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Genetic link between renal birth defects and
congenital heart disease
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Structural birth defects in the kidney and urinary tract are observed in 0.5% of live births and

are a major cause of end-stage renal disease, but their genetic aetiology is not well under-

stood. Here we analyse 135 lines of mice identified in large-scale mouse mutagenesis screen

and show that 29% of mutations causing congenital heart disease (CHD) also cause renal

anomalies. The renal anomalies included duplex and multiplex kidneys, renal agenesis,

hydronephrosis and cystic kidney disease. To assess the clinical relevance of these findings,

we examined patients with CHD and observed a 30% co-occurrence of renal anomalies of a

similar spectrum. Together, these findings demonstrate a common shared genetic aetiology

for CHD and renal anomalies, indicating that CHD patients are at increased risk for

complications from renal anomalies. This collection of mutant mouse models provides a

resource for further studies to elucidate the developmental link between renal anomalies

and CHD.
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D
evelopmental abnormalities of the kidney account for
20–30% of all structural birth defects and are a significant
cause of end-stage renal disease1–3. Development of

the metanephric or adult kidney in mammals starts with the
formation of the ureteric bud from the mesonephric duct.
Development is driven by reciprocal interactions between the
epithelium of the mesonephric duct and the metanephric
mesenchyme that overlies the nephric duct. These interactions
induce the ureteric bud to grow out, branch and differentiate into
the collecting ducts, the renal calyces, pelvis and ureter. The
metanephric mesenchyme is reciprocally induced to undergo a
mesenchyme-to-epithelial transition to form the nephrons.

Defects in the induction and patterning of the developing kidney
can lead to a variety of renal-related birth defects that collectively
are known as congenital abnormalities of the kidney and urinary
tract (CAKUT). These can include renal/urinary tract-specific
abnormalities, kidney agenesis (absent kidney), hypoplasia (small
kidney) or dysplasia (immature or malformed structures in the
kidney), cystic dysplastic kidneys (malformed kidneys with cysts),
horseshoe kidney (both kidneys fused together), hydronephrosis
(dilation of the renal pelvis), hydroureter (dilation of the ureter),
duplex kidneys (duplicate collecting duct systems with one
branched or two unbranched ureters), as well as obstructions at
the ureter–bladder junction or ureter–kidney pelvis junction. Renal
defects can also be observed as part of syndromes such as in
VACTERL association, where they are seen in combination with
vertebral defects, anal atresia, cardiac defects, trachea–oesophageal
fistula and limb abnormalities4. In renal coloboma syndrome,
defects in formation of the eye and kidney are observed, whereas
Fraser syndrome affects formation of the kidney and genitalia. In
addition, ciliopathies often present with cystic kidney disease in
combination with other organ defects.

The genetics of the major forms of cystic kidney disease are
well established with two genes (PKD1 and PKD2) identified to
cause autosomal dominant form of polycystic kidney disease
(PKD) and a single gene (PKHD1) causing the recessive form of
PKD. In addition, many genes causing renal ciliopathies have
been identified. These typically encode components of the cilium
or the machinery used to assemble cilia. However, the genetics for
the majority of CAKUT cases remain largely unknown. The
CAKUT genes that have been identified are typically involved in
the early steps of patterning and development of the kidney.
Recovery of CAKUT genes has been confounded by incomplete
penetrance and the probable involvement of more complex
genetics. Other than Pax2, which causes renal coloboma
syndrome, and Hnf1b, which causes renal cystic disease and
diabetes, most genes identified to cause CAKUT are associated
with disease in only a few patients and the evidence supporting
pathogenesis is weak2. In the present study, we examined renal
anomalies in mutants recovered from a large-scale mouse
mutagenesis screen. These mutants were identified to have
congenital heart disease (CHD) and were recovered based on
cardiovascular phenotyping using non-invasive fetal ultrasound
imaging5. This allowed recovery of mutants that otherwise would
be lost due to prenatal/neonatal lethality. Interestingly, many of
the CHD mutants recovered also exhibited renal abnormalities.
The recovery of pathogenic mutations in these mutants
identified an enrichment of cilia-related genes, suggesting ciliary
dysfunction may play a significant role in congenital defects of
both the heart and kidney.

Results
Forward genetic screen identifies diverse kidney anomalies.
We conducted a large-scale forward genetic screen with ethylni-
trosourea mutagenesis, to interrogate the genetic aetiology of

CHD5. With the screening of more than 80,000 fetuses using in
utero ultrasound imaging, 4200 mutant lines with a wide
spectrum of CHD were recovered. The causative mutations were
identified in 135 lines by whole exome sequencing and
genotyping. As part of this study, we also characterized the
non-cardiac anomalies in the CHD mutants and found an
unexpected high prevalence of renal abnormalities in the CHD
mutants. Among 135 lines in which the pathogenic mutations
were recovered, we observed 39 had kidney defects (Table 1 and
Supplementary Tables 1 and 2). The 39 lines had mutations in 11
genes that are cilia related and 15 genes that are not known to be
cilia related (Table 1).

Among the renal anomalies observed, the most common
phenotype observed was duplex kidney, clinically known as
duplicated collecting duct (Fig. 1b, Cxcr4 and 1C, Plxnd1). The
penetrance was variable, ranging from 15% in Cep290 mutants to
66% in Snx17 mutants (Table 1 and Supplementary Tables 1).
Often the duplex kidneys were hydronephrotic, suggesting
ureteral obstruction (Fig. 1c, Plxnd1). Duplex kidneys can arise
from mutations in genes regulating ureteric bud formation on the
mesonephric duct at the start of metanephric kidney develop-
ment6. Duplex kidney has not been previously reported to be part
of the ciliopathy spectrum and a role for cilia in ureteric bud
formation is not currently known. However, our finding that four
of the genes associated with duplex kidney are cilia related
suggests that cilia are directly or indirectly regulating bud
formation on the mesonephric duct. Hydronephrosis in the
absence of duplex kidney was also observed with variable
penetrance (Fig. 1e, Adamts6). Of the genes identified in this
screen to cause duplex kidneys or hydronephrosis, only Wnt5a
was previously shown to cause renal–urinary tract anomalies in
humans. In humans, defects in Wnt5a cause Robinow syndrome,
which includes skeletal, facial and genital abnormalities along
with kidney and other anomalies7.

We also observed multiplex kidneys. This was associated with
mutations in two non-cilia genes, Robo1 and Slit2. These mutants
developed bilateral multiplex kidneys (Fig. 1d, Robo1). Robo2 and
Slit2 mutations were previously shown to cause the multiplex
kidney phenotype by allowing many ureteric buds to form on the
mesonephric duct8. Interestingly, our mutant (line 872) harbours
a predicted pathogenic mutation in the Robo2 orthologue Robo1.
In addition, a second potential splice-site mutation was observed
in Robo2, but transcript analysis of the skin tissue showed no
Robo2 splicing defects. The Robo2 mutation also did not segregate
with the kidney phenotype (Supplementary Fig. 1), further
indicating Robo1 is the pathogenic mutation. It is interesting
to note Robo1 has been shown to work with Slit2 in regu-
lating mammary gland branching morphogenesis9 and in lung
development10.

Cystic kidney disease was commonly observed in the CHD
mutants (Fig. 1h–j). The cystic disease identified in our screen
could be grouped into three distinct classes. The first group are
those with cystic disease that may arise secondary to hydrone-
phrosis. In this class only the kidney with hydronephrosis was
cystic, whereas the contralateral kidney or non-hydronephrotic
parts of a duplex kidney were not cystic (Fig. 1h, Nek8). The
second class encompassing moderate cystic disease is marked
by a few large kidney cysts and is associated with less extensive
tubule dilation (Fig. 1i, Tbc1d32). This second class was equally
distributed among the cilia versus non-cilia mutants, and
included mutations in four cilia genes (Anks6, Lrp2, Ptk7 and
Tbc1d32) and four non-cilia genes (Ap1b1, Ap2b1, Bmp10 and
Zbtb14) (Table 1, Fig. 2 and Supplementary Fig. 2). Anks6
mutations cause nephronophthisis11 and a Tbc1d32 splice
mutation was found in a single patient with oral facial digital
syndrome and ambiguous genitalia12; however, the other genes
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are not currently known to cause renal–urinary tract anomalies.
The third class of severe cystic kidney disease is marked by
extensive cysts throughout the kidneys (Fig. 1j, Tmem67). Severe
cystic disease was identified only in lines with cilia-related
mutations including Bicc1, Cc2d2a, Tmem67, Cep290 and Pkd1
(Table 1, Supplementary Table 1 and Fig. 3). Bicc1 mutations are
known to cause cystic renal dysplasia13, Pkd1 is the major cause
of autosomal dominant PKD in humans14, and Cc2d2a, Tmem67
and Cep290 are well-established human ciliopathy genes15. These
severe cystic kidney phenotypes are fully penetrant (Table 1). We
also observed kidney phenotypes comprising bilateral and
unilateral renal agenesis and/or hypoplasia (Fig. 1f, Frem2 and
1G, Plxnd1). This has variable penetrance and was observed in
association with mutations in four non-cilia-related genes: Frem2,
Lama5, Plxnd1 and Qrich1 (Table 1). Frem2 mutations in
humans cause Frasier syndrome, which includes renal agenesis
and other renal–urinary tract malformations in combination with
other organ defects16. The other three genes are not known to
cause renal–urinary tract malformations in humans.

We note the finding of renal anomalies in the CHD
mutants is not simply a reflection of the high prevalence of
cilia mutations, as 58% of the CHD mutant lines with renal
anomalies have mutations in non-cilia genes. Although the
severe cystic kidney disease phenotype was exclusively asso-
ciated with cilia mutations, there was no correlation between
ciliary assembly defects and cystogenesis in the prenatal period
(Fig. 4a). For example, mutation of the retrograde intraflagellar
transport motor, Dync2h1, disrupted ciliogenesis but this did
not result in the formation of cysts in kidneys in mutants
collected at term (Supplementary Fig. 3). Although unexpected,
this finding is consistent with our prior observation that
prenatal deletion of Ift20 or Ift140 did not cause cysts until
the postnatal period17,18. These findings suggest the cilia
components Cep290, Cc2d2a and Tmem67 may cause prenatal

cysts by a fundamentally different mechanism than the cysts
caused by intraflagellar transport (IFT) mutations.

Prenatal cysts and centriolar docking defects. Cep290, Cc2d2a
and Tmem67, along with Mks1, Tmem216, B9D1, Tctn1 and
Tctn2 form the tectonic complex in the ciliary transition zone19.
Previously published work shows that Mks1 and B9D1 mutants,
like Cep290, Cc2d2a, and Tmem67 mutants identified here, also
exhibit prenatal renal cysts20,21. It is striking that five components
of this complex cause prenatal cysts, as the number of published
mutant mice with this phenotype is limited. Work in
Caenorhabditis elegans suggests the tectonic complex is required
for docking of centrioles on the ciliary vesicle and fusion of the
nascent cilium to the plasma membrane. In contrast, the IFT
proteins appear essential only for ciliary axonemal extension22.
This suggests that prenatal cyst formation arises from a centriole
docking defect rather than a ciliogenesis defect. To examine this
possibility, we carried out transmission electron microscopy to
assess centriole docking in kidney epithelial cells from Cep290
and Ift20 mutants and wild-type cells (Fig. 4d,e). In wild-type and
Ift20 mutant cells we found, as expected, approximately half of
the centrioles (presumably the mother centrioles) were docked on
the membrane, while the other half (probably daughter
centrioles) were in the cytoplasm away from the membrane. In
contrast, only 10% of Cep290 centrioles were docked. We further
used immunofluorescence microscopy to assess the distribution
of the distal appendage marker Cep164, which should be
assembled before ciliary docking and the transition zone
marker Nphp1, which should be assembled after docking. This
analysis showed that in Cep290 mutants, assembly of the distal
appendages were not affected but formation of the transition zone
was blocked. In contrast, the Ift20 mutation did not affect either
of these events (Fig. 4f–k), supporting a role for this protein after

Table 1 | Renal anomalies associated with genes causing congenital heart defects.

Genes* Number of mutants Duplex Hydro-nephrosis Moderate cystic Severe cystic Multiplex Agenesis/hypoplasia

Anks6 10 — — 80% — — —
Bicc1 8 — — — 100% — —
Cc2d2a 5 — — — 100% — —
Cep110 5 — 60% — — — —
Cep290 13 15% — — 100% — —
Dyc2h1 6 50% — — — — —
Lrp2 3 — 100% 100% — — —
Pkd1 4 — — — 100% — —
Ptk7 3 — — 100% — — —
Tbc1d32 12 25% — 92% — — —
Tmem67 12 42% — — 100% — —
Adamts6 16 — 56% — — — —
Ap1b1 10 — — 80% — — —
Ap2b1 3 — — 75% — — —
Bmp10 2 — — 100% — — —
Cxcr4 5 60% — — — — —
Frem2 10 — — — — — 100%
Lama5 5 — — — — — 60%
Plxnd1 3 — — — — — 63%
Prdm1 8 38% — — — — —
Qrich1 3 — — — — — 67%
Robo1 5 — — — — 100% —
Slit2 7 — — — — 100% —
Snx17 3 66% — — — — —
Wnt5a 7 43% — — — — —
Zbtb14 4 — — 100% — — —

*Genes and values in bold are ciliary components based on proteomic and other studies. Supplementary Table 1 provides more details on the lines and cardiac phenotypes.
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docking of centrioles on the membrane. Together, these findings
suggest that the disruption of centriole docking plays a critical
role in formation of prenatal cysts.

Human CHD patients have associated renal anomalies. To
determine the possible clinical relevance of our findings in mouse
models, we recruited 77 patients with CHD requiring surgical
intervention from the Children’s Hospital of Pittsburgh.
Retrospective chart review showed 23 (30%) of the CHD
patients had renal defects that spanned a spectrum of renal
abnormalities (Fig. 5) including renal cysts, kidney agenesis,
hydronephrosis and pelvicaliectasis (mild form of hydrone-
phrosis), vesicoureteral reflux, duplicated collecting duct systems
(duplex kidneys), ectopic kidney (malpositioned) and horseshoe
kidneys (Supplementary Table 3). There was no correlation
between cardiac lesion type and the different renal anomalies,
similar to the findings in the CHD mutant mice. Together, these
findings support a common aetiology for CHD and renal
anomalies in the human population.

Discussion
Our systematic analysis of mouse mutants with CHD showed that
many of the mutations causing heart defects also caused renal
anomalies. This included a number of genes that had an impact
on ciliogenesis. Cilia are microtubule-based organelles that
project from the cell surface and can be motile or non-motile,
and both types play important roles in development, health and
disease23. During development, motile and non-motile cilia
regulate the specification of left–right patterning. Left–right
patterning is critical to the development of the heart, lungs and
other organs, and controls the differential placement of the left
and right kidneys along the posterior–anterior axis. Non-motile
primary cilia, which have important roles in sensory and cell
signalling functions, also play critical roles during development.
In the kidney, primary cilia defects are strongly associated with
cystic kidney disease24. The major human autosomal dominant
and autosomal recessive PKD proteins localize to the cilia and
many genes that affect ciliary structure lead to cystic kidney
disease. The mechanism of ciliary action in maintaining tubule
architecture and preventing cyst formation is unknown, but
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necropsy image and the b (right) image is a haematoxylin and eosin (H&E)-stained image. Arrows point to the indentation that typically marks the

junction between the two parts of a duplex kidney (Ba,Bb,Ca). Duplex kidney is thought to result from extra ureteric buds forming at the earliest steps of

metanephric kidney development. The extra ureteric buds induce the formation of multiple (usually two) partial kidneys within a single capsule. If the

second ureter does not properly drain, hydroureter (Cb, arrow head) and hydronephrosis (Cb,Eb*) can result. It is noteworthy that multiplex kidneys are

similar to duplex kidneys, except that more than two kidneys are fused together on each side of the animal (Da,Db). The X marks the position of the

missing kidneys in the agenesis images (F,G). Scale bars, 1 mm (Aa,Ba,Ca,Da,Ea,F,G). Scale bars, 100mm (Ab,Cb,Db) and 200mm (Bb,Eb). (H–J) Bottom

row shows examples of the different types of cystic kidney disease identified in the ENU screen. It is noteworthy that the Nek8 kidney is duplex and only the
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Scale bars, 500mm (H–J).
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various models propose a role for cilia in regulating Wnt
signalling or detection of luminal flow to monitor tubule
diameter.

Curiously, only a subset of cilia mutations caused severe cystic
disease in the prenatal period. The fact that cilia are present on
the tubular epithelium during prenatal development raises the
question of why only a subset of genes affecting the formation
of these epithelial cilia cause cysts before birth. To address
this question, we examined the placement and maturation of
centrioles in the mutants that cause prenatal cysts versus those
that do not cause cysts during this time. We found that a prenatal
cyst forming Cep290 mutation blocks ciliogenesis before assembly
of the transition zone and plasma membrane docking, whereas an
Ift20 mutation, which does not develop cysts in the prenatal
period, did not block ciliogenesis until after the centriole docked
and the transition zone was at least partially formed. These

findings are consistent with prior studies showing disruption of
transition zone assembly in Cc2d2a mutant fibroblasts25 and
failure of centrosomes to migrate to the cell surface in Cep290
knockdown cells26. Taken together, these findings suggest a
model where the cilium is not required for maintaining tubule
architecture in the prenatal period as long as the centriole is
properly docked on the plasma membrane. In the postnatal
period, both docked and ciliated centrioles are required for
maintaining tubule architecture and preventing cyst formation
(Fig. 6). Previous work on mechanisms of tubulogenesis indicated
that during the prenatal period, tubules elongate by a convergent
extension mechanism, whereas postnatally this occurs via
oriented cell division27. It is possible that the differences in the
requirements of cilia and centrosomes during the two periods of
development may reflect this transition. Our model would predict
that any gene that prevents ciliation at a step before centriole
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docking should cause prenatal cysts, such as genes required for
centriole biogenesis or formation of transition fibres. A number
of mouse models have been generated with defects in centriole
biogenesis but null alleles of all of these are lethal before the
formation of the metanephric kidney28–33 and no studies with
floxed or hypomorphic alleles30,34,35 have yet been performed

that would independently test our model. It should be noted that
our model does not predict that all genes that cause prenatal cysts
are required for docking centrioles. Genes such as Pkd1 and Bicc1
identified in this screen as causing prenatal cysts are unlikely to
function in centriole docking, but may play a role in signalling
downstream of ciliary assembly.

The association of CHD with renal anomalies is not restricted
to mice, as we also found a high incidence of structural renal
defects in CHD patients recruited from the Children’s Hospital of
Pittsburgh. These CHD patients had renal anomalies across the
CAKUT and cystic kidney disease spectrum, similar to what we
observed in the CHD mutant mice. Furthermore, our findings are
in agreement with a previous epidemiological study in the Atlanta
metro area, which showed 23% of B8,000 subjects with CHD
also had renal abnormalities36. Thus, both the mouse and
human studies indicate significant overlap in the genetic
aetiology of CHD and kidney abnormalities. This probably
reflects the conservation of developmental pathways and cell
signalling mechanisms that regulate cardiovascular and renal
development, including a central role for cilia in the pathogenesis
of CHD and renal birth defects. In addition this work indicates
that CHD patients would benefit from routine evaluation for
renal anomalies to reduce potential renal complications and
improve outcome in this high-risk patient population.

Overall, our studies provide compelling evidence of a genetic
link between CHD and congenital kidney abnormalities. The
finding of renal anomalies in mutants recovered in a CHD screen
show the power of forward genetics in yielding novel insights into
otherwise seemingly unrelated disease processes. As the genetics
of CAKUT and other kidney defects are not well understood, with
490% being of unknown aetiology37,38, further exploration of
this link may yield new insights into kidney anomalies and the
mechanism of disease pathogenesis. These findings also suggest
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Figure 5 | Renal ultrasound of CHD patients demonstrates a spectrum of renal abnormalities. Intrarenal collecting system dilation (arrows) ranging from

mild (a) to moderate (b), to severe (c) was observed. (d–f) Cystic dysplastic abnormalities including an isolated cystic lesion in the upper pole of the kidney

(d, arrow), multiple cystic lesions throughout the periphery of the kidney parenchyma (e, arrow) and cystic dysplastic kidney (f, arrow) were observed.

Other renal abnormalities including horseshoe kidney (g) and duplicated collecting system depicted with renal ultrasound (h) and voiding

cystourethrogram (i) were observed.
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Figure 6 | Model to explain the difference between cilia mutations that

cause prenatal cysts versus those that only cause cysts in the postnatal

period. Defects in the tectonic complex cause prenatal cysts, while defects

in IFT components do not cause cysts until after birth. The tectonic complex

is thought to be required for ciliogenesis at a step before the docking of the

centriole onto the plasma membrane, whereas the IFT complex is not

thought to be needed until after docking occurs. This suggests that in the

prenatal period a docked centriole is sufficient to provide cues to maintain

tubule architecture but in the postnatal period a cilium is required to

provide this information.
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the interesting possibility that pooling CHD and CAKUT patient
data may improve the power to detect mutations that can
contribute to both CHD and renal anomalies. The mutant
mouse models generated in this study are curated in the Mouse
Genome Informatics Database and cryopreserved at the Jackson
Laboratory for open public access. These mutant models will
serve as an invaluable resource for exploring the mechanism of
both cardiac and renal structural defects.

Methods
Mouse breeding. C57Bl/6J mice were mutated with ENU and bred to wild-type
animals. Daughters were then bred back to their fathers and their embryos
screened for structural birth defects. Details of the breeding and mutation identi-
fication are as described5.

All mouse work was approved by Institutional Animal Care and Use
Committee (IACUCs) at the University of Pittsburgh or the University of
Massachusetts Medical School.

Histology. Hematoxylin and Eosin. Paraffin sections for staining were dewaxed with
SafeClear (Fisher Diagnostics) and rehydrated with graded aqueous solutions of
isopropanol. The sections were stained for 4 min with CAT Hematoxylin (Biocare
Medical), rinsed in running tap water for 30 s followed by three quick dips in
saturated lithium carbonate and a rinse in distilled water. This was followed by
90% ethanol for 2 min, Edgar Degas Eosin (Biocare Medical) for 2 min and three
quick rinses in 100% ethanol. The sections were cleared with Safeclear (two 5-min
incubations) and were mounted with Permount (Fisher Scientific).

Immunofluorescence. Paraffin sections were dewaxed, rehydrated and subjected
to antigen retrieval in an autoclave (250 �F, 40 min) with 10 mM sodium citrate at
pH 6. After cooling to ambient temperature, the sections were treated with
blocking solution (4% non-immune goat serum, 0.1% Triton X-100, 0.05% SDS
and 0.1% fish skin gelatin (Sigma G7765) in TBST (0.05% Tween-20 in Tris-
buffered saline pH 7.4)) for 30 min, subsequently washed with TBST and then
exposed to primary antibodies overnight at 4 �C. The next day, the sections were
washed with TBST, incubated with Alexa Fluor-conjugated secondary antibodies
(Life Technologies) for 30 min at room temperature and washed with TBST
followed by a rinse with TBS. The antibodies were brought to their working
dilutions with 0.1% fish skin gelatin in TBS. The sections were then dipped for 5 s
in 4,6-diamidino-2-phenylindole (1 mg ml� 1 in TBS) and after rinsing with TBS
were mounted with Prolong Gold (Life Technologies).

Primary antibodies used in this work include IFT88 (ref. 39), 6-11B-1 (Sigma
T6793), GTU-88 (Sigma T5326), T1a (clone 8.1.1, Developmental Studies
Hybridoma Bank, University of Iowa), Cep164 (Proteintech 22227-1-AP) and
Nphp1 (ref. 40). Lectins used were fluorescein Dolichos biflorus agglutinin (Vector
Labs FL-1031) as the marker for developing kidney collecting ducts and fluorescein
Lotus tetragonolobus lectin for kidney proximal tubules (Vector Labs FL-1321).

Cell culture. Mouse kidney epithelial cells were derived from embryonic day 18
kidneys by dispersing the organs in trypsin, plating on plastic in medium com-
posed of 45% DMEM (4.5 g l� 1 glucose), 45% F12 and 10% FCS supplemented
with penicillin and streptomycin. Epithelial cells were selected by the addition of
150 mM NaCl and 150 mM urea to the medium41.

Cells for immunofluorescence staining were grown on glass coverslips until
confluent and then serum was reduced to 0.25% for 48 h before fixation and
staining42,43. Quantification of ciliary antigens was done using the measurement
tools of Openlab (Perkin Elmer).

Cells for electron microscopy were grown on tissue culture plastic until
confluent and then serum was reduced to 0.25% for 48 h before fixation. Cells were
fixed by adding 2.5% glutaraldehyde in 0.1 M Na Cacodylate buffer (pH 7.2) to the
culture plates one drop at a time until the initial volume of media was doubled. The
cells were allowed to stabilize in this solution for 10 min, all the media/
glutaraldehyde was removed, fresh 2.5% glutaraldehyde in the same buffer was
added and the cells were fixed for an additional 60 min at room temperature. After
this primary fixation, the cells were rinsed three times in fresh fixation buffer for
10 min each time and were secondarily fixed with 1.0% osmium tetroxide in H2O
for 1 h at room temperature. The cells were washed again three times in H2O and
the cells were dehydrated through a graded series of ethanol (10–100%; three
changes), and then transferred to ethanol 100%: SpiPon 812/Araldite 502 resin
(50:50/V:V) for 12 h at room temperature. Following resin infiltration, the cells
were transferred through three changes of pure SpiPon 812/Araldite 502 epoxy
resin each 1 h long. The cells were then changed to a final step of embedding resin
mixture and were polymerized for 2 days at 70 �C in their original culture dishes.
The plates were then dunked in liquid nitrogen, to separate the bottom of the dish
from the cells embedded in the resin. Pieces of the embedded cultures were
re-oriented and mounted onto blank stubs with a drop of super glue and the
blocks were trimmed and sectioned (100 nm thick). Sections were collected onto
200-mesh copper support grids and contrasted with uranyl acetate and lead citrate,
and then imaged using a Philips CM 10 transmission electron microscope, under

80 Kv accelerating voltage. Images were recorded with a Gatan Erlangshen charge-
coupled device digital camera.

Patient recruitment and analysis. Infants o1 year of age with CHD
were prospectively enrolled at Children’s Hospital of Pittsburgh, University
of Pittsburgh Medical Center (Pittsburgh, PA). Informed consent was
obtained from parents or guardians of infants. The patient’s CHD diagnosis
and other developmental abnormality findings were retrieved from the
examination of the electronic medical records, with specific focus on
information relating to renal and urinary tract abnormalities. This
study was conducted in accordance with the human study protocol
PRO09090021 approved by the Institutional Review Board of the University
of Pittsburgh.
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