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T aking its incidence and prognostic importance into
account, acute ST-segment–elevation myocardial infarc-

tion (STEMI) can be regarded as one of the most important
challenges faced in the field of clinical cardiology. Coronary
artery disease and particularly acute myocardial infarction
(AMI) are the leading causes of death and disability
worldwide.1 Despite remarkable progress in the fight, partic-
ularly in the past 3 decades, there is still room for
improvement. Indeed, the standardized 1-year death rate for
STEMI has nearly halved over a 25-year period.2 This decrease
in mortality is attributable to outstanding achievement
accomplished in the limitation of final myocardial infarct
(MI) size by introduction of efficacious reperfusion methods
such as fibrinolysis and primary percutaneous coronary
intervention (pPCI) during that period. Currently, reopening
of the occluded epicardial coronary artery by timely pPCI is
widely accepted as the most effective treatment for patients
presenting with an acute STEMI in limiting final MI size and
preserving left ventricular (LV) function.3,4 However, despite
successful reperfusion by pPCI, mortality (15%)5 and partic-
ularly post-MI morbidity still remain significant at 1 year.1,6,7

This disappointing course has been partly attributed to the

potential detrimental effects of reperfusion itself. Indeed,
reperfusion may lead to a further loss of cardiomyocytes that
are succeeded to survive after initial ischemic insult in the
subtended myocardial territory.

Hemodynamic manifestations of this postreperfusion pro-
cess include “no-reflow phenomenon”—severe myocardial
malperfusion despite restoration of epicardial coronary
patency,8–10 which has been reported to occur in up to 50%
of patients with STEMI following pPCI despite restoration of
thrombolysis in myocardial flow 3 in the epicardial coronary
artery.11 In general, myocardial no-reflow phenomenon refers
to severe microvascular injury that is known to be associated
with impaired LV function12,13 and poor prognosis14,15 in
patients undergoing successful pPCI. In addition, the magni-
tude of the preserved microvasculature at the acute phase is
one of the major determinants of the long-term functional and
structural myocardial recovery.16 Although it occurs in every
patient undergoing pPCI at varying intensity, identification of
coronary microvascular injury depends on the diagnostic
capability of the method used in its detection. Considering this
high incidence and its important clinical consequences,14,15 a
better understanding of the mechanisms underlying severe
coronary microvascular injury resulting in myocardial malper-
fusion (myocardial tissue “no reflow”) after pPCI is mandatory
to be able to develop efficacious therapeutic interventions for
preventing this complication of STEMI. Nevertheless, our
current knowledge on the pathophysiology of microvascular
damage after pPCI is poor, and hence recommendation of risk
prediction and therapeutic interventions could be premature
and limited.

Notably, given the repeated failure of recent trials aiming
to protect microcirculation during pPCI, it is obvious that
identification of an appropriate therapeutic target linked to
the underpinning mechanism has utmost clinical importance
in the treatment of patients who develop extensive microvas-
cular injury after pPCI. Although there is not yet a widely
accepted and proven therapeutic intervention to limit
postreperfusion microvascular injury, examination of
microvascular integrity in the catheterization laboratory
immediately upon completion of pPCI17 can provide a unique
opportunity for timely identification of this patient subset with

From the Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
(M.S., B.U., Z.B., S.U.); Radboud University Medical Center, Nijmegen, NL
(N.v.R.); The Hatter Cardiovascular Institute, Institute of Cardiovascular
Science, University College London, London, United Kingdom (H.B., D.J.H.);
Papworth Hospital NHS Trust, Cambridge, United Kingdom (H.B., D.J.H.);
National Heart Research Institute Singapore, National Heart Centre Singapore,
Singapore (D.J.H.); Cardiovascular and Metabolic Disorders Program, Duke-
National University of Singapore, Singapore (D.J.H.); Yong Loo Lin School of
Medicine, National University Singapore, Singapore (D.J.H.); The National
Institute of Health Research University College London Hospitals Biomedical
Research Centre, London, United Kingdom (D.J.H.); Barts Heart Centre,
St Bartholomew’s Hospital, London, United Kingdom (D.J.H.).

Correspondence to: Murat Sezer, MD, Department of Cardiology, Istanbul
Faculty of Medicine, Istanbul University, Capa, Istanbul, Turkey. E-mails:
sezerm@istanbul.edu.tr, sezermr@gmail.com

J Am Heart Assoc. 2018;7:e009949. DOI: 10.1161/JAHA.118.009949.

ª 2018 The Authors. Published on behalf of the American Heart Association,
Inc., by Wiley. This is an open access article under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivs License, which permits use
and distribution in any medium, provided the original work is properly cited,
the use is non-commercial and no modifications or adaptations are made.

DOI: 10.1161/JAHA.118.009949 Journal of the American Heart Association 1

CONTEMPORARY REVIEW

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


severe microvascular injury who may benefit from early
adjunctive therapies within the therapeutic window.

The aim of this review is to provide an integrative
perspective on the pathophysiological mechanisms underlying
post-pPCI coronary microvascular injury and does not
consider discussing the potential cellular and molecular
mechanisms as cardiomyocyte targets for cardioprotection.
In this review, we propose an integrative categorization
scheme, which can provide comprehensive pathophysiological
insights into post-pPCI microvascular injury and potentially
pave the way for therapeutic targeting of central pathologies
behind the myocardial no-reflow phenomenon in the future.

Mechanisms of Microvascular Injury in
Reperfused AMI
Obviously, reestablishing complete and sustained epicardial
patency in a timely manner is the most critical step in
salvaging ischemic myocardium from impending infarction.
However, prompt restoration of coronary flow by reopening
the occluded infarct-related artery can itself paradoxically
induce coronary microvascular injury and does not imme-
diately terminate ongoing cardiomyocyte loss at the
myocardial area at risk (AAR). During coronary occlusion
and after reperfusion, dynamic pathological changes
observed in both the microvascular and interstitial territories
seem to contribute substantially to this progressive car-
diomyocyte damage in the subtended myocardial area.18

Functional and structural consequences of the cortege of
pathological changes temporally and spatially evolving at
consecutive segments of myocardial circulation seem to
determine the fate of the subtended myocardial territory

(Table). In this regard, a new classification scheme using
compartmental modeling (Figure 1) might help both to
elucidate individual contributions of various factors to post-
pPCI microvascular injury and to reappraise any interplay
between them.

Indeed, duration of ischemia is considered as the most
important determinant of the magnitude of the microvascular
damage and its recovery after STEMI.19,20 However, in a rat
model of acute myocardial infarction, it has been recently
demonstrated that ischemia alone induces only mild morpho-
logical changes in the coronary microcirculation with
increased permeability. Nevertheless, ischemia followed by
reperfusion has been shown to induce massive microvascular
injury.21 Accordingly, on the temporal scale, beginning from
the preocclusion period, interactions among the dynamic
events evolved during both coronary occlusion and reperfu-
sion seem to determine the eventual magnitude of microvas-
cular damage and cardiomyocyte loss in the subtended
microcirculatory territory over time (Figure 2). In addition, the
functional status of the patient’s coronary microcirculation
before the STEMI (preexisting microvascular impairment),22

status of the infarct-related artery beyond the culprit lesion,
perfusion characteristics of the nonculprit vessels, presence
of coexistent pathologies such as diabetes mellitus, and
overall status and performance of the left ventricle and
individual susceptibility23 contribute to the extent of
microvascular damage at the subtended myocardial territory
following reperfusion.

Following reperfusion, mechanisms involved in the devel-
opment of microvascular impairment can categorically be
classified under 2 major headings as (1) intraluminal
microvascular obstruction and (2) extravascular compression

Table. Temporal and Spatial Changes Taking Place at the Consecutive Segments of Myocardial Circulation During Coronary
Occlusion and After Mechanical Reperfusion

Phase

Site

Total Coronary
Resistance Coronary Flow

Epicardial
Coronaries Arterioles Capillaries

Cardiomyocytes
and Interstitium

Early ischemia Occluded Reactive dilatation
(adaptive response)

��� Functional
abnormality,
cellular edema

Immeasurably high
(predominantly
epicardial)

No-flow

Prolonged
ischemia

Occluded Paralysis (both ischemic
insult and adaptive
response)

Increased permeability,
loss of integrity, in situ
thrombosis

Ischemic
necrosis

Immeasurably high
(predominantly
epicardial)

No-flow

Initial phase of
reperfusion

Reopened Paralysis Obstructed by plugs and
destructed

Interstitial edema Low (predominantly
microvascular*)

Overflow

Late phase of
(established)
reperfusion

Reopened Partly recovered
constrictor response

More plugged, more leaky Deepened
edema, even
IMH

High (predominantly
microvascular*)

Normal, slow
or “no-
reflow”

Total coronary resistance: epicardial resistance+microvascular resistance. IMH indicates intramyocardial hemorrhage.
*Unless there is no additional epicardial lesion rather than the culprit one in the re-opened infarct-related artery.
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of the microcirculation. Indeed, intraluminal obstructive and
extravascular compressive pathologies both seem to operate
interconnectedly in the development of post-pPCI microvas-
cular injury. Primary contributors to intraluminal microvascu-
lar obstruction are distal thromboembolization, cellular
plugging, in situ thrombosis, and vasospasm. Besides these
intraluminal factors, cellular and/or interstitial edema,
intramyocardial hemorrhage, and increased LV filling pres-
sures are the main pathologies that may exacerbate
microvascular impairment by generating an external com-
pressive force on coronary microcirculation (Figure 1).

Coronary Microvascular Obstruction

Coronary Intraluminal Plugging
In the setting of pPCI, coronary microvascular (intraluminal)
obstruction can mainly be caused by distal thromboem-
bolism, circulating blood cells plugging and in situ

microvascular thrombosis. Intraluminal microvascular
obstruction (MVO) is regarded to be the leading pathology
behind post-pPCI myocardial malperfusion. Pathologically,
MVO first appears in the infarct core and evolves spatially
and temporally, which corresponds with progressive myocar-
dial damage occurring in the AAR after reopening the infarct-
related artery. Consistently, the MVO zone has been shown
to increase for up to 48 hours after reperfusion.24 Indeed,
after a period of ischemia, blood flow cannot be restored in
more than half of the capillaries in the myocardial AAR after
reestablishing epicardial patency.25 In ischemic-reperfused
myocardium, myocardial blood flow in certain microvascular
areas is hyperemic during the first minutes of reperfusion.
Subsequently, regional blood flow in the AAR rapidly and
progressively declines26 and reaches a plateau within 2 to
8 hours after reperfusion, resulting in a nearly 3-fold
increase in the anatomic MVO (no-reflow) zone.27 This
delayed progressive fall in blood flow in myocardial areas
that initially received adequate perfusion seems to occur due
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Figure 1. Compartmental schematization of the mechanisms behind post–primary percutaneous coronary intervention microvascular injury.
Following reperfusion, factors contributing to microvascular injury at the subtended myocardial territory can be categorized under 2 major
headings as intraluminal microvascular obstruction and extravascular compression of the microcirculation. Major pathologies contributing to
luminal obstruction are distal thromboembolization, cellular plugging, in situ thrombosis, and vasospasm. External compression of
microcirculation by cellular and/or interstitial edema, intramyocardial hemorrhage, and increased left ventricular filling pressures may also
substantially contribute to microvascular impairment by generating an external compressive force on coronary microcirculation. LVEDP
indicates left ventricular end-diastolic pressure.
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to concurrently activated intraluminal obstructive and
extravascular compressive pathologies triggered by reperfu-
sion itself. Experimental19 and clinical studies28 consistently
demonstrated a close correlation between zones of anatomic
MVO (no-reflow) and myocardial necrosis. Furthermore, in a
rat model of coronary occlusion and reperfusion, it
was shown that the no-reflow phenomenon may persist for
1 month after reperfusion and could predict infarct
expansion.29

Factors that contribute to luminal MVO after pPCI will be
reviewed below as classified in Figure 1.

Thromboembolism
In the setting of pPCI, atherothrombotic embolization from the
culprit lesion, reported to occur in 11% to 14.5% of the
procedures,30–32 is believed to be one of the leading
contributors of MVO occurring during pPCI. Distal emboliza-
tion of atherothrombotic particles during pPCI may cause both
mechanical obstructions by their mass effect and activation of

pathways that trigger in situ coagulation and inflammatory
responses in the downstream microcirculation.

In both clinical and experimental trials, subjects with distal
embolization early after reperfusion seem to have larger MI
size and more extensive microvascular damage.32,33 Consis-
tently, in a study where embolized particles during pPCI were
quantified using intracoronary Doppler wire as high-intensity
transient signals, it was demonstrated that distal embolization
might transiently reduce coronary flow, but this may not have
a marked influence on MI size and LV function.34 In addition, it
has been reported that angiographically visible distal
embolization occurring during pPCI may contribute to
myocardial damage within hours after symptom onset, but it
does not seem to have a major impact as ischemic time
increases.32

In this context, it is expected for mechanical retrieval of
epicardial thrombotic material using manual aspiration
thrombectomy devices during pPCI to substantially limit distal
embolization risk, resulting in significant reduction in the MVO
zone and MI size. However, although significantly lower distal

Cellular pluggingIn-situ thrombosis Emboliza�on

Myocardial edema

Intraluminal
Obstruc�on

Diabetes Mellitus, Metabolic 
syndrome 

Before occlusion During occlusion A�er reperfusion

Loss of vascular integrity
Hypercholesterolemia 

Inflamma�on 

Vasospasm

Hemorrhage 

Figure 2. Intraluminal and extravascular factors of microvascular injury operating on the temporal scale (before, during, and after reperfusion).
On the temporal scale, in addition to the preexisting microvascular impairment, dynamic events evolving both during coronary occlusion and
after reperfusion seem to determine the final magnitude of microvascular damage in the subtended microcirculatory territory. In the
preocclusive period, patients’ metabolic and inflammatory status and presence of diabetes mellitus, hypercholesterolemia, and hypertension
may lead to a preexisting microvascular dysfunction. During epicardial occlusion, local procoagulant activity induced by local hypoxia in the
downstream microcirculation may provide extremely suitable milieu for in situ microvascular thrombus formation. During this occlusive period,
hypoxia-induced endothelial disruption may also lead to loss of microvascular barrier function and microvascular leakage. After reperfusion,
distal thromboembolization along with edema and intramyocardial hemorrhage developed in this destructed and leaky microcirculatory
environment can markedly contribute to microvascular injury.
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embolization rates seemed to be achieved with manual
thromboaspiration compared with standard pPCI, this did not
seem to translate into improved myocardial perfusion,35

contrary to what was initially observed in meta-analyses.36

Even more importantly, most of the trials37–40 evaluating the
efficacy of manual thrombus aspiration during pPCI failed to
show any benefit of the mechanical removal of epicardial
thrombus on the limitation of MI size. Furthermore, either
routinely41,42 or selectively43 performed thromboaspiration
did not show any clinical benefit in large-scale clinical trials
and in a recent meta-analysis.44 All these negative results
suggest that different approaches to tackling epicardial
thrombus to initiate reperfusion, such as standard pPCI or
thrombectomy followed by stenting, may not be associated
with different pathological and clinical consequences. More-
over, reduction of distal embolization rates by manual
thrombectomy does not necessarily translate into decreased
infarct size and improved patient outcome. This makes the
role of distal embolization from the proximal thrombotic
occlusion in microvascular and myocardial damage during
pPCI highly controversial and helps in understanding why the
trials dealing with epicardial thrombus failed.

In light of the current data, it can be concluded that distal
thromboembolism may not be sufficient to produce extensive
microvascular injury and may contribute to MVO only to a
limited extent. Thus, it does not appear to be a major
therapeutic target for preserving capillary integrity during
pPCI.

Cellular Plugging: Role of Circulating Blood Cells
Leukocyte and platelet plugging45 and red cell aggregation46

can intensify post-pPCI MVO. After successful epicardial
recanalization, neutrophils can worsen microvascular reper-
fusion by adhering to the endothelium with platelets47 and by
releasing cytokines or other factors48 that may reduce
microvascular blood flow. Capillaries in the no-reflow zone
have been shown to contain extensive leukocyte plugging
(capillary trapping).25 This leukocyte plugging can also lead to
erythrocyte packing and rouleaux formation upstream from
mechanical obstruction. In addition, platelets and neutrophils
act synergistically in provoking microvascular injury after
reperfusion.45 Accordingly, significant relationships have been
shown between the presence of MVO and monocyte counts49

and platelet activity.50 In patients who underwent successful
pPCI, higher admission neutrophil count,51 platelet volumes,51

and neutrophil-to-lymphocyte ratio52 were shown to be
associated with increased coronary microvascular resistance,
suggesting the obstructive role of circulating blood cells
supplied by reperfusion in post-PCI microvascular impairment.

In particular, maintenance of blood flow at the coronary
microvascular segments, where capillary diameters are

reduced under an erythrocyte diameter, largely depends on
deformational capabilities of circulating blood cells and
endothelial surface layer lubricity. However, following ische-
mia and reperfusion, the shedding of the glycocalyx layer,
which covers the endothelial surface, makes the latter less
permeable and more slippery and makes capillaries more
prone to be obstructed by cellular plugging, leading to further
increase in microvascular resistance.53,54 Despite these
potential negative effects of circulatory cell plugging on
microvascular perfusion, several trials that aimed at comple-
ment inhibition,55 leukocyte integrin receptor antagonism,56

and increased local platelet inhibition57 all yielded negative
results in acute MI patients. Although it seems that circulating
blood cells could potentially be involved in intraluminal
plugging following pPCI, these might only play a limited role
in acute post-pPCI coronary microvascular impairment.
Leukocyte infiltration may be more important in infarct
healing and remodeling rather than the determination of the
extent of the MVO zone and infarct size. Therefore, the role of
leukocytes in postreperfusion myocardial damage is con-
tentious, and they do not seem to be a viable therapeutic
target for limiting reperfusion-related microcirculatory
damage.

Humoral Factors (In Situ Thrombosis)
During epicardial coronary occlusion, the local procoagulant
milieu in the downstream microcirculation is extremely
suitable for de novo (autochthonous) microvascular thrombus
formation. Local hypoxia can immediately precipitate local
coagulation by triggering homeostatic mechanisms at the
injured endothelium, which may consequently induce
microvascular thrombosis and in situ fibrin generation at the
site of local damage.58 During occlusion of an epicardial
coronary artery, tissue factor expressed from mainly hypoxic
and injured endothelial cells, together with stasis, can
strongly stimulate the coagulation cascade and de novo fibrin
formation at the microvascular level. Additionally, dysfunc-
tional endogen fibrinolysis after reperfusion following an
ischemic period, as evidenced by significantly impaired tissue
plasminogen activator release from the endothelium,59 can
also lead to inadequate removal of fibrin deposits from the
coronary microcirculation. Moreover, after its formation, it
would not be easy to sweep away this in situ formed fibrin
from the lumen via mere restoration of blood flow to the
infarcted region because of the former’s active adherence to
the vessel wall via intercellular cadherin receptors.60 Indeed,
all of the formed blood cells are already prone to being
attached to the fibrin mesh formed in the microvasculature
both passively and actively via the specific fibrin receptors on
their surfaces.61 Thus, even a small amount of intraluminal
fibrin can constitute a sticky trap for the formed blood cells
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supplied by reperfusion62 and may impede reperfusion once
the occluded epicardial artery is reopened (Figure 3).
Although in situ fibrin formation in cardiac microvasculature
after ischemia and reperfusion has received almost no
attention, autochthonous fibrin depositions in the down-
stream microcirculation have already been clearly shown in
cerebral,63,64 intestinal,65 and renal66 ischemia-reperfusion
models.

In particular, in a condition of slow flow (low shear stress),
fibrinogen also contributes to impeding microvascular flow via
facilitating red blood cell aggregation,67 mediating leukocyte-
endothelium bridging,68 and facilitating postischemic leuko-
cyte-thrombocyte interaction.69

To this end, effective removal of fibrin(ogen) depositions
from the microcirculation may result in better microvascular
perfusion. In accordance with this perspective, adjunctive low-
dose intracoronary fibrinolytic drugs (streptokinase, uroki-
nase) given immediately after successful pPCI were shown to
be associated with significantly improved microvascular
perfusion,70 decreased infarct size,71 preserved LV function,71

and improved patient outcome.72 These encouraging results73

also served as a stimulus to further explore the effect of
microvascular fibrin deposition removal using different fibri-
nolytic agent on patient outcome in a large-scale ongoing
clinical trial (T-TIME [A Trial of Low-Dose Adjunctive Alteplase
During Primary PCI]).74

In this context, autochthonous fibrin generation at the
downstream coronary microcirculation leading to in situ

thrombotic MVO may play a pivotal role in the pathogenesis
of microvascular impairment induced by ischemia and reper-
fusion. However, it is evident that large-scale clinical trials
targeting in situ microvascular thrombosis, such as the T-TIME
trial, are required to reach more conclusive results.

Vasospasm
Coronary microcirculation distal to the acute coronary
occlusion is considered as maximally dilated due to exhausted
autoregulatory function of arteriolar sphincters. However,
even during severe myocardial ischemia, which is the most
powerful stimulus known for vasodilation, a pharmacologically
recruitable vasodilator reserve may persist.75 Furthermore,
during myocardial ischemia/reperfusion (pPCI), the microcir-
culation remains highly responsive to a-adrenergic coronary
constrictor mediators. Impaired endothelial function by
ischemia and reperfusion in conjunction with the release of
soluble vasoconstrictor substances, such as serotonin and
thromboxane A2 from ruptured plaque and platelet aggre-
gates into the microcirculation may contribute to a vasospas-
tic milieu during pPCI.76 Based on these rationales, the
potential benefit of administration of adjunctive intracoronary
vasodilators—in particular adenosine, which is a potent direct
vasodilator of coronary microcirculation through stimulation
of A2 receptors—in reducing microvascular injury in patients
undergoing pPCI was examined in multiple clinical trials.
Despite previous intriguing results,77,78 in a recent clinical

Autochthonous
fibrin formation

Microvascular thrombus

Stasis

Structural 
damage

Activated 
Coagulation

Factors

Tissue 

damage

Virchow’s triad
Virchow RR. Cellular Pathology. London, Churchill, 1860

Haemostasis

Stasis 
Hypoxia

Hypoxic endothelial 
damage De novo fibrin 

forma�on 
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cells by reperfusion into 

fibrin mesh 
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Figure 3. A vicious cycle of microvascular thrombosis: During epicardial occlusion, hypoxic endothelial
damage, stasis, activated coagulation factors, and tissue factors trigger Virchow triad, which may lead to
in situ microvascular fibrin generation. After reopening of the infarct-related artery, formed blood cells
supplied by reperfusion get entrapped in to the microvascular fibrin mesh, which may lead to further stasis
and further fibrin generation.
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trial, local adjunctive intracoronary adenosine and sodium
nitroprusside administration targeting vasodilation of the
subtended microvascular bed were shown to be ineffective
in reducing MVO in patients undergoing primary PCI.79

Furthermore, in this latest and most powerful study,79 high-
dose adenosine appeared to be associated with increased
infarct size and reduced ejection fraction compared with the
control group. These findings suggested that vasodilator
agents should not be used in the setting of pPCI to prevent
reperfusion injury. In particular, vasomotor function (vasodila-
tor reserve) regulating distal pressure in the reperfused
territory can be crucial in obviating an uncontrolled and abrupt
increase in capillary pressure during reperfusion that might
otherwise be a protective mechanism against myocardial
edema and intramyocardial hemorrhage. Therefore, when the
negative results of the recent studies using potent vasodila-
tors administered as an adjunct to pPCI are taken into
account, vasomotor function at arteriolar level seems to be
protected and not be suppressed.

In light of the present data, at the current stage, the extent
of contribution and potential role of vasospasm in coronary
microvascular injury in the pPCI setting are highly controver-
sial. Therefore, adjunctive pharmacological interventions
targeting microvascular spasm to prevent microvascular
injury seem not to be beneficial in the setting of pPCI.

Extravascular Compression of the
Microcirculation
External compression of the capillary bed by interstitial and
cellular myocardial edema and intramyocardial hemorrhage
(IMH) developed in the surrounding myocardium after reper-
fusion substantially contributes to post-pPCI myocardial
malperfusion mainly by increasing total microvascular resis-
tance. Both interstitial and cellular myocardial edema and IMH
emerge as a consequence of prolonged ischemia and
reperfusion and subsequently become the major contributors
to microvascular injury by generating an external compressive
force on coronary microvasculature (Figure 4).

The capillaries may not generate a significant resistance to
myocardial blood flow in the healthy coronary circulation.
However, the capillary network is also the most susceptible
compartment to external compression generated by sur-
rounding edema and IMH, as it is assumed to have the lowest
radial force. The compressive force causes capillaries to
shrink in diameter, with any such decrease resulting in an
exponential increase in resistance, which may in turn lead to a
substantial decrease in myocardial blood flow. Theoretically,
extravascular pressure can simply be calculated as any extra
volume added to the myocardial compartment divided by
myocardial compliance. Situations like IMH and edema can

lead to both an increase in the volume of interstitial space and
a decrease in myocardial compliance80 and thus result in a
marked increase in extravascular pressure that eventually
causes substantial external microvascular compression.

During total coronary occlusion, depending on the duration
and severity of the ischemia, hypoxia-induced endothelial
disruption leading to loss of microvascular barrier function
results in microvascular leakage (MVL),81 which is the central
anatomic substrate underlying myocardial edema and hem-
orrhage occurring after establishment of reperfusion. Consis-
tently, clinical cardiac magnetic resonance (CMR) studies
have implicated a loss of microvascular barrier function in AMI
manifested as edema and IMH.82,83 Therefore, edema and
IMH, the main determinants of extravascular compressive
force, can be regarded as a consequence of MVL. In a recent
mouse I/R (Ischemia/Reperfusion) study, late gadolinium
enhancement CMR, which is believed a measure of extravas-
cular volume, and MVL quantified by histology revealed a high
degree of spatial colocalization (r=0.959).84 This finding
indicates that the microvascular barrier function is damaged
after I/R, leading to MVL, and in the acute phase of I/R, late
gadolinium enhancement CMR measures MVL. In the acute
phase of I/R, within the risk zone, the area of MVL was even
greater than that of infarct size or MVO zone and correlated
with acute ventricular dilatation. In the chronic phase, the size
of the MVL was shown to be correlated with a reduction in
LV ejection fraction. Taken together, the findings of the study,
for the first time, characterized the MVL as a major
pathological consequence of reperfused AMI. Accordingly,
when reperfusion starts after a period of occlusion, this leaky
microvasculature constitutes the major structural back-
ground for the edema and hemorrhage compressing microvas-
culature externally.

Extravascular factors potentially associated with microvas-
cular impairment after pPCI will be reviewed in an integrative
perspective approach below.

Edema (Cellular and Interstitial)
At the early stages of ischemic injury, the energy-dependent
Na+/K+ pump breaks down and myocardial cellular edema
develops. Subsequently, as ischemia deepens, endothelial
cells, along with their glycocalyx cover and capillary mem-
branes, get damaged, which renders microvasculature highly
permeable (capillary leakage). In addition, during epicardial
occlusion, due to severely increased myocardial demand
(adaptive vasodilator response) and partly to ischemic insult
(decreased contractile function), arteriolar sphincters are
supposed to lose their regulatory vasoconstrictor function.
Therefore, subtended microvascular segments are deprived of
the protection of pressure-regulating resistance arterioles at
the time when reperfusion abruptly restarts. Upon
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reperfusion, before coronary autoregulation is restored, leaky
and unguarded microcirculation is exposed to a pressure
burst due to abruptly increased capillary hydrostatic pressure,
which causes interstitial myocardial edema within early
minutes during the reactive hyperemia phase.85 Indeed,
myocardial edema is substantially exacerbated upon restora-
tion of blood flow to the ischemic microvascular territory.
Crucially, absence of reperfusion almost completely abolishes
the initial wave of edema, indicating the direct link between
reperfusion and myocardial edema formation. Contrary to the
accepted view, recent experimental and clinical studies have
stated that myocardial edema is not a stable phenomenon but
follows a bimodal pattern.86,87 The reperfusion (overperfu-
sion)-associated initial peak of edema seemed to occur rapidly
at 120 minutes after reperfusion, and the deferred wave of
edema seemed to occur due to the healing process on days 4
and 7 after reperfusion.86,87 However, Carrick and
colleagues88 reported that the severity of edema follows a
bimodal time course only in patients with accompanying IMH.
In this study, in patients without IMH, myocardial edema

seemed to evolve progressively on a unimodal time course. In
another report,89 which was a retrospective analysis of pooled
data from 3 studies, it was concluded that no bimodal edema
pattern was apparent. However, most patients in the evalu-
ated studies included in this analysis underwent a single CMR
scan at disparate times from each other, and there were no
systematic serial examinations. Finally, in the most recent
clinical and experimental studies,90,91 which were specifically
designed to provide a clear insight into the pattern of
edematous response of myocardium to MI, it has been
demonstrated that the post-MI edematous reaction is not
stable but follows a bimodal pattern regardless of the degree
of IMH.

Myocardial edema has important consequences via trig-
gering a cascade of events. First, edema itself creates an
external compressive force on capillaries by increasing
hydrostatic pressure within the interstitial space. Second,
increased stiffness and reduced compliance of the edematous
myocardium80 results in increased LV end-diastolic pressure,
which constitutes an additional external force compressing

Loss of 
capillary 
integrity

Capillary
obstruc�on

Increased 
microvascular 

resistance

Increased 
resistance to 

coronary blood 
flow

Reduced myocardial 
blood flow 

Exacerba�on of 
necrosis

Edema and 
hemorrhage

External 
compression of 

capillaries

Pre-existed 
microvascular 
impairment

Figure 4. Myocardial edema and intramyocardial hemorrhage initially emerge as a consequence of
prolonged ischemia and reperfusion, and they subsequently become one of the main contributors of the
microvascular impairment by generating an external compressive force on coronary microvasculature.
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microcirculation externally. These mechanisms, by increasing
the resistance to total myocardial blood flow, may drastically
contribute to the extent of myocardial necrosis in the AAR.

Myocardial edema can, therefore, be an important thera-
peutic target in limiting postreperfusion microvascular dam-
age. In this regard, interventions that may modulate the initial
reperfusion-driven wave of edema can be particularly appeal-
ing. To this end, during pPCI, controlled pressure or gradual
reperfusion of epicardial occlusion, with the aim of preventing
an abrupt increase in distal intracoronary and consequently
capillary hydrostatic pressures during the reactive hyperemia
phase may help to limit leakage from the capillaries and hence
may substantially reduce interstitial edema formation.92

Intramyocardial Hemorrhage
IMH has been regarded as the hallmark of severe microvas-
cular damage. IMH is observed in �30% to 45% of reperfused
patients with STEMI.88,93,94 However, the temporal evolution
of IMH has not yet been completely understood. Using T2*
CMR imaging, which is thought to be relatively insensitive to
the effects of edema and may provide a more objective
assessment of hemorrhage, IMH was shown to increase
progressively and to peak 2 days after reperfusion.95 Myocar-
dial hemorrhage is associated with larger infarcts,96 adverse
remodeling,97–99 persistent LV systolic dysfunction,88,100 late
arrhythmic risk,98,101 and adverse clinical outcome.95,102 In a
multicenter observational cohort study, in which 54% of the
patients undergoing pPCI had IMH, reported predictors of
occurrence of IMH after reperfusion were anterior infarct
location and periprocedural glycoprotein IIb-IIIa inhibitor
treatment.103

Hypoxia-induced disruption in the endothelial barrier
leads to loss of capillary integrity during prolonged coronary
occlusion.58 During this occlusion period, adaptive vasodila-
tory response and ischemic insult of the arteriolar sphinc-
ters leave distal microcirculation defenseless to suddenly
increased hydrostatic pressure during reperfusion. In this
milieu, abrupt reperfusion by successful pPCI may generate
a barotrauma-like effect on the already-destructed leaky
capillaries that can result in the extravasation of erythro-
cytes from the leaking microvasculature into the intersti-
tium, leading to IMH. However, occlusion without
reperfusion leads only to intracellular edema but no
hemorrhage.104 Consistently, IMH was observed signifi-
cantly less frequently in patients in whom restoration of
reperfusion could not be achieved105 and rarely observed in
patients with untreated AMI.106 In the acute phase,
interstitial erythrocyte accumulation creates an external
compressive mass on capillaries. In the chronic phase, it
triggers macrophage influx, generation of reactive oxygen
species, inflammation, and fibrosis.99 In this context, IMH

can be regarded as the more severe form of myocardial
edema and the most severe manifestation of microvascular
injury.

Imaging studies have repeatedly shown that almost all
patients with IMH on T2-weighted imaging have CMR-defined
MVO on contrast imaging.96,107,108 Concordantly, in a recent
experimental study, overall regions of IMH and MVO zones in
CMR were strikingly similar and corresponded to IMH
confirmed by histopathology.96 This mutual relationship
between IMH and severe MVO suggests that hemorrhage
occurs only within regions of severe MVO/damage. Addition-
ally, as an established invasive parameter of coronary
microvascular status, the index of microvascular resistance
measured immediately after pPCI has been demonstrated to
be 2-fold higher in reperfused patients with STEMI with IMH
than in those without.109 Consistently, a high index of
microvascular resistance value (>40 units) was recently
shown to be an independent predictor of IMH presence in
patients undergoing pPCI.110 All these findings concordantly
imply that IMH may be a downstream consequence of severe
microvascular damage. Once developed, IMH substantially
potentiates progression of microvascular damage in the AAR
by generating an external compressive mass on the sur-
rounding capillaries. Additionally, an IMH-driven decrease in
myocardial compliance also leads to an increase in LV filling
pressure that ultimately causes an increase in resistance to
myocardial blood flow in the AAR, resulting in exacerbated
necrosis.

Considering its paramount prognostic value,111 it is
obvious that development of new therapeutic strategies
aiming to limit IMH in reperfused AMI would definitely
improve patient outcome. In this regard, first, it seems that
post-pPCI IMH may be amenable to therapeutic interventions
aiming to preserve microvascular perfusion and integrity, as it
is most likely preceded by MVO. Second, because capillary
overpressurization is crucial for the development of myocar-
dial edema and IMH, mechanical interventions to prevent
uncontrolled pressure rise in the already-injured capillary area
during pPCI might be an appropriate strategy to prevent IMH.
After reopening of the occluded epicardial coronary artery,
following initial rise (hyperemic flow) and fall, myocardial
blood flow in the area at risk is stabilized within �30 minutes
in the AAR.26,27 This finding implies that, in spite of the initial
ischemic insult, coronary autoregulation in the reperfused
myocardial territory recovers sometime after reperfusion. In
this regard, regaining adaptive autoregulatory vasoconstrictor
response of the pressure-regulating resistance arterioles
before full reperfusion is established by stenting may be
critically important to prevent an uncontrolled rise in pressure
in the injured microvascular territory. Therefore, to limit/
prevent edema and IMH formation during pPCI, preventive
measures should be taken before full, high-pressure
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reperfusion established by stenting, which otherwise exposes
unguarded capillaries to a pressure burst. These preventive
measures may include gradual, controlled-pressure reperfu-
sion aiming to prevent an abrupt increase in distal intracoro-
nary and consequently capillary hydrostatic pressure during
reactive hyperemia phase by allowing enough time to
arterioles until their adaptive vasoconstrictor response getting
recovered.

Strikingly, intracerebral hemorrhage developed immedi-
ately after stenting of the high-grade carotid stenosis,112,113

namely, hyperperfusion syndrome, most likely shares the
same mechanism with IMH. To maintain cerebral blood flow
during a long-lasting hypoperfusion period, cerebral autoreg-
ulation maximally dilates the arterioles distal to a subtotal
occlusion. In conjunction with this adaptive vasodilatory
response, the autoregulatory function of arteriolar sphincters
is impaired in severely ischemic cerebral tissue. Therefore,
cerebral arteriolar malfunction in the subtended microcircu-
latory territory results in incompetent vasoconstrictor
response to a suddenly increased intravascular pressure
abruptly reestablished by stenting of nearly occluded carotid

arteries. Consequently, suddenly increased intracapillary
hydrostatic pressure disrupts the tight junctions of the
capillary endothelial cells and causes intracerebral hemor-
rhage. This common background strongly suggests the pivotal
role of abrupt reopening of an occluded artery in the
development of hemorrhage in the subtended microvascular
territory.

Increased LV Filling Pressure
The proximity of the vascular and myocardial compartments
makes intramyocardial vessels susceptible to mechanical and
hemodynamic changes in the surrounding tissues and LV
cavity. In patients with STEMI, increased diastolic filling
pressures due to acute loss of contractile performance
combined with increased muscle stiffness and reduced
myocardial compliance due to edema and IMH can also
contribute to a decrease in intramyocardial vascular capac-
itance that limits coronary flow in late diastole. Transmitted
increased intracavitary pressure is partly responsible for
external compression of coronary microcirculation,

Intraluminal obstruc�on External compression

- Hemorrhage
- Edema
- Increased LV filling pressure

- Thromboemboliza�on
- Circula�ng cells’ plugging
- In-situ thrombosis
- Vasospasm

Figure 5. Microvascular impairment in reperfused acute myocardial infarction: integrated association of the factors related to intravascular
obstruction and extravascular compression of the microcirculation. LV indicates left ventricular.
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particularly in the subendocardium, which is the most
susceptible region to elevation in LV filling pressure. Consis-
tently, in patients with STEMI, LV end-diastolic pressure has
been shown to be correlated with zero flow pressure, an
invasive parameter that mainly informs on the external

pressure on the coronary microcirculation.114,115 Thus, in
the course of STEMI, diastolic LV dysfunction causing
elevation in LV filling pressure may lead to a further restriction
of the microvascular compartment. However, LV filling
pressure is not the sole determinant of the myocardial

Epicardial - macrovascular obstruc�on
Acute cessation of regional myocardial perfusion

Early stages of ischemic injury
Maximal dilata�on of resistance arterioles, cardiomyocyte edema

Prolonged ischemia
Ischemic myocardial necrosis, hypoxic endothelial injury

Increased capillary permeability and loss of integrity
Hypoxic loss of constrictor func�on in resistance arterioles

Reperfusion 
Transient hyperperfusion (reac�ve hyperemia)

Abrupt increase in intracapillary hydrosta�c pressure
(Capillary pressure burst)

Inters��al edema, intramyocardial hemorrhage, 
intraluminal plugging

External capillary compression + intraluminal obstruc�ons
Increase in microvascular resistance 

Microvascular stagna�on
(No-reflow)

Propaga�on of necrosis

Figure 6. Main stages of ischemia and reperfusion-related events resulting in myocardial injury from a
circulatory viewpoint.
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interstitial pressure. In the setting of reperfused STEMI,
intramyocardial edema and hemorrhage formed as a result of
severe microvascular injury in the affected myocardial terri-
tory with limited compliance can cause a substantial increase
in interstitial pressure. Furthermore, this new volume added
to the low-compliance chamber may increase interstitial
pressure even above to the diastolic intraventricular pressure
levels. In this situation, potential therapeutic interventions
aiming to reduce ventricular filling pressure may not improve
myocardial perfusion. Therefore, again, maximal benefit in
limiting diastolic dysfunction developing in the reperfused
myocardial segments can be expected from therapeutic
applications, which may succeed in limiting edema/hemor-
rhage and no-reflow.

Future Directions
As proposed in this review, multiple mechanisms underlying
postreperfusion microvascular injury are not mutually exclu-
sive and can act interconnectedly in concert. Furthermore, the
individual contribution of these mechanisms to impaired
myocardial reperfusion may vary temporally and spatially.
Therefore, exclusive targeting of a particular mechanism in
every patient may not be a logical approach to overcome the
problem.

From an integrative perspective, after successful reperfu-
sion with pPCI, microvascular plugging in conjunction with
external compression of microcirculation with surrounding
edema and IMH may significantly impede reperfusion flow via
increasing total microvascular resistance, which may in turn
result in reduction of myocardial blood flow and therefore
propagation of necrosis in the subtended myocardial AAR. In
the post-pPCI microvascular injury spectrum, IMH, which is
most likely preceded by MVO, is the most severe manifes-
tation. Therefore, this most severe form of microvascular
injury may be amenable to therapeutic interventions aiming to
preserve microvascular perfusion and integrity first. Concur-
rently, mechanical interventions to modulate reperfusion
during pPCI mainly by controlling pressure rise in the
susceptible microvascular area might be an appropriate
strategy to prevent interlinked edema and IMH.

Conclusions
Although timely reperfusion achieved by successful pPCI
changed the overall course of AMI, it is not sufficient to
terminate ongoing myocyte loss in case of severe microvas-
cular injury. In this review, the potential roles of intra- and
extravascular factors that may affect microvascular integrity
and therefore cardiomyocyte survival in the ischemic area
after successfully restored epicardial reperfusion were

systematically overviewed in an integrative manner. It seems
obvious that the interplay between intravascular obstructive
factors and extravascular compressive forces underlies post-
pPCI microvascular injury (Figure 5). After occlusion of an
epicardial artery and following reperfusion, multifactorial and
multifaceted processes orchestrated by interlinked patholo-
gies seem to cause progressive microvascular damage and
cardiomyocyte loss at the subtended area (Figure 6). Overall,
this progressive microvascular and myocardial damage
following reperfusion might be attenuated by novel therapeu-
tic interventions targeting mechanisms interconnected with
both intraluminal obstruction (such as local pharmaceutical
therapies for microvascular thrombolysis) and extravascular
compression of the microcirculation (such as controlled-
pressure, gradual reperfusion).
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