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Helicobacter pylori (HP) is a facultative anaerobic bacterium. HP is a normal flora

having immuno-modulating properties. This bacterium is an example of a microorganism

inducing gastric cancer. Its carcinogenicity depends on bacteria-host related factors.

The proper understanding of the biology of HP inducing gastric cancer offers the

potential strategy in the managing of HP rather than eradicating it. In this article, we

try to summarize the biology of HP-induced gastric cancer and discuss the current

pharmacological approach to treat and prevent its carcinogenicity.
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HISTORICAL BACKGROUND

In 1866, Kussmaul suggested the use of bismuth salts for the treatment of peptic ulcers (1). As
bismuth has an oligodynamic effect (toxic to bacteria in a minuscule amount), that was probably
the first published evidence of the bacterial role in causing peptic ulcers. After more than 100 years
scientists use Bismuth subsalicylate in treating gastritis after conventional antibiotics have failed in
improving its symptoms (2). In 1875, Bottcher and Letulle hypothesized that ulcers are caused by
bacteria (1). Over a century later Marshal and Warren isolated a spiral bacteria that causes gastritis
in 1983 and 1984 (3, 4). After that, the prevailing medical dogma of gastritis was shifted from stress-
induced gastritis to be defined as an infectious disease. In 1997, Tomb et al. published the whole
genome sequence of that spiral bacterium that was termed byCampylobacter pylori did (5) and later
became Helicobacter pylori (HP) (6).

Helicobacter pylori (HP) was identified as a common cause of chronic gastritis (3, 4). Chronic
gastritis, perhaps through mucosal pH changes and activation of chemical carcinogens, may lead
not only to gastric ulcers but also to stomach cancer and other malignancies of the gastrointestinal
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tract (7). In this context, we discuss the role of HP in gastric
cancer and new possible measures of prevention and treatment.

CLINICAL PERSPECTIVE

HP originated in Africa over 100,000 ago and has become a
very useful tool to monitor human migration and detect human
ancestry (8–11). More than 50% of the world’s population is
infected with HP in their stomachs, with a higher prevalence rate
in developing countries as compared to developed countries (12).
Although <20% of those infected may develop any symptoms,
many develop wide-ranging symptomatology. Moreover, HP can
be acquired during childhood (13), and its transmission can be
associated with childhood episodes of gastroenteritis (13, 14).

HP infection often results in deficiencies in micronutrients
such as vitamin A, C, E, Iron, Copper, and B12 (15). Also, HP
alters nocturnal melatonin secretion, which might perturb its
gastroprotective effects and lead to disturbances of the upper
digestive tract (16). Also, HP alters the antioxidant properties of
melatonin (17). HP viability may be impaired by ascorbic acid,
as its growth in the stomach is increased in patients with low
ascorbic acid, while the disappearance of the bacterium increases
stomach ascorbic acid (18, 19). Therefore, HP alters the redox
status of the organism by scavenging the anti-oxidants from
the body.

HP is correlated to many aging-related diseases, and also it
increases the susceptibility to other infectious diseases such as
cholera (20). HP is also a causative agent of acne vulgaris and
Polycystic Ovarian Syndrome (PCOS) due to its ability to induce
hyperprolactinemia (21). HP also raises blood pressure (22) and
increases the risk of ischemic heart disease (23). Its infection may
also increase the incidence of diabetes (24), yet evidence suggests
that HP eradication may result in weight gain (25). HP has an
essential role in preventing diseases, such as asthma (26, 27)
or as an immunomodulator against infectious agents such as
Mycobacterium tuberculosis (28).

HP has been designated by the WHO as a carcinogen (20, 29)
because it can develop: (i) gastric adenocarcinoma and (ii) MALT
lymphoma (mucosa-associated lymphoid tissue) (30). However,
not every infected individual will develop gastric cancer due
to (1) the nature of HP and (2) host vulnerability (31, 32).
Surprisingly, HP has also been shown to play a critical role in
the prevention of esophageal carcinoma (33). Indeed, in western
countries, lowering the prevalence rate of HP has been associated
with an increase in the incidence of esophageal adenocarcinomas
(14), possibly due to a hygienic culture that excludes naturally
occurring defense mechanisms. The eradication of HP not
only results in an increased incidence of developing esophageal
adenocarcinoma but also appears to decrease its ability to delay or
prevent gastric cancer (34–36). However, HP has no relationship
with esophageal squamous cell carcinomas (37).

HELICOBACTER PYLORI-INDUCED
GASTRIC CANCER

HP expresses a variety of genes involved in its pathogenicity
and remodeling of the microenvironment. Here, we

review several of these factors that may be involved in
HP-mediated carcinogenesis.

Urease
Urease enzyme plays a critical role inmaintaining theHP niche as
it hydrolyzes urea into ammonia. This leads to a neutralization of
the acidity around the bacteria to create a suitable microhabitat
(38). It also facilitates diffusion through mucus by reducing its
viscoelasticity (39) and modulates the host’s immune response
against HP (40, 41). Therefore, urease enzyme is a critical factor
that determines HP fitness (42) but not its pathogenesis (43).

Urease catalyzes the breakdown of urea into NH3 and CO2

(44, 45), which provide both acid-neutralizing and acid-buffering
capacities. It appears conceivable that urease is a cytoplasmic
enzyme, since the urease activity increases in media where the
pH was progressively lowered, without detectable changes of
the bacterial cytoplasmic pH, and without evidence of bacterial
membrane damage.To support this finding, a transporter has
been identified encoded by the ureI gene capable of delivering
urea to the cytoplasm (46), where urease enables neutralization
and buffering capacities (47). It is now apparent that the activities
of the transporter and enzyme are coupled not only functionally
but physically as well. Under acidic conditions a neosynthesis
of bacterial proteins (e.g., arginase and carbonic anhydrase) has
been shown, many of them directly or indirectly involved in pH
regulation of both cytosol and cytoplasmic vacuoles. Arginase
is involved in providing the substrate to urease to produce
L-ornithine and urea (48).

Carbonic Anhydrase
Carbonic anhydrase (CA) is a form of family of zinc-containing
metalloenzymes that catalyze the interconversion of carbon
dioxide (CO2) and water (H2O) to form carbonic acid that
dissociates to form bicarbonate (HCO−

3 ) and Hydrogen ion
(H+). It is expressed in both prokaryote as well as eukaryote
(49), and even within the eukaryotic cells, it is found in many
subcellular compartments, such as the cytosol, mitochondria or
anchored to membranes (50, 51). CAs are ubiquitously expressed
in many tissues of human body that reflects the importance
of their physiological functions in maintaining the buffering
capacity of the biological systems as well as in biosynthetic
processes (52). It is associated with many other diseases
including cancer.

Regard the HP, HP has two forms of CA, an alpha-type enzyme
(HpαCA) and the Hp beta CA (HpβCA) (53, 54). While HpαCA
supports urease activity, HpβCA supports bacterial growth at
acidic pH (54). Therefore, HpCAs plays crucial role in adapting
of HP to gastric environment and supports its fitness.

Lewis Antigen
HP expresses Lewis antigens on their surface as part of their
lipopolysaccharide components (55, 56). The Lewis antigen
system is a human blood group system based upon genes on
chromosome 19 p13.3 (FUT3 or Lewis gene). HP NCTC11637
expresses a lipopolysaccharide (LPS) that comprises anO-antigen
side chain with structural homology to the human blood group
antigen Lewis X [Le(x)] (57). Therefore, expression of the Lewis
antigen could be for mimicry (anti-predation strategy to avoid
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immune system). Also, Lewis antigens expressed on the bacterial
surface facilitate adherence of HP to gastric epithelial cells (tissue
tropism) (58). Therefore, humans carrying blood group A, B are
relatively resistant to HP adherence to their epithelium (57, 59).
HP strains differ in their expression of Lewis antigen into Lex,
Ley, both, Lea, sialyl-Lex or negative for both (60). Lex and Ley

are correlated with cagA+ and s1/m1 VacA. Among the western
population, the dominant phenotypes are LeX and Ley while Lea

and Leb are found in a smaller proportion (61). Possessing of
Lex and Ley leads to higher HP internalization rates by gastric
epithelium as compared to Lea and Leb or non-expressing Lewis
antigen (62).

Lewis antigen and urease are inversely related because urease
promotes HP survival and colonization (63) while inhibiting
internalization (64). Moreover, we are not sure if the concomitant
loss of urease activity occurs due to phenotypic changes from
mucus to adherent epithelial phenotype nor if this loss of
urease activity and acquiring of Lex and Ley is beneficial for
immune evasion (65). Therefore, HP internalization might occur
during the development of gastric atrophy as an unfavorable
habitat. Adaptation in hostile habitats that affect organismal
multiplication is called “cost of adaptation.” Therefore, the
acquisition of Lewis antigen is associated with the cost
of adaptation. In other words, acquiring of Lewis antigen
will support HP’ survival, but it affects negatively on the
proliferation rate.

VacA
VacA (vacuolating cytotoxin) is a secreted protein encoded
by the vacA gene. All HP strains have the vacA gene, but
they differ in their expressivity (66). VacA secretion is more
frequent in patients with gastric cancer as compared to patients
with gastritis (alone) (67), indicating a connection between
expressivity and pathogenicity. Characterization of 59 different
HP isolates revealed the existence of three distinct families of
vacA sequences (s1a, s1b, and s2) and two separate families of
middle-region alleles (m1 and m2) (68). The sub-strain that
has the m1/s1 allele is the most virulent isoform regarding its
ability to induce inflammation (69). VacA is composed of the
P55 and P33 proteins. P55 is responsible for producing pores
within the gastric epithelium while P33 disrupts mitochondrial
fission machinery upon its inoculation (70), inducing cellular
death of the epithelium (71). VacA also alters the maturation and
trafficking of lysosomal enzymes (72). Also, VacA inhibits T-cells
population expansion (73), and so it may promote survival of
various phenotypes.

CagA
CagA is a 40 kbp horizontally acquired gene (6, 74) that encodes
for the Type IV Protein Secretion System (T4SS). T4SS delivers
cagA-oncoprotein (75–77) to suppress apoptosis (78). Outer
membrane proteins (OMPs) and cagA target mitochondria. In
this regard, development of gastric cancer due to mitochondrial
injury is compatible, or at least parallel, with what Otto Warburg
had earlier hypothesized on the respiratory impairment of
cancer cells (79).

HP is heterogeneous in inducing pathogenesis (12). If cagA+

is associated with developing gastric adenocarcinoma, either
cagA+ or cagA− can induce β-Lymphoma (30). The growth of
MALTomas (MALT-NHL) is amore immune-dependent growth.
It is clear that HP interacts with the immune system with a
“gold panning” strategy to increase IL-2 expression through T-
cells (80). In summary, eradication of HP might represent a
potential strategy for treating these tumors (81), either low-
grade β-cell lymphoma and to some extent higher grades of this
tumor (82–84).

CagA is associated with a higher production rate of
cytokines (85, 86). HP seropositivity has been classified to be
either cagA+ or cagA− sub-strains. The presence of cagA+

modulates epithelial activity that acts as a phosphatase enzyme
(dephosphorylation) resulting in pro-inflammation by releasing
IL-8 (87), MAPK (88), and NF-KB (89–91). Hence, cagA+ might
be considered to be a hallmark of HP carcinogenicity. Some
studies have shown that the cagA+ strain significantly increases
epithelial proliferation rate either directly (92, 93) or through
the induction of hypergastrinemia (increased gastrin level) (94,
95) while another study shows that cagA+ apoptosis indices
are increased (96, 97). Such contradictions might reflect that
epithelial proliferation and apoptosis are contagious processes
that are controlled by the cagA+ strain in a way that expresses
a multistage progression of epithelial transformation.

Outer Proteins (BabA2)
The outer membrane protein (OMP) of HP, babA2, is associated
with an increased risk of gastric cancer. BabA2 is a member
of a family of highly conserved OMP, is encoded by strain-
specific gene babA2 and binds the Lewisb (Le b). BabA2 is
commonly found in phenotypes that adhere to the epithelium
(14, 98). The BabA2+ sub-strain in Leb expressing mice results in
developing atrophy anti-parietal antibodies, i.e., the development
of gastric atrophy is considered an autoimmune disease (98–
100) and so results in chronic inflammation. The combination
in a triple positive strain of the above proteins (BabA2, CagA+,
and VacA) is a reliable indicator of the possibility of inducing
carcinogenicity (101).

In conclusion, if urease is responsible for establishing a
suitable platform for HP colonization, Lewis antigen is an
essential protein that serves HP fitness under unfavorable
habitat conditions followed by CagA, Bab, and VacA that makes
HP occupy the gastric epithelium and induce inflammation.
In summary, all these genes and their subsequent proteins
are working orchestrally in a cascade manner to serve the
evolutionary trajectory of HP.

HUMAN RESPONSE

Some of the keys elements that interact with HP to induce gastric
cancer include.

β–Catenin
Beta-catenin (β-catenin) is a protein encoded by CTNNB1 gene
on band p12 placed on the short arm of chromosome 3, a
region that is affected by a somatic alteration in the tumor
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(102). β-catenin is a protein that plays a paramount role in the
coordination of both cell-cell adhesion and gene transcription.

β-catenin is a proto-oncogene that has been found to
accumulate inside the nucleus in precancerous lesions of gastric
cancer (103). β-catenin is associated with several types of tumors
including primary hepatocellular carcinoma, ovarian carcinoma,
breast cancer, lung cancer, colorectal cancer, basal cell carcinoma,
prostate cancer, pilomatrixoma, medulloblastoma, Head and
neck squamous cell carcinoma and glioblastoma (104–108).

HP activates β-catenin expression (76, 109, 110) such that
β-catenin activates its expression via HP as a positive feedback
mechanism to induce intestinal metaplasia. Initially, intestinal
metaplasia is dependent on cagA (111) and remains latently
independent even after HP eradication (112).

EGFR
EGFR is a member of the ErB family which is structurally related
to tyrosine kinase receptors Her1 (EGFR or ErB-1), Her2 (ErB-2),
Her3 (ErB-3), and Her4 (ErB-4) (113). Epidermal growth factor
receptors (EGFR) are cell surface expressed proteins. EGFR is
a target for Epidermal Growth Factor (EGF) and Transforming
Growth Factor–alpha (TGF-alpha) ligands to stimulate cellular
proliferation. EGFR is expressed in several carcinomas and
induces cellular transformation (114). Those carcinomas are
EGFR-dependent in their survival and growth (114).

HP keeps in balance an epithelial proliferation/apoptosis
ratio (96, 115, 116). HP increases such ratio via activation of
EGFR (117, 118) i.e., HP increases cellular proliferation through
activation of EGFR.

Targeting EGFR, perhaps as a too potent strategy for
prevention of HP-inducing gastric cancer; due to its ability to
induce excessive apoptosis and/or “oncogenic shock” (113, 119).

INFLAMMATION AS A RESULT OF
HELICOBACTER PYLORI—HUMAN
INTERACTIONS

The correlation between gastric inflammation and ulcers,
gastritis, and gastric cancer had been first explored by Stahl
in 1728 and Nevpeu as soon as 1821 (1) and later on by
many other groups [for a review see: Harguindey, (7)]. HP
is a chronic infection that leads to chronic inflammation (41,
120) and so promotes tumorigenesis (gastric cancer) (121, 122).
The inflammatory response induced by HP leads to the release
of mutagenic substances e.g., metabolites of inducible nitric
oxide synthase (iNOS). Nitric oxide can result in a change
in reactive nitrogen species that are found in DNA, proteins,
etc. (14). Therefore, HP releases free radicals and removes
antioxidant agents.

Phospholipase A2 (PLA2)
Phospholipase A2 is an enzyme that catalyzes the production
of arachidonic acid from fatty acids. Arachidonic acid is further
converted to prostaglandins and Leukotriene by cyclooxygenase
and lipoxygenases enzymes, respectively. HP activates the
Phospholipase A2 enzyme (PLA2) (123, 124) (see Figure 1).

Cyclooxygenase Enzyme 1 and 2
(COX-1,−2)
Cyclooxygenase 1, and 2 (COX-1,−2) are enzymes that catalyze
the conversion of prostanoid to prostaglandins. Prostanoid
synthesis is thought to be cytoprotective to the stomach
and increases production of the pro-aggregatory prostanoid,
thromboxane, by platelets (125) (see Figure 1). Alternatively,
COX-2 induction by TNF-alpha, INF-gamma, and IL-1 (126–
131) is associated with colorectal cancer (132), and HP activates
PLA2 and TNF-alpha expression (133–135). Also, COX-2 is
present in the atrophic area and malignant gastric lesions (125,
136). Overexpression of COX-2 prevents apoptosis (137). In this
way, COX-2 might support the tumorigenic potential of HP.

Leukotriene
Leukotriene is produced from arachidonic acid by the activity
of the 5-Lipooxygenase enzyme, and this is accompanied by the
release of histamine (see Figure 1). Leukotriene is associated with
gastritis (138, 139), and its receptors have been found to be
overexpressed in gastric cancer (140). Leukotriene receptors are
persistent in the epithelium of the stomach even after eradication
of HP (141).

In summary, HP is related to eicosanoids at multiple levels to
create a sustainable chronic inflammatory environment that leads
to initiation, development, and progression of gastric cancer.

ACID-BASE CONSIDERATIONS IN
ETIOPATHOGENESIS AND THERAPY

Last but not least, IL-1β is a TH1 cytokine having a strong
acid production inhibitory property (14, 142). Thus, it is
not surprising that IL-1β has a pivotal role in initiating the
development of gastric adenocarcinomas (7, 143) since inhibition
of acid production is a significant step in developing gastric
cancer (144). Together with cagA+, IL-1β overexpression, it also
increases the prevalence of gastric adenocarcinomas (14). TNF-α
also inhibits gastric acid secretion (145), and this is also correlated
with gastric cancer (146). All these situations can be inserted
within the concept of pH-direct and pH-indirect gastrointestinal
oncogenesis [for a review, see Harguindey, (7); Table 1].

NOTES IN THE MANAGEMENT OF HP
INFECTION

Antibiotics represent the backbone of the currently used strategy
of triple therapy. This “triple therapy” strategy consists of two
antibiotics (Clarithromycin and Amoxicillin) for HP eradication
plus an acid-suppressing agent, usually a proton pump inhibitor
to alter the bacterial microenvironment and reduce gastric pain.

Antibacterial administration not only leads to post-
elimination complications [e.g., the development of esophageal
adenocarcinoma, of asthma, of metabolic disorders, etc. (147)].
Furthermore, the efficacy of antibiotics are questionable due to
(i) uncertainty of antibiotic ability to create stomach sterility
(38), (ii) prevention of HP’s tumorigenicity (120), or even
(iii) induction cost of resistance rather than diminishing
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FIGURE 1 | A model that represents the H. pylori—host’s eicosanoids interactions.

microbial-host co-evolution (i.e., perturbation of ecological
interactions) (25, 148).

- Clarithromycin is a semi-synthetic macrolide antibiotic
derived from erythromycin which at the same time is
originated from Streptomyces erythreus (112, 149). It binds
to the part of the ribosome (50s ribosomal subunit), and so
it affects peptide translation. In addition to its bactericidal
activity, Clarithromycin inhibits the production of superoxide
that is released from neutrophils and other white blood cells
(150). Clarithromycin has amembrane stabilizer property and,
so, inhibits the release of pro-inflammatory mediators (151).
Clarithromycin inhibits IL-8 production through affecting AP-
1 and NF-kappa B expression. So, it is useful in treating HP
infection (152, 153). That is why Clarithromycin represents
the core of the three-pronged therapy approach. However, if
Clarithromycin failed, Levofloxacin could be used.

- Levofloxacin is a suggestive substitue for Clarithromycin
resistant strains (154, 155), although Levofloxacin might
induce localized inflammation in the form of tendinitis or
tendon rupture (156–158).

- Amoxicillin is a semi-synthetic Beta-Lactam antibiotic
derived from Penicillium notatum. It inhibits bacterial cell
wall synthesis. Amoxicillin has a high therapeutic index
(high safety profile), and it can be combined with Clavulanic
acid if some strains develop Beta-lactamase enzymatic
inhibition. Metronidazole is a substitute in the case of
penicillin hypersensitivity.

- Metronidazole is a nitroimidazole compound that acts against
anaerobic bacteria and protozoa. Metronidazole is a prodrug
activated by an unusual enzymatic system, the Pyruvate:
Ferredoxin oxidoreductase (PFO) found in hydrogenosome
(an anaerobic version of mitochondrion) (159). PFO leads to
activation of Metronidazole, and the product of this reaction
leads to the destruction of the helical structure of the DNA of
the microorganism.

- Acid-suppressive agents: In the past, clinicians used H2-
receptor antagonists, e.g., Cimetidine, which was later
substituted by Famotidine because of drug side effects of the
former. Currently, using proton pump inhibitors (PPIs) have
become most popular. Moreover, it has also been shown that
omeprazole and its analogs may behave as Helicobacter pylori
urease inhibitors (160). Two very recent reports add much
to the use of proton pumps inhibitors in HP eradication.
One shows that the genotypic polymorphisms of HP may
be predictive of the of the optimum PPI dose to improve
the therapeutic outcome (161). The other highly support the
use of proton pump inhibitors in the HP-mediated gastric
atrophy eradication approaches (162). However, it appears
clear actually that the use of PPI should be mandatory in
the prevention of gastric cancer relapses after endoscopic
submucosal dissection for early gastric cancer (163), and this
is of course of paramount importance. A role of pH and
proton pumps for the growth of a variety of infectious agents
has been provided, and it is still under a challenging debate
(164). However, it is impressive how the involvement of proton
pumps exert a central role a specificity in infectivity of so
many microbes and parasites, in a way that proton pump
inhibition has proven to induce an apparent anti-infective
effect. This has been shown in many bacteria such as of course
M. Tuberculosis, where the PPI lansoprazole seems to exert its
action through a specific target to cytochrome bc1 (165); but
also Salmonella enteric infection, where Omeprazole interferes
with virulence and inflammation in infected cells (166); in
experimental Clostridium difficile infection in mice (167).
Some research on new compounds based on biologically
active peptide against proton pumps seems to generically
support these data (168). Moreover, PPI has been shown to
be effective against a series of protozoa, yeasts, and amoebas,
including Giardia lamblia (169), Trichomonas vaginalis (170),
Plasmodium falciparum (171). The use of appears promising
in yeasts (172), and Dictyostelium discoideum (173, 174)
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TABLE 1 | Shows some factors that govern H. pylori—human (host) that

mediates carcinogenesis.

H. pylori related factors Human related factors

Urease Beta-catenin

Carbonic Anhydrase

VacA

CagA EGFR

Lewis Antigen

BabA2

infections, where a role of proton pumps in intracellular
replication has been shown. Therefore, PPIs have a direct
bactericidal activity (175–179). This represented an additional
antibiotic-like measure within the triple therapy strategy.

- This suppression is beneficial for gastric atrophy. Therefore,
in this respect, PPIs might be equivalent to IL-1β and TNF-α.
So, it will be wise if someone raises that PPIs perhaps could
support gastric atrophy and hypochlorida (180). However, this
is not a case, because PPIs show a promising potential effect in
treating cancer (181–184).

Recently, the concept of quadruple therapy has also been
introduced to the development of drug resistance (185), which
reflects the unusual ability of HP to adapt.

Administering of NSAIDs as COX-inhibitors is considered
as a potential strategy for preventing the development of gastric
cancer because they decrease and attenuate the inflammatory
environments and so prevent and/or delay tumor progression.
However, cyclooxygenase inhibition will prevent mucous
formation that leads to a decrease of the M/A ratio and
so increases adherence phenotypes that result in malignant
transformed consequences. That is why the administration of
NSAIDs to prevent gastric cancer becomes questionable. Part of
this idea has been considered previously (186). More comments
on anti-inflammatory drugs include:

1) Prevention of PGE-synthesis might alter population dynamics
through suppression of M phenotypes as well as alters the
entire population by its bactericidal activity (97, 187–190).

2) HP infection potentiates Aspirin-induced gastric injury (191).
3) Administration of Aspirin results in increasing of Leukotriene

production (192). In this regard, the role of Aspirin
in preventing carcinogenesis becomes questionable unless
certain tumors rely on PGs rather than Leukotriene.

4) Most probably, administration of steroids will be beneficial
due to (i) it decreases incidence of inflammation and so
becomes more similar to malaria-selection for populations
(193), (ii) the fact that steroids (immunosuppressive therapy)
in mice does not alter HP colonization (194, 195) and so it
is superior to NSAIDs, (iii) steroid as immunosuppressant
is beneficial in delaying and/or preventing gastric atrophy,
and finally, (iv) HP elicits and activates Phospholipase-A2;
where PL-A2 is a critical player in producing the inflammatory
mediators, e.g., Prostaglandins, Leukotrienes, etc. (123, 124).
Interestingly, down-regulation of inflammatory response

might, represent a potential preventive strategy for developing
gastric cancer. However, chronic administration of steroids
might lead to bone marrow suppression and adrenal atrophy.

Rendering HP to acquire the cagA Island, and/or reversing
the HP population to become cagA- might represent
potential preventive strategies against HP induction of gastric
adenocarcinoma as well as serving a protective role against
developing esophageal adenocarcinoma and other diseases.

DOES HP BEHAVE LIKE A CANCER CELL?

Tissue acidification is a framework of activities from the internal
compartments of the cells to the extracellular microenvironment.
The cellular events include the multifunction cascade of internal
vesicles, from endosome to phagosome, but this process is highly
dependent on the cytosolic pH, that has to be considered a key
factor is dictating the vesicle fission and/or fusion. We know
for instance that the lipid composition of both the internal and
extracellular vesicles may change depending on the pH, and this
is particularly true under tumor condition (196). The nature
and function of acidic vesicles markedly change dependently on
the pH condition, thus conditioning the level of maturation of
the vesicles themselves. From a mechanistic point of view the
role of proton pumps is critical in orchestrating the pH control
in both the intracellular and extracellular microenvironment,
and this, in turn, has a crucial role in regulating both the
intracellular pathway following membrane receptors triggering
(e.g., apoptotic pathways) and the activation of a series of
enzymatic cascades, such as caspases. Between the proton pumps,
the V-ATPase seem to exert a central role as pH sensors (197). V-
ATPase has a crucial involvement in maintaining the intracellular
pH gradients in normal condition, through a continuous H+

transferring from the cytosol to the acidic vesicles. This activity,
on the one hand, avoids acidification of the cytosol, on the other
hand, maintain an acidic pH within the internal vacuoles (198).
This background may explain a mechanism that pathogenic
bacteria use to evade internal killing through alterations in pH
homeostasis. The pathogenetic mechanism of HP, in fact, include
a pHmodulator such as urease. However, to date, it is not entirely
clear whether the acidification derangement is aimed at targeting
the pH regulation of the bacterium itself or the pH of the gastric
environment where the bacterium lives. By analogy with the M.
tuberculosis, we know that the normal phagosomal acidification
fails to develop because the bacterium interferes with internal
vesicles maturation. However, we don’t focus enough on both the
mycobacterial effectors that inhibit vacuoles maturation and the
real mechanism of action.

Similarities Between HP and Cancer Cells
This, on the one hand, supports the use of PPI as a new class
of anti-infectious agents without a clear antibiotic activity, on
the other hand, raises the interesting hypothesis that microbial
agents may behave like tumor cells in their ability to select cells
able to survive in the acidic microenvironment. Some analogies
between unicellular microorganisms and malignant tumors cells
have been provided in the last decade. The most striking evidence
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of this amoeba-like behavior of cancer cells came from the way
tumor cells feed on other cells when starved or placed in low
nutrient supply conditions. This was called tumor cannibalism
(199, 200). Moreover, a protein and a gene in common between
cancer cells and amoebas have been described (TM9SF4) and
recalled Tumor Cannibalism Associated Protein 1 (TUCAP-
1) (201). That behavior was very similar to the one used by
unicellular microorganisms against bacteria (202). Intriguingly,
TUCAP-1 has been shown to be involved in tumor acidification
by modulating the activity of proton pumps, such as V-ATPases
(203). All in all these results led to hypothesize that cancer cells
came back to a very primitive condition (atavistic state) where the
cells aimed to survive against the other living beings (204).

Moreover, it has been shown as proton pump inhibitors exert
a particular antibacterial activity against HP in vitro, and it was
clearly pH dependent. In fact, the bactericidal activity specifically
against both resting (in the buffer) and growing (in broth) HP
was significantly higher at pH 5 as compared to that at pH 7.
On the other hand, we know that not only cancer neoplasms are
acidic (205) but that both cancer cells and tumors are extremely
sensitive to proton pump inhibitors, at pre-clinical and clinical
levels (181), and there is a list of proton exchangers inhibitors
that have been proven highly effective against cancer (198).

All in all, there are many analogies in general between
microbes and cancer cells, but most of all between HP and
cancer cells. A question, however, remains open actually. Does
HP behave like a cancer cell? Or does the cancer cell that indeed
acts the HP?

CONCLUSION

HP could be seen as a naturally occurring, “acquired normal
flora” and immunomodulating bacterium. It is evolutionarily
designed for co-existence with rather than extinction of
other bacterial flora. HP induced inflammation might, under
certain circumstances, stimulate Prostaglandin E2 (PGE-2)
which restores the mucous membrane of the stomach to
normal homeostasis. This habitat restoration re-populates the
mucous adherent phenotype (M) and so re-structures levels
of M phenotypes into the already existing epithelial adherent
phenotypes (A) In other words, the presence of mucus helps to
maintain HP diversity as well as to stabilize the population size of

HP in the stomach. Perhaps the presence of mucus can represent
a proxy for the M-phenotype distribution as it relates to (i) the
provision of L-lactic acid as a growth enhancer (206) and (ii) how
HP obtains benefits from the mucosal flora which is necessary
for its survival (207). Further, the normal epithelium is a suitable
habitat for the A phenotype (208) instead of an epithelium that is
undergoing intestinal metaplasia (fragmentized habitat).

Chronic inflammation results in the creation of unfavorable
habitat, by altering pH, around normal cells which instigated
on their malignant transformation (209). This environmental
change leads to (i) selection and/or elicits phenotypic plasticity
of human cells to become acidophilic phenotypes (i.e., the
“cave fish’s principle”) (210) and (ii) promotion of transformed
phenotypes’ fitness using spite strategy (211). However,
HP suppresses acid production. Therefore, could cancer be
considered a strategic defense against HP? In other words, could
cancer be represented as an aggressive immune response against
HP? We believe that it is time to change the monolithic model
that misrepresents HP as an inducer of gastric carcinogenesis as
a purpose.
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16. Klupinska G, Wiśniewska-Jarosinska M, Harasiuk A, Chojnacki C, Stec-
Michalska K, Błasiak J, et al. Nocturnal secretion of melatonin in
patients with upper digestive tract disorders. J Physiol Pharmacol. (2006)
57(Suppl. 5):41–50.

17. Tan D-X, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One
molecule, many derivatives: a never-ending interaction of melatonin with
reactive oxygen and nitrogen species? J Pineal Res. (2007) 42:28–42.
doi: 10.1111/j.1600-079X.2006.00407.x

18. Sobala GM, Schorah CJ, Shires S, Lynch DA, Gallacher B, Dixon MF, et
al. Effect of eradication of Helicobacter pylori on gastric juice ascorbic acid
concentrations. Gut (1993) 34:1038–41. doi: 10.1136/gut.34.8.1038

19. Correa P, Malcom G, Schmidt B, Fontham E, Ruiz B, Bravo JC, et al. Review
article: antioxidant micronutrients and gastric cancer. Aliment Pharmacol

Ther. (1998) 12(Suppl. 1):73–82. doi: 10.1111/j.1365-2036.1998.00006.x
20. Correa P, Fox J, Fontham E, Ruiz B, Lin YP, Zavala D, et al. Helicobacter

pylori and gastric carcinoma. Serum antibody prevalence in populations with
contrasting cancer risks. Cancer (1990) 66:2569–74.

21. Bashir AHH, Yousif SM, Mahmoud MOA. Clinicoepidemiological study in
Sudanese patients : prevalence and effect of eradicative triple therapy on extra
digestive Helicobacter pylori skin manifestations , EdHpSm. Clin Rev Opin.

(2011) 3:14–19.
22. Migneco A, Ojetti V, Specchia L, Franceschi F, Candelli M, Mettimano M,

et al. Eradication of Helicobacter pylori infection improves blood pressure
values in patients affected by hypertension. Helicobacter (2003) 8:585–9.
doi: 10.1111/j.1523-5378.2003.00180.x

23. Strachan DP. Non-gastrointestinal consequences of
Helicobacter pylori infection. Br Med Bull. (1998) 54:87–93.
doi: 10.1093/oxfordjournals.bmb.a011684

24. Jeon CY, Haan MN, Cheng C, Clayton ER, Mayeda ER, Miller JW, et al.
Helicobacter pylori infection is associated with an increased rate of diabetes.
Diabetes Care (2012) 35:520–5. doi: 10.2337/dc11-1043

25. Blaser MJ, Atherton JC. Helicobacter pylori persistence: biology and disease.
J Clin Invest. (2004) 113:321–33. doi: 10.1172/JCI20925

26. Chen Y, Blaser MJ. Helicobacter pylori colonization is inversely associated
with childhood asthma. J Infect Dis. (2008) 198:553–60. doi: 10.1086/590158

27. Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, Taube C, et al.
Helicobacter pylori infection prevents allergic asthma in mouse models
through the induction of regulatory T cells. J Clin Invest. (2011) 121:3088–93.
doi: 10.1172/JCI45041

28. Perry S, de Jong BC, Solnick JV, de la Luz Sanchez M, Yang S, Lin
PL, et al. Infection with Helicobacter pylori is associated with protection
against tuberculosis. PLoS ONE (2010) 5:e8804. doi: 10.1371/journal.pone.
0008804

29. Sipponen P, Hyvärinen H. Role of Helicobacter pylori in the pathogenesis of
gastritis, peptic ulcer and gastric cancer. Scand J Gastroenterol Suppl. (1993)
196:3–6.

30. de Jong D, van der Hulst RW, Pals G, van Dijk WC, van der Ende A,
Tytgat GN, et al. Gastric non-Hodgkin lymphomas of mucosa-associated
lymphoid tissue are not associated with more aggressive Helicobacter

pylori strains as identified by CagA. Am J Clin Pathol. (1996) 106:670–5.
doi: 10.1093/ajcp/106.5.670

31. Blaser MJ. Intrastrain differences in Helicobacter pylori: a key question in
mucosal damage? Ann Med (1995) 27:559–63.

32. Blaser MJ. Heterogeneity of Helicobacter pylori. Eur J Gastroenterol Hepatol.
(1997) 9(Suppl. 1):S3–6; discussion: S6–7.

33. Islami F, Kamangar F. Helicobacter pylori and esophageal
cancer risk: a meta-analysis. Cancer Prev Res. (2008) 1:329–38.
doi: 10.1158/1940-6207.CAPR-08-0109

34. Correa P, Fontham ET, Bravo JC, Bravo LE, Ruiz B, Zarama G, et al.
Chemoprevention of gastric dysplasia: randomized trial of antioxidant
supplements and anti-helicobacter pylori therapy. J Natl Cancer Inst. (2000)
92:1881–8. doi: 10.1093/jnci/92.23.1881

35. Wong BCY, Lam SK, Wong WM, Chen JS, Zheng TT, Feng RE, et al.
Helicobacter pylori eradication to prevent gastric cancer in a high-risk
region of China: a randomized controlled trial. JAMA (2004) 291:187–94.
doi: 10.1001/jama.291.2.187

36. Wu CY, Kuo KN, Wu MS, Chen YJ, Wang CB, Lin JT. Early
Helicobacter pylori eradication decreases risk of gastric cancer in patients
with peptic ulcer disease. Gastroenterology (2009) 137:1641–8.e1–2.
doi: 10.1053/j.gastro.2009.07.060

37. Blaser MJ. Disappearing microbiota: Helicobacter pylori protection
against esophageal adenocarcinoma. Cancer Prev Res. (2008) 1:308–11.
doi: 10.1158/1940-6207.CAPR-08-0170

38. Kirschner DE, BlaserMJ. The dynamics ofHelicobacter pylori infection of the
human stomach. J Theor Biol. (1995) 176:281–90. doi: 10.1006/jtbi.1995.0198

39. Celli JP, Turner BS, Afdhal NH, Keates S, Ghiran I, Kelly CP, et al.
Helicobacter pylorimoves through mucus by reducing mucin viscoelasticity.
Proc Natl Acad Sci USA. (2009) 106:14321–6. doi: 10.1073/pnas.0903438106

40. Fan X, Gunasena H, Cheng Z, Espejo R, Crowe SE, Ernst PB, et al.
Helicobacter pylori urease binds to class II MHC on gastric epithelial
cells and induces their apoptosis. J Immunol. (2000) 165:1918–24.
doi: 10.4049/jimmunol.165.4.1918

41. Mortazavi M, Akbarzadeh A, Farhangi A, Mehrabi M, Hosseinian Z,
Mokhtari MJ, et al. Immunosuppressive proteins isolated from spiral and
coccoid cytoplasmic solutions of Helicobacter pylori. Pakistan J Biol Sci.

(2011) 14:128–32. doi: 10.3923/pjbs.2011.128.132
42. Figura N, Valassina M. Helicobacter pylori determinants of pathogenicity. J

Chemother. (1999) 11:591–600. doi: 10.1179/joc.1999.11.6.591
43. Ghiara P, Marchetti M, Blaser MJ, Tummuru MK, Cover TL, Segal ED, et al.

Role of theHelicobacter pylori virulence factors vacuolating cytotoxin, CagA,
and urease in a mouse model of disease. Infect Immun. (1995) 63:4154–60.

44. Mobley HL, Hu LT, Foxal PA. Helicobacter pylori urease: properties
and role in pathogenesis. Scand J Gastroenterol Suppl. (1991) 187:39–46.
doi: 10.3109/00365529109098223

45. Mobley HL, Island MD, Hausinger RP. Molecular biology of microbial
ureases.Microbiol Rev .(1995) 59:451–80.

46. Weeks DL, Eskandari S, Scott DR, Sachs G. A H+-gated urea channel:
the link between Helicobacter pylori urease and gastric colonization. Science
(2000) 287:482–5. doi: 10.1126/science.287.5452.482

47. Scott DR, Marcus EA, Weeks DL, Lee A, Melchers K, Sachs G.
Expression of the Helicobacter pylori ureI gene is required for acidic
pH activation of cytoplasmic urease. Infect Immun. (2000) 68:470–7.
doi: 10.1128/IAI.68.2.470-477.2000

48. McGee DJ, Radcliff FJ, Mendz GL, Ferrero RL, Mobley HL. Helicobacter
pylori rocF is required for arginase activity and acid protection in vitro but is
not essential for colonization of mice or for urease activity. J Bacteriol. (1999)
181:7314–22.

49. Supuran CT, Capasso C. An overview of the bacterial carbonic anhydrases.
Metabolites (2017) 7:E56. doi: 10.3390/metabo7040056

50. Ferreira-Martins D, McCormick SD, Campos A, Lopes-Marques M, Osório
H, Coimbra J, et al. A cytosolic carbonic anhydrase molecular switch
occurs in the gills of metamorphic sea lamprey. Sci Rep. (2016) 6:33954.
doi: 10.1038/srep33954

51. Dodgson SJ, Forster RE, Storey BT, Mela L. Mitochondrial carbonic
anhydrase. Proc Natl Acad Sci USA. (1980) 77:5562–66.

52. Supuran CT. Carbonic anhydrases: novel therapeutic applications
for inhibitors and activators. Nat Rev Drug Discov. (2008) 7:168–81.
doi: 10.1038/nrd2467

53. Nishimori I, Onishi S, Takeuchi H, Supuran CT. The alpha and beta classes
carbonic anhydrases from Helicobacter pylori as novel drug targets. Curr
Pharm Des. (2008) 14:622–30. doi: 10.2174/138161208783877875

54. Buzás GM, Supuran CT. The history and rationale of using carbonic
anhydrase inhibitors in the treatment of peptic ulcers. In memoriam

Frontiers in Oncology | www.frontiersin.org 8 February 2019 | Volume 9 | Article 75

https://doi.org/10.1371/journal.pone.0009645
https://doi.org/10.1128/JCM.41.3.1326-1328.2003
https://doi.org/10.1038/nrc703
https://doi.org/10.3748/wjg.v9.i10.2137
https://doi.org/10.1111/j.1600-079X.2006.00407.x
https://doi.org/10.1136/gut.34.8.1038
https://doi.org/10.1111/j.1365-2036.1998.00006.x
https://doi.org/10.1111/j.1523-5378.2003.00180.x
https://doi.org/10.1093/oxfordjournals.bmb.a011684
https://doi.org/10.2337/dc11-1043
https://doi.org/10.1172/JCI20925
https://doi.org/10.1086/590158
https://doi.org/10.1172/JCI45041
https://doi.org/10.1371/journal.pone.0008804
https://doi.org/10.1093/ajcp/106.5.670
https://doi.org/10.1158/1940-6207.CAPR-08-0109
https://doi.org/10.1093/jnci/92.23.1881
https://doi.org/10.1001/jama.291.2.187
https://doi.org/10.1053/j.gastro.2009.07.060
https://doi.org/10.1158/1940-6207.CAPR-08-0170
https://doi.org/10.1006/jtbi.1995.0198
https://doi.org/10.1073/pnas.0903438106
https://doi.org/10.4049/jimmunol.165.4.1918
https://doi.org/10.3923/pjbs.2011.128.132
https://doi.org/10.1179/joc.1999.11.6.591
https://doi.org/10.3109/00365529109098223
https://doi.org/10.1126/science.287.5452.482
https://doi.org/10.1128/IAI.68.2.470-477.2000
https://doi.org/10.3390/metabo7040056
https://doi.org/10.1038/srep33954
https://doi.org/10.1038/nrd2467
https://doi.org/10.2174/138161208783877875
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Alfarouk et al. Helicobacter pylori and Gastric Cancer
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