterranean cyclone called “Genesis”. A PET bottle and a glass funnel were
used during sampling. The analysis was performed the next day using 35-mL aliquots.

The saline solution for intravenous infusion was also analyzed using 35-mL aliquots.
Vitamin B12 ampoules were prepared for analysis by the procedure [68] involving

heating in a mixture of conc. HNO3 (10 mL) and conc. H2SO4 (1 mL) to dryness on a
sand bath. The volume of the final solution was 50 mL, and 2-mL aliquots were taken for
the analysis.

The dental alloy was treated as described in Ref. [69]. An accurate amount of the alloy
(ca. 0.05 g) was weighed into a 50 mL beaker. Then, 10 mL of aqua regia was added and
the sample was heated on an initially cold sand bath to dryness. After cooling, 5 mL of
HCl (1:1) was added. The sample was reheated to dryness, and the resulting salts were
dissolved in water. The obtained solution was transferred to a 1000-mL volumetric flask,
and water was added to the mark. Aliquots of 0.2 mL were used for the analysis.

The steel (ca. 0.5 g) was dissolved by a known procedure [70–72] and collected in a
1000-mL volumetric flask. The fluoride precipitation method [67] (p. 177) was then used to
remove Fe(III). For this purpose, a 50-mL aliquot of the steel solution was transferred to
a 250-mL beaker and heated on a hot plate. A hot 4% NaF solution (100 mL) was added
to the beaker, and the mixture was stirred. The resulting white crystalline precipitate
(5NaF·2FeF3) was removed by filtration through filter paper. The filtrate and the washings
were transferred to a 250-mL volumetric flask and diluted to the mark with water. Aliquots
of 1 mL were used to determine the cobalt content.

3.3. CL-CPE–Spectrophotometric Optimization

The following solutions were successively added into a pre-weighed 50 mL conical
tube: 1–12 mL of 10% TX-114, up to 1.4 mL of 4 × 10−4 mol L−1 Co(II), 3 mL of ammonium
acetate buffer (with pH between 3.4 and 10.0), and 0.025–1.0 mL of 2× 10−3 mol L−1 HTAR.
The resulting solution was diluted to 50 mL with water and heated in a water bath for
5–40 min at ca. 50 ◦C. Then, the tube was placed in a refrigerator for 20–60 min (at −20 ◦C)
to ensure completion of the precipitation process and easy removal of the supernatant by
inverting the tube. After decantation, water was carefully added to the SRP to a total mass
(SRP + H2O) of 5.00 g (an analytical balance was used for this operation). The mixture
was then homogenized by gentle heating (for 1–2 min at 40–45 ◦C) and shaking. Finally,
a portion of the resulting clear solution was poured into the cell, and the absorbance was
measured against water or a simultaneously prepared blank.

3.4. Recommended Procedure for the Determination of Co

An aliquot of the analyzed solution (5.4–189 ng mL−1 Co) was placed in a pre-weighed
50-mL conical tube. Then, 8.2 mL of 10% Triton X-114 solution, 3 mL of the buffer with
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pH 7.8, and 0.25 mL of 2 × 10−3 mol L−1 HTAR solution were added. The tube was diluted
to the mark (50 mL) with water and heated in a water bath (50 ◦C) for 20 min. After cooling
in a refrigerator (at ca –20 ◦C) for 30 min, the supernatant was removed by inverting the
tube. Water was carefully added to the SRP to a total mass (SRP + H2O) of 5.00 g, and the
mixture was homogenized by gentle heating and shaking. A portion of the obtained clear
solution was poured into the spectrophotometer cell, and absorbance was measured at
553 nm against a corresponding blank. The unknown cobalt concentration was calculated
from a calibration plot.

4. Conclusions

A new extraction–chromogenic system for Co ions was studied. It is based on a novel
commercially available hydrophobic azo dye, allowing the determination of trace cobalt.
The proposed analytical procedure is simple, cheap, sensitive, and convenient. It is reliable
and robust due to the wide optimal intervals of the examined variables. The use of organic
solvents is not required, which characterizes it as green and environmentally friendly.
Unlike other procedures requiring expensive and sophisticated instruments, the proposed
analysis can be performed only with affordable and unpretentious equipment, such as a
spectrophotometer, a water bath, and a refrigerator.
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