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Background and Aim. The enteric microbiota is able to cross-talk with factors involved in the blockade of programmed cell death
protein 1 (PD-1) and also plays an important role in the predisposition and onset of inflammatory bowel disease (IBD). The current
study used a mouse model of experimental colitis to determine the pathogenic connection between PD-1 inhibition, gut microbiota,
and IBD. Methods. Colitis was induced in mice using 2,4,6-trinitrobenzene-sulfonic acid (TNBS), and mice were subsequently
treated with either a PD-1 inhibitor or 5-amino-salicylic acid (ASA) as a positive control. Body weight, disease activity index
(DAI), colon length, and tissue damage were evaluated, and the enteric microbiota was profiled using high-throughput 16S
rRNA sequencing of fecal samples from the experimental mice. Results. TNBS caused mice to experience IBD-like symptoms,
which were attenuated by the PD-1 inhibitor, as indicated by a decrease in DAI scores (p = 0:0002). Furthermore, in this mouse
model of IBD, PD-1 inhibition improved the alpha diversity as well as restored the beta diversity of the enteric microbiome. It
also significantly enriched the abundance of short-chain fatty acid- (SCFA-) producing bacteria of the Firmicutes (p < 0:05) and
Bacteroidetes (p < 0:05) phyla but depopulated Proteobacteria (p < 0:05). Conclusion. PD-1 inhibition can partly mitigate TNBS-
induced colitis and restore the enteric microbiota by enriching the abundance of SCFA-producing bacteria.

1. Introduction

Inflammatory bowel disease (IBD) includes two chronic and
nonspecific disease entities, ulcerative colitis and Crohn’s
disease [1], and clinically presents as abdominal pain, diar-
rhea, and bloody stool. Etiological studies have proposed
genetic factors, a disproportionate immune response, an
impaired mucoepithelial barrier, and dysbacteriosis as the
putative pathogenic mechanisms for the development of
IBD [2, 3].

Recent studies have suggested that aberrant immune acti-
vation against the enteric microbiota forms the pathogenic
foundation of IBD [4, 5]. Experiments on enteric microbiota
from IBD patients have revealed that a decreased abundance
of the Firmicutes and Bacteroidetes phyla with an increased
abundance of Proteobacteria is significantly correlated to
the severity of IBD, and genera of the Firmicutes phylum,

such as the Clostridium, Ruminococcus, Lachnospira, and
Roseburia genera, as well as Faecalibacterium prausnitzii
are reduced in IBD patients [6].

Immunocheckpoint blockade (ICB) has recently been
popularized as a treatment for malignancies and other dis-
eases. Clinically, not only does ICB possess the adverse effect
of IBD-like enteritis itself, but during or after the course of
ICB therapy, a significantly higher proportion of patients with
IBD developed either common gastrointestinal adverse events
(diarrhea, abdominal pain, etc.) compared to patients without
IBD, or had a flare-up of their IBD symptoms [7–10], thus
indicating the role of ICB in the progression of IBD.

However, there have not been many studies that have
investigated the role of the PD-1/programmed death ligand
1 (PD-L1) axis in intestinal inflammation. Kanai et al. [11]
found that PD-1 was highly expressed on T cells in the
inflamed colon, while blockade of PD-L1 suppressed
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experimental colitis. In contrast, Scandiuzzi et al. [12]
showed that PD-L1 expressed by the intestinal epithelium
regulated intestinal inflammation by inhibiting innate
immune cells. Moreover, Park et al. [13] suggested that the
absence of PD-1 was protective against experimental colitis
through the gut microbiota. Therefore, we aimed to investi-
gate the pathogenic connection between the PD-1/PD-L1
pathway, the progression of IBD, and the enteric microbiota
using a mouse model of 2,4,6-trinitrobenzene-sulfonic acid-
(TNBS-) induced colitis.

2. Materials and Methods

2.1. Drugs and Reagents. The PD-1 inhibitor was purchased
from TopAlliance Biosciences Inc. (Shanghai, China). TNBS
and 5-amino-salicylic acid (ASA) were purchased from
Sigma (St. Louis, MO, USA).

2.2. Experimental Animals, Induction of Colitis, and
Treatment Regimen. Male BALB/c mice (23.1-28.4 g) were
purchased from Guangdong Medical Laboratory Animal
Center (GDMLAC; Certificate number SYXK 2013-0002,
Foshan, China), and the experimental procedures were per-
formed in accordance with the guidelines approved by the
Animal Ethics Committee of GDMLAC. The protocols were
approved by the Committee on the Ethics of Animal Exper-
iments of GDMLAC. Mice were housed under a 12 h light/-
dark cycle with controlled temperature (24°C) and
humidity (50-70%) and had access to food and water ad
libitum.

All experimental mice in this study received a diet of SPF
maintaining mice feed-1003 (provided by GDMLAC, pro-
duction license No. (2019) 05073, executive standard:
GB14924.3-2010). The ingredients included corn, soybean
meal, flour, wheat flour, Peru fish meal, calcium hydrogen
phosphate, stone powder, sodium chloride, vegetable oil,
vitamins, amino acids, and minerals, and the food was
sterilized via cobalt-60 irradiation.

The mice were acclimatized for seven days and randomly
assigned to one of four groups: control (n = 12), TNBS
(n = 10), TNBS+5-ASA (n = 12), and TNBS+PD-1 inhibitor
(n = 12) groups (Supplementary Figure 1). Colitis was
induced by rectal administration of TNBS as described by
Morris et al. [14]. Briefly, the mice were fasted for 24 h,
anesthetized with 0.4% pentobarbital sodium (0.1mL/10 g)
via intraperitoneal injection, and administered 25mg TNBS
per kg body weight in 50% ethanol. The mice in the control
group were given an enema of only 50% ethanol. The
TNBS-treated (0.1mL/10 g) mice in the ASA or PD-1
treatment groups were, respectively, administered with
either 5-ASA (150mg/kg) through transgastric feeding or
the PD-1 inhibitor (3mg/kg) through intraperitoneal
injections to avoid the acidic degradation of the PD-1
inhibitor in the stomach. The mice were monitored daily
for weight loss, stool consistency, and the presence of blood
on the anus or in the stool. Following the treatment
regimen, stool samples were collected, and colonic tissues
were resected after the mice were euthanized. The colon
length was recorded, and the tissues were fixed overnight in
10% neutral buffered formalin.

2.3. Disease Activity Index. The disease activity index (DAI)
was scored according to a modified version of a previously
described method [15] and included the following parame-
ters: (A) weight loss percentage (0: none, 1: 1-5%, 2: 5-10%,
3: 10-15%, and 4: >15%), (B) stool consistency (0: normal,
1: pasty and not sticking to the anus, 2: pasty and slightly
sticking to the anus, 3: pasty and stuck to the anus, and 4:
watery), and (C) rectal bleeding (0: hemoccult (-), 1: hemoc-
cult (±), 2: hemoccult (+), 3: hemoccult (++), and 4: obvious
blood in stool).

2.4. Histopathological Evaluation. The mice were euthanized
under anesthesia, and the entire colon from cecum to anus
was removed. The colon was opened longitudinally along
the mesenteric border, and its contents were flushed with
cold saline. The cleaned tissue samples were fixed in buffered
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Figure 1: Inhibition of programmed cell death protein 1 (PD-1) improved the physiological indices in mice with TNBS colitis. (a) Body
weight and (b) disease activity index (DAI) in the various treatment groups. Data is expressed as the mean ± standard deviation (SD),
∗p < 0:05.
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formalin, embedded in paraffin, cut into 5μm sections, and
stained with hematoxylin and eosin (H&E). The slides were
histopathologically evaluated by two investigators blinded
to the conditions and graded with the following parameters:
(A) inflammation (0: no infiltration of inflammatory cells,
1: infiltration in the lamina propria, 2: infiltration into the
submucosa, and 3: transmural infiltration), (B) ulceration
(0: no ulceration, 1: one or two ulcers, 2: three or four ulcers,
and 3: more than four ulcers), (C) mucosal hyperplasia (0:
normal, 1: slightly thickened mucosa with minimal fibrosis,
2: mucosal thickening with fibrous hyperplasia, and 3: exten-

sive mucosal thickening and fibrous hyperplasia or granula-
tion), and (D) edema (0: none, 1: 0-30%, 2: 30-70%, and 3:
>70%).

2.5. Fecal Sample Collection and Extraction of Genomic DNA.
Approximately two or three pellets of fresh feces per mouse
were collected in sterile plastic tubes and stored at -80°C.
Total genomic DNA was extracted using the QIAamp DNA
Stool Mini Kit (Qiagen, Dusseldorf, Germany) and quanti-
fied at 260 nm with the NanoDrop 2000 BioAnalyzer
(Thermo Fisher Scientific, Inc., Waltham, MA, USA).
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Figure 2: Inhibition of programmed cell death protein 1 (PD-1) restored macroscopic and histopathological damage caused by TNBS-
induced colitis. Representative pictures showing the (a) colon length and (b, c) histopathological appearance of colonic tissue (scale bar =
200μm). Data are expressed as the mean ± standard deviation (SD), ∗p < 0:05.
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2.6. PCR Amplification and Illumina Sequencing. Bar-coded
V4-515 forward 5′-GTGCCAGCMGCCGCGGTAA-3′ and
V4-806 reverse 5′-GGACTACHVGGGTWTCTAAT-3′
primers were used to amplify the bacterial 16S rRNA V4
fragments. The Phusion High-Fidelity PCR Master Mix
(New England Biolabs, Beverly, MA, USA) was used, and
amplified products 400-450 bp in length were purified.
Sequencing libraries were generated using the TruSeq DNA
PCR-Free Sample Preparation Kit (Illumina, San Diego,
CA, USA) according to the manufacturer’s recommenda-
tions, and index codes were added. The library quality was
assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific,
Carlsbad, CA, USA) and Agilent Bioanalyzer 2100 system
and sequenced using the Illumina HiSeq 2500 platform
(Tianjin Novogene Bioinformatics Technology Co., Ltd.).

2.7. Data Analysis. SPSS statistical software was used to per-
form all analyses, and the data were expressed as the mean
± standard deviation (SD). t-tests and Wilcoxon signed-
rank tests were used to compare two groups when appropri-
ate, and one-way analysis of variance (ANOVA) with
Tukey’s tests was used for comparisons of multiple groups.
A p value less than 0.05 was considered statistically
significant.

3. Results

3.1. Intestinal Inflammation in TNBS-Induced Colitis Is
Partially Alleviated by Blocking PD-1/PD-L1. For generating
the experimental models, 10 mice were treated by rectal
administration of TNBS, all of which showed significant
weight loss and higher DAI scores associated with diarrhea,
rectal bleeding, and shorter colon lengths compared to the
control mice, indicating the successful establishment of

colitis as a mouse model of IBD, with a success rate of
100% (1 of 10 died on the seventh day due to severe diarrhea
and rectal bleeding).

Administration of either the PD-1 inhibitor or 5-ASA (as
positive control) prevented the mice with IBD-like colitis
fromweight loss (Figure 1(a)) and improved their DAI scores
(p = 0:0002) compared to the untreated mice with colitis
(Figure 1(b)). In addition, treatment with the PD-1 inhibitor
mitigated inflammation along the intestinal mucosa in mice
with TNBS-induced colitis as indicated by a decrease in cell
infiltration and reorganization of the intestinal villi structure
(Figures 2(b) and 2(c)).

3.2. PD-1 Inhibition Increases Enteric Microbiota Diversity in
Mice with Colitis. The Shannon index was used to estimate
the alpha diversity, a measure of taxa richness, and evenness
within a sample. Both the PD-1 inhibitor and 5-ASA
increased the low alpha diversity after TNBS-induced colitis
(Figure 3(a)). In addition, principal component analysis
(PCA) was used to evaluate the beta diversity by comparing
the similarity in microbial communities between samples.
The PD-1 inhibitor reversed the changes in the enteric
microbiota caused by TNBS (Figure 3(b)).

3.3. PD-1 Inhibitor Restores the Gut Microbiota and Increases
the Abundance of Short-Chain Fatty Acid-Producing
Bacteria. The relationship between gut microbial composi-
tion and IBD has been widely investigated, and IBD patients
show a significant decline in the diversity of their intestinal
microbiome along with a decrease in the abundance of Firmi-
cutes and an increase in the abundance of Proteobacteria,
which are designated as signatures of IBD [4].

The heat maps for the predictive operational taxonomic
units (OTUs) were plotted according to the species
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Figure 3: Inhibition of PD-1 increased the alpha diversity and restored the beta diversity of the gut microbiota in mice with TBNS colitis. (a)
Shannon index and (b) principal component analysis (PCA). Each dot represents one fecal sample.
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annotations and abundance at the phylum and genus levels,
and a cluster analysis was performed (Figure 4). These results
suggested that the inhibition of PD-1 increased the
abundance of Butyricicoccus, Ruminiclostridium, Ruminiclos-
tridium 9, Oscillibacter, Ruminiclostridb-5, Rikenella,
Roseburia, Anaerotruncus, Lachnospiraceae bacterium
NK4A136, and an unidentified Lachnospiraceae but
decreased that of Acinetobacter, Bacteroides, Parabacteroides,
and Alloprevotella. Metastats was used to analyze the relative
abundance of bacteria in each group at different levels. Inhi-
bition of PD-1 increased the abundance of Deferribacteres,
Clostridium_sensu_stricto_1, Empedobacter, and Mucispiril-
lum and decreased that of Rhizobiales, Candidatus_Arthro-
mitus, and Turicibacter (Figure 5). As shown in the
network map in Figure 6, the mice in the control groups pos-
sessed Firmicutes, Bacteroidetes, and Proteobacteria as the
core genera, while TNBS-induced colitis resulted in the
enrichment of Actinobacteria and Cyanobacteria. After treat-
ment with the PD-1 inhibitor, the relative abundance of Fir-
micutes and Bacteroidetes was restored in the mice with

TNBS-induced colitis to levels comparable to the control
groups. Taken together, inhibiting PD-1/PD-L1 signaling
restored the enteric microbiota dysbiosis in mice with colitis
by enriching the abundance of SCFA-producing bacteria as
well as mucosal immune-related bacteria.

4. Discussion

The pathogenesis of IBD in genetically susceptible hosts has
been proposed to begin with a breakdown of the intestinal
epithelial barrier, followed by a disproportionate immune
response to the enteric microbiota, which results in a loss of
intestinal homeostasis [16]. Such dysbiosis in the intestinal
symbionts of IBD patients can be indicated by the low-level
alpha diversity [17] and manifests as a decrease and an
increase in the abundance of Firmicutes and Proteobacteria,
respectively [18]. A study of the enteric microbiota in gnoto-
biotic mice under an inflammatory microenvironment [19]
revealed that the enteric microbiota potentiates the forma-
tion and maturation of CD4+ T cells, and the severely
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damaged intestinal mucoepithelial barrier in IBD patients
exposes the gut microbial antigens to the immune cells,
which elicit an excessive immune response. Furthermore,
various metabolites of the intestinal bacteria, such as SCFAs,
can increase the number of immunosuppressive Treg cells in
the laminae propria mucosae [20, 21] and promote mucin
secretion as well as strengthen the epithelial barrier. Studies
show that maintaining a minimal concentration of SCFAs
in the intestine is beneficial to the repair and regeneration
of the mucosal barrier, whereas chronic lack of SCFAs can
thin the intestinal mucosa and weaken the integrity of the
intestinal mucosal barrier, resulting in the translocation of
pathogenic bacteria and increased exposure to antigenic
substances [22–26].

Since the PD-1/PD-L1 pathway regulates T cell activation
and immune tolerance and has been a potent therapeutic
target in autoimmune diseases [27], recent studies began
to focus on the role of the PD-1/PD-L1 signaling axis in
the pathogenesis of IBD and possible novel therapeutic
strategies. However, very few studies made significant
progress. We used a common murine model of chronic
IBD that involved rectal administration of TNBS [14, 28,
29], and we administered a PD-1 inhibitor, or 5-ASA as
a positive control, to determine the pathogenic association
of the PD-1/PD-L1 pathway with IBD. Our findings
revealed that inhibition of PD-1 can significantly improve
the physiological status of mice with colitis based on the
evaluation of body weight along with DAI scores, and it
also reduced both macroscopic and microscopic colonic
lesions.

Past studies have focused more on the immunological
regulation of the PD-1/PD-L1 pathway. However, Kawamoto
et al. [30] investigated the effect of the PD-1/PD-L1 pathway
on the enteric microbiota and reported a significant decrease
in the relative abundance of P. aeruginosa and Bifidobacteria
in the intestinal microbiota of PD-1-/- mice, whereas Vetizou
et al. [31] were followed to show that the introduction of
Bacteroides fragilis alleviated colitis caused by cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) inhibition.
Based on the knowledge from these previous studies and
with our experimental model, we then analyzed the
diversity and abundance of the enteric microbiota in the
different experimental groups and upheld that PD-1
inhibition increased microbial diversity and altered the
abundance of various phyla and genera, especially bacteria
that produced SCFAs.

Lachnospiraceae, Rikenellaceae, Ruminococcaceae, Butyr-
icicoccus, and Roseburia are important SCFA-producing
intestinal symbiotic bacteria, which ferment dietary fiber into
acetic acid, propionic acid, and butyric acid [32]. More spe-
cifically, Eeckhaut et al. [33] revealed a lower abundance of
Butyricicoccus in IBD patients, while the introduction of
Butyricicoccus in mice with TNBS-induced colitis reduced
levels of proinflammatory factors including myeloperoxidase
(MPO), tumor necrosis factor alpha (TNF-α), and interleu-
kin- (IL-) 12 and improved intestinal mucosal barrier func-
tion. Several other studies [34–37] have also reported that
IBD patients possessed a lower abundance of Lachnospira-
ceae, a bacteria that can protect the intestinal tract through

the production of butyrate and decolonize C. difficile during
pseudomembranous colitis. More importantly, cancer
patients with a higher abundance of Rikenellaceae undergo-
ing anti-CTL4 therapy were less likely to suffer from
CTLA-4-associated enteritis [31]. The abundance of the
butyrate-producing actinomycete Roseburia [38] is decreased
in ulcerative colitis patients, and another butyrate-producing
bacteria, P. sphaeroides, is associated with disease activity in
patients with Crohn’s disease [39, 40]. Ruminococcaceae
and Lachnospiraceae, the two most abundant bacteria of the
Clostridium spp, decompose various fibrous polysaccharides
and are associated with the PD-1/PD-L1 pathway [41]. The
SCFA-producing bacteria also promote protein synthesis
that can affect the intestinal immune response [42]. Schaffler
et al. [43] found that an increased abundance of Anaerotrun-
cus enhanced the therapeutic effect against Crohn’s disease.
Taken together, SCFA-producing enteric bacteria not only
manufacture SCFAs as the main source of energy for the
intestinal microbes but also help to maintain intestinal
microbial homeostasis by inhibiting the growth of patho-
genic bacteria, promoting colonic mucus secretion, and
enhancing mucosal barrier function [44]. Butyrate enemas
have been used to manage mucosal inflammation in IBD,
highlighting the therapeutic potential of SCFAs for the
treatment of IBD [45, 46].

An alteration in the abundance of certain enteric
microbes has been associated with intestinal mucosal
immune regulation. For example, Bacteroides acidifaciens
induces the formation of germinal centers and regulates
immunoglobulin A (IgA) and IgB-producing plasma cells
[47], while Clostridium leptum induces immunotolerant den-
dritic cells and Treg cells [48–50]. IgA is the major antibody
on the surface of the intestinal mucosa which can penetrate
the intestinal lumen via the multi-immunoglobulin receptor
(pIgR) present on intestinal epithelial cells to mediate intesti-
nal mucosal immunity [51, 52]. Other enteric microbes such
asMucispirillum and Candidatus_Arthromitus also possess a
strong correlation with the production and secretion of T
cell-dependent IgA [53, 54]. Importantly, the abundance of
Mucispirillum increased significantly after inhibition of PD-
1, and therefore, it may serve as a potential marker for the
inhibition of this pathway [55, 56].

Although the cross-talk between the PD-1/PD-L1 path-
way, gut microbiota, and intestinal mucosal immunity has
been investigated in detail [57, 58], the exact involvement
of the PD-1/PD-L1 axis in the pathogenesis of IBD remains
elusive. PD-1 inhibitors significantly improved the outcome
of TNBS-induced colitis by restoring the intestinal micro-
biome. However, the dosage, withdrawal criteria, and other
immunological effects of PD-1 inhibition require additional
studies.

5. Conclusion

PD-1 inhibition can partly alleviate TNBS-induced colitis
and restore the gut microbiota by increasing the abundance
of SCFA-producing bacteria, but the exact effects and
mechanisms require additional study.
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Supplementary Figure 1: process of TNBS-induced colitis
model and solvent control. Preparation of TNBS ethanol
solution: in 10mL of 50mg/mL TNBS solution, add 10mL
absolute ethanol and mix well. Preparation of 50% ethanol
solution: in 2mL of absolute ethanol, add 2mL sterile water
for injection and mix well. Step 1 (fasting): all mice were
fasted for 24 hours. Step 2 (anesthesia): mice were anesthe-
tized by intraperitoneal injection of pentobarbital sodium at
the dose of 40mg/kg and 0.1mL/10 g body weight. Step 3
(enema): 25mg/L TNBS ethanol solution (model
group)/50% ethanol solution (control group) was aspirated

by syringe. The soft rubber tube connected with the syringe
was gently inserted approximately 3 cm into the mouse
through the anus, and the contents of the syringe were slowly
injected into the intestinal cavity of mice. Step 4 (inversion):
after administration, the plastic tube was slowly removed and
the tail of the mouse was lifted. The mouse was kept inverted
for 1min. (Supplementary Materials)
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