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1  | INTRODUC TION

As one of the six distilled liquor in the world, Chinese baijiu is an 
invention that full of creative wisdom and cultural charm in China. 
The production and market share of Luzhou-flavor liquor account for 
about 70% of the entire liquor industry (Hu, 2015). As the founda-
tion for the brewing of Luzhou-flavor liquor, pit mud determines the 
quality of product to a large extent. The water in pit mud dissolves 
various organic matter and mineral nutrients and acts as a transport-
ing substance. A series of biochemical reactions in the microbial or-
ganism is also inseparable from water (Zhang et al., 2013). Therefore, 
the lack of water will lead to mud hardening, the precipitation of 
salt, and the death of some microbes in pit mud, which will even-
tually cause the degradation of pit mud, thus seriously affect the 

production (Jing, Tang, Ren, & Yao, 2010). However, the excessive 
moisture will result in that it is hard to maintain shape even the col-
lapse of the pit. Therefore, the moisture of the mud is regarded as a 
crucial detection indicator in the evaluation standard of the Luzhou-
flavor liquor.

At present, there have been many reports on the moisture de-
termination in pit mud. For example, Xie et al. (2018) compared the 
difference between moisture content in different regions and qual-
ity levels and studied its distribution features. Zhang et al. (2014) 
found that moisture, pH, and humus had a great influence on the 
quality of the mud based on the analytic hierarchy process. Liu et al. 
(2018) found that moisture, total nitrogen, and ammonium nitrogen 
increased with the improvement of the quality of the mud via cor-
relation analysis, the pH value was close to 7. However, all the above 
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Abstract
Lack of moisture can lead to the aging of pit mud, excessive moisture will make it 
difficult to maintain its shape or even collapse. Therefore, a rapid and nondestruc-
tive detection technology for moisture in pit mud using hyperspectral imaging was 
firstly investigated. Modeling efficiency of various processing was compared in visi-
ble (400–1,000 nm) and near-infrared (900–1,700 nm) regions, and the optimal model 
was SNV-SPA-SVM in near-infrared spectroscopy; the R2

pre
 and RMSEP of model were 

.9953 and 0.0029, respectively. Furthermore, the distribution map showed that the 
moisture in the new cellar was generally lower than that of old, and the moisture 
distribution of the old pit mud was more even. Moreover, the moisture content of 
different layers in the same cellar increased from top to bottom. This work provides 
strong technical support for liquor brewing enterprises to effectively implement on-
line monitoring of pit mud changes and open a new era for the application of hyper-
spectral imaging technology in the field of liquor solid-state fermentation.

K E Y W O R D S

distribution map, hyperspectral imaging, moisture, pit mud, visible and near-infrared bands

http://www.foodscience-nutrition.com
mailto:﻿
mailto:﻿￼
https://orcid.org/0000-0002-5128-0810
http://creativecommons.org/licenses/by/4.0/
mailto:1036884458@qq.com
mailto:632348827@qq.com


180  |     ZHU et al.

method for the determination of the mud moisture is natural drying 
method, which is destructive, time-consuming, labor-intensive, etc., 
and the results often lag behind the actual production, which can-
not meet the relevant staff to the rapid and nondestructive online 
assessment of mud.

Therefore, hyperspectral imaging emerged as a rapid, nonde-
structive, advanced optical technology. Hyperspectral imaging is 
an image data technology based on a very large number of nar-
rowband. It combines imaging with spectroscopy technology and 
simultaneously detects the spectral and spatial information, which 
is closer to the real properties of the object. It has attracted count-
less researchers as a powerful new tool for lossless online testing 
a variety of products (Li, Rao, & Ying, 2011). At present, hyper-
spectral technology has been widely implemented in nondestruc-
tive testing of agriculture products, such as apple (Baranowski, 
Mazurek, & Pastuszka-Woźniak, 2013), cucumber (Cen, Lu, 
Zhu, & Mendoza, 2016), orange (Li et al., 2011), peach (Pan et 
al., 2016), potatoes (Cho et al., 2013), cocoa beans (Caporaso, 
Whitworth, Fowler, & Fisk, 2018), fish (Sivertsen, Heia, Hindberg, 
& Godtliebsen, 2012), beef (ElMasry, Sun, & Allen, 2012, 2013), 
pork (Barbin, ElMasry, Sun, & Allen, 2012, 2013), and cereal crops 
(Caporaso, Whitworth, & Fisk, 2018; Orina, Manley, & Williams, 
2017; Vigneau, Ecarnot, Rabatel, & Roumet, 2011). Sun et al. (2017) 
established a quantitative prediction model of chlorophyll content 
in peaches using hyperspectral imaging and quickly distinguished 
the degree of decay of peaches. Zou et al. (2011) rapidly detected 
the chlorophyll content of cucumber leaves, and a visual distribu-
tion map was drawn using hyperspectral technology. ElMasry, Sun, 
and Allen (2013) used hyperspectral imaging to quickly detect fat 
and protein content in beef and visualize their distribution to com-
pare the differences between various beef samples. Moreover, 
this technology can also be used to evaluate indicator changes in 
solid-state fermentation. Zhu et al. (2016) used hyperspectral to 
investigate the moisture and total acid content of vinegar, and the 
results showed that it was feasible to determine changes in the 
main indicators during solid-state fermentation using hyperspec-
tral imaging. However, there has been no report on the application 
of hyperspectral technology to the solid-state brewing of liquor, 
and research in this field has been blank.

Due to preliminary experiments and literature review showed 
that O-H of moisture has characteristic absorption from visible to 
near-infrared region even interfere with signals from other com-
pounds. Consequently, the objective of this work is to establish 
rapid prediction models of pit mud moisture based on near-infrared 
(900–1,700 nm) and visible spectroscopy (400–1,000 nm), untreated 
and standard normal variate (SNV) pretreated, full and character-
istic spectrum, and three modeling methods including partial least 
squares regression (PLSR), least squares support vector machine (LS-
SVM), and back-propagation network (BP). A total of twenty-four 

models were acquired. The optimal model was selected through 
the determination coefficients (R2

cal
 and R2

pre
) and root mean square 

error (RMSEC and RMSEP) of calibration and prediction set, and the 
moisture distribution difference of various pit mud samples was vi-
sualized based on the obtained optimal model (Figure 1a). This work 
provides strong technical support for the transformation and up-
grading of liquor brewing industrialization and intelligent real-time 
online monitoring.

2  | MATERIAL S AND METHODS

2.1 | Pit mud samples

The original pit mud samples were collected in June 2019 and pro-
vided by Yibin Jinxilai Liquor Co., Ltd, located in the south-central of 
Sichuan Province (26°03′–34°19′ northern latitude, 97°21′–108°31′ 
east longitude). The production process flowchart of Luzhou-flavor 
liquor is shown in Figure 1b. After fermentation, the fermented 
grains were removed in the cellar; the pit mud around the same layer 
was collected and fully mixed to form a sample. The sampling sites of 
the same pit include three layers of upper, middle, and lower, that is, 
cellar cap, huangshui line, and cellar bottom, so three samples were 
obtained from the same pit. Finally, a total of 108 pit mud samples 
were obtained from 36 pits with 12 years (6, 8, 9, 12, 15, 18, 21, 23, 
24, 27, 29, and 30), in which each pit age corresponds to No. 1, 2, and 
3 pits. The specific sampling method is shown in Figure 2. Collected 
samples were placed in ice box and transported back to the labora-
tory for rapid experiments.

The 108 samples were assigned to the calibration set and pre-
diction set with the method of Kennard–Stone (K-S) algorithm ac-
cording to a proportion of 2:1. Therefore, 72 samples were selected 
as calibration set for developing the calibration model, whereas the 
remaining 36 samples were used as prediction set to verify the pre-
diction performance of the calibration model.

2.2 | Hyperspectral imaging system and data 
acquisition

Hyperspectral images of samples were obtained using a hy-
perspectral imaging system in reflection mode. The system 
(Figure 3) consisted of a SPECIM FX17 series hyperspectral cam-
era connected to an imaging spectrometer in Finland, two sets of 
160W Y-type optical fiber halogen lamps (3900ER, Illumination 
Technologies Inc), a precision electronically controlled carrier 
stage (IRCP0076 of-ICOMB001, Isuzu), and LUMO Scanner soft-
ware (Spectral Image, Isuzu). The parameters of near-infrared and 
visible region were set, respectively, as shown in Tables 1 and 2, 

F I G U R E  1   Flowchart of the experiment procedure and Luzhou-flavor liquor production process. (a) Flowchart of the experiment 
procedure to develop an optimal model for detection of pit mud moisture using hyperspectral imaging. (b) Flowchart of Luzhou-flavor liquor 
production process
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including peak lighting, exposure frequency, time, and scan-
ning speed. Considering the strong reflectivity of glassware, the 
quartz-based glassware was more suitable for spectral data ac-
quisition during the experiment to improve the accuracy of the 
model. Under the set parameter environment, quartz vessel filled 
with pit mud and paved was placed in the center of the carrier 
platform. The hyperspectral original image information of 108 pit 
mud samples was collected at 400–1,000 and 900–1,700 nm re-
gion, respectively. Thus, raw spectral data of 224 wavelengths in 
the near-infrared region and 448 wavelengths in the visible region 
were obtained, respectively.

2.3 | Hyperspectral imaging processing

The hyperspectral data collected by the camera are a three-
dimensional data cube; each pixel contains a full-band spectral 
curve. Apart from sample information, there are also interference 
signals, such as dark current, high-frequency random noise in the 
process of spectral data acquisition. The region of interest (ROI) 
with 100 × 100 pixels was manually selected from the raw spectra, 
which should be fairly flat and representative. The average spectral 
values of each pixel in the ROI were calculated to obtain the data 
before correction. Because of the nonuniformity of fermentation 

F I G U R E  2   A diagram of the sampling 
method

F I G U R E  3   Structural diagram of the hyperspectral imaging 
system

TA B L E  1   Parameter setting in near-infrared region

Calibration board type Beige board

Beam peak 2,112

Shutter Opened

Frame time (Hz) 50 Hz

Exposure time (ms) 4.02

Spectral binning 1

Spatial binning 1

Trigger mode Internal

Scanning speed (mm/s) 16.42

Starting and ending position of 
object

Object start: 94.48 Object 
stop: 141.43

Starting and ending position of 
board

Board start: 22.07 Board 
stop: 32.04

Dark subtraction Shutter

White reference Manual

Red band Band 31 (1,039.53 nm)

Green band Band 76 (1,196.37 nm)

Blue band Band 131 (1,389.61 nm)



     |  183ZHU et al.

status, the growth and metabolism of microbes in pit mud vary 
greatly, and the spectral values of each pixel will be different under 
different illumination intensity. To eliminate the systematic error 
caused by nonuniform illumination, the spectral values were con-
verted into spectral reflectivity via black-and-white correction pro-
cessing, removing the influence of illumination intensity changes.

Calibration board should be used for black-and-white correc-
tion, considering that the color difference between the samples 
and board was too large; it was easy to interfere with the collection 
of spectral data. Therefore, calibration boards which were similar 
to a specific sample and slightly better in spectral reflectance per-
formance were chosen. Moreover, due to the difference between 
near-infrared and visible region, a gray Teflon board in the visible 
region and a beige Teflon board in the near-infrared region were cho-
sen. The dark reflection image was obtained via covering the camera 
lens with an opaque cap, and a white reflection image was obtained 
using a Teflon gray and beige board. The corrected relative reflectiv-
ity (R) was calculated according to the following equation:

where I is the original hyperspectral image, D is the dark image, and W 
is the white reflectance image. The corrected spectral reflectivity was 
used for further analysis.

2.4 | Determination of moisture content in pit mud

The specific steps of moisture determination in pit mud were as 
follows:

Took clean weighing bottle and placed it in the drying box at 
101–105°C. The cap was obliquely supported on the edge of the 
bottle, heated for 1.0 hr, removed and cooled for 0.5 hr in the dryer. 
Weighed and dried it repeatedly until the quality difference between 
the two times was no more than 2 mg, that is, constant weight.

Weighing 2–10 g sample (accurate to 0.0001 g), put into weighing 
bottle, the height of the sample was not more than 5 mm, capped 
after precise weighing, placed in a 101–105°C drying box, the cap was 
slanted to the edge of the bottle, after 2–4 hr of drying, capped and 
removed bottle, weighed after cooled in the dryer for 0.5 hr. Then, 
put it in 101–105°C drying box for about 1 hr, continue to take it out, 
cooled in the dryer for 0.5 hr, and weighed them again. Repeated the 
above operation until the quality difference between the two times 
was no more than 2 mg, that is, constant weight. Moisture content 
(X) in samples was calculated according to the following equation:

where m1 is the quality of weighing bottles and samples, m2 is the qual-
ity of weighing bottles and samples after drying, m3 is the quality of 
weighing bottle, 100 is the conversion factor. Moisture in pit mud was 
used for further analysis.

2.5 | Data processing and analysis

Considering that noise, baseline variation and others may affect 
the accuracy of the model in the data acquisition process; SNV can 
effectively remove high-frequency noise (Munera et al., 2017; Yan 
et al., 2017), prevent baseline drift, and optimize spectral signals. 
Thus, original spectral information was preprocessed by SNV, which 
means that spectra were corrected mainly using mean and variance 
of samples to eliminate the influence of spectral linear translation, 
which was shown in Figure 4a,b,c,d. Spectral reflectivity (Xi(SNV)) in 
samples was calculated according to the following equation:

where Xi is the spectral mean value of samples, σi is the spectral 
standard deviation of samples.

O-H was selective for spectral absorption, whereas the spectral 
signals produced by the sample were the overlap of various substances 
in pit mud. To improve the robustness and prediction capability of the 

(1)R=
I−D

W−D

(2)X=
(m1−m2)

(m1−m3)
×100

(3)Xi(SNV)=
Xi−Xi

�i

(4)Xi=
1

m

m
∑

j=1

Xi,j

(5)�i=

√

√

√

√

1

m

m
∑

j=1

(Xi,j−Xi)
2

TA B L E  2   Parameter setting in visible region

Calibration board type Gray board

Beam peak 1,024

Shutter Opened

Frame time (Hz) 50 Hz

Expctral time (ms) 8.00

Spectral binning 1

Spatial binning 1

Trigger mode Internal

Scanning speed (mm/s) 10.79

Starting and ending position 
of object

Object start: 94.48 Target stop: 
141.43

Starting and ending position 
of board

Board start: 22.07 Board stop: 
32.04

Dark subtraction Shutter

White reference Manual

Red band Band 191: 650.96 nm

Green band Band 117: 551.57 nm

Blue band Band 55: 469.28 nm
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model, it was indispensable to find feature-related wave bands and 
eliminate irrelevant. The successive projections algorithm (SPA) was 
used to select characteristic wave bands. SPA generalized the spectral 
information of most samples by selecting a few wavelengths in the raw 
spectral to maximize the avoidance of information redundancy.

Partial least squares regression, LS-SVM, and BP three models 
were established based on the spectral data of near-infrared, visible, 
untreated and pretreated, full spectrum, and characteristic spectrum, 
respectively, combined with the measured values of pit mud moisture, 
a total of 24 models. The optimal model was obtained by comparing the 
R2 and RMSE of the calibration set and prediction set of the models.

Region of interest (100  ×  100) was selected in the image, and 
each pixel in the region was regarded as a sample. The characteristic 
spectral data corresponding to each sample were brought into the 
optimal prediction model to calculate the moisture prediction value 
of all the pixels in the region and then mapped the predicted value to 
0–255 for graying; the gray value of each pixel was obtained. Finally, 
the pseudocolor processing was carried out to acquire the visual im-
ages of moisture content in pit mud.

3  | RESULTS AND DISCUSSION

3.1 | Moisture content analysis

The statistics of the moisture content measured by the conventional 
analysis method is listed in Table 3. It can be seen that wide varia-
tions in moisture contents ranging from 30% to 40% were obtained, 
which was the basic data for the establishment of calibration model.

3.2 | Spectral analysis of moisture in pit mud

In the whole process of liquor brewing, pit-entry fermentation is a 
very important process, in which pit mud plays a key role. After dec-
ades or even hundreds of years of fermentation, the pit mud contains 
abundant microbes and metabolites. Hyperspectral imaging technol-
ogy can quickly detect the main variables of pit mud, explore the 
fermentation status of microbes via spectral information, and find 
out the essential differences of the cellar at various layers and ages.

For the convenience of observation, taking pit mud of two ages 
as an example, the spectral reflectance curves of pit mud of different 
layers and ages in near-infrared and visible spectroscopy were de-
scribed. There were six curves including near-infrared full spectrum 
(224 wavelengths) and visible full spectrum (448 wavelengths), re-
spectively, as shown in Figure 4e,f; one was a new cellar for 6 years, 
and the other was an old cellar for 30 years. The spectral reflectance 
of pit mud in 30 years was generally higher than that in 6 years, and 
the spectral reflectance curves of pit mud at different layers were 
also different, which indicates that hyperspectral imaging can iden-
tify pit mud at different layers and years.

3.3 | Feature-related wavelengths selection

To compare and analyze the performance of full spectrum and char-
acteristic spectrum modeling, it was essential to select wavelengths 
closely related to moisture in pit mud and to eliminate the influ-
ence of irrelevant wavelengths. To determine the optimal number 
of variables, the effects of compounds other than moisture and the 

F I G U R E  4   Spectral reflection curves of pit mud samples. (a) Original spectral reflection curves in the near-infrared region. (b) Pretreated 
spectral reflection curves in the near-infrared region. (c) Original spectral reflection curves in the visible region. (d) Pretreated spectral 
reflection curves in the visible region. (e) Spectral reflection curves of pit mud samples of 6 and 30 years in near-infrared spectroscopy. (f) 
Spectral reflection curves of pit mud samples of 6 and 30 years in visible spectroscopy

TA B L E  3   Statistics of moisture measured by the conventional analysis method

Different years

Calibration set Prediction set

No. of samples Range (%) Mean ± SD (%) No. of samples Range (%) Mean ± SD (%)

6 6 33.8–36.9 35.3 ± 2.2 3 34.3–36.0 35.2 ± 2.1

8 6 32.6–36.4 34.9 ± 3.0 3 34.1–36.8 35.7 ± 2.7

9 6 35.9–37.9 36.7 ± 2.1 3 36.5–38.1 37.0 ± 1.7

12 6 32.5–36.7 34.5 ± 1.9 3 34.2–36.9 35.5 ± 1.3

15 6 34.1–37.0 36.5 ± 1.7 3 35.9–37.8 36.2 ± 1.5

18 6 32.9–37.5 35.2 ± 2.2 3 34.5–37.0 36.1 ± 2.0

21 6 34.3–39.7 37.1 ± 3.9 3 35.7–38.3 37.7 ± 2.3

23 6 35.1–38.5 36.7 ± 3.1 3 34.3–35.7 35.0 ± 2.8

24 6 34.9–38.8 37.6 ± 2.9 3 34.3–39.9 37.3 ± 2.0

27 6 34.1–37.3 35.8 ± 2.8 3 34.7–36.1 35.5 ± 3.7

29 6 36.8–39.7 37.9 ± 1.8 3 37.0–38.6 37.5 ± 2.3

30 6 38.3–40.6 40.1 ± 3.3 3 38.7–40.1 39.4 ± 3.0
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amount of calculation of the full spectrum (224 bands from 900 to 
1,700 nm and 448 bands from 400 to 900 nm) should be taken into 
account. Because of the difference of spectral data obtained from 
visible and near-infrared range, untreated and SNV pretreated, four 
groups of characteristic wavelengths were acquired via SPA: 349 
and 441 bands were obtained in the visible region, whereas 139 
and 125 bands were obtained in the near-infrared region, including 
untreated and pretreated. Thus, we can know that the numbers of 
characteristic wavelengths after SPA screening were still large. To 
clearly show the absorption range correlated with pit mud moisture, 
we selected four groups of wavelengths with higher frequency to 
display, respectively, as shown in the Figure 5. The result shows that 
the characteristic peak of moisture was mostly concentrated below 
1,500 nm, both strong absorption in visible and near-infrared spec-
troscopy, which had similar to that of some study (Workman, 2007).

3.4 | Prediction of moisture in pit mud

Pre-experiment with different gradients was carried out to find the char-
acteristic absorption peak of moisture in pit mud; the result showed that 
feature-related wave bands were within 1,500 nm, which was verified 

by literature (Workman, 2007). Therefore, in this paper, the spectral 
information corresponding to the front 180 wavelengths was selected 
for the modeling of near-infrared spectroscopy. Different quantitative 
prediction models (PLSR, SVM, BP) were established for calibration set 
samples based on various mathematical algorithms, totaling 24 models. 
The optimal prediction model was evaluated and screened through the 
R2 and RMSE of the calibration set and prediction set. The SVM model 
was generally superior to the other two models in calibration and pre-
diction set, regardless of the robustness or predictive performance of 
the model; thus, it was considered as a relatively good model (Table 4).

Next, on the basis of SVM model, the modeling effects of un-
treated and SNV pretreated spectral data were compared. From 
Table 3, we can see that in near-infrared region, the modeling ef-
fect of SNV pretreatment was always better than that of untreated 
spectral data in both full and characteristic bands. Moreover, in the 
visible range, the pretreated data were significantly better than the 
untreated on the basis of the full spectrum. In the characteristic 
spectrum, the untreated model had better generalization perfor-
mance, but the error was larger. Therefore, the SNV pretreatment 
was chosen to get rid of noises and prevent the baseline drift.

Further compared and analyzed the performance of the SVM 
model in near-infrared and visible regions, from Table 3, it can be 

F I G U R E  5   Wave bands correlated with moisture in the near-infrared and visible region. (a) Distribution of wave bands correlated with 
moisture in pretreated average spectrum in near-infrared spectroscopy. (b) Distribution of wave bands correlated with moisture in untreated 
average spectrum in near-infrared spectroscopy. (c) Distribution of wave bands correlated with moisture in pretreated average spectrum in 
visible spectroscopy. (d) Distribution of wave bands correlated with moisture in untreated average spectrum in visible spectroscopy
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concluded that the modeling effect of near-infrared spectral data 
was always better than that of visible range, whether in full or char-
acteristic spectrum.

Finally, compared the model performance of full spectrum and 
characteristic spectrum, the SVM model based on characteristic 
spectrum had higher accuracy, smaller error, and better prediction ef-
fect than that of characteristic (Table 3). Furthermore, taking a large 
amount of data in full spectrum modeling and the difficulty in pro-
cessing into account, large-scale servers were needed. Consequently, 
under the condition of guaranteeing the accuracy of the model, 
modeling with characteristic variables was preferred to reduce the 
computational load and improve the work efficiency. Therefore, the 
optimal model for quantitative prediction of pit mud moisture was 
SNV-SPA-SVM model based on near-infrared spectroscopy (Figure 6), 
The R2

cal
 of calibration set was .9995, the RMSEC was 0.0008, the R2

pre
 

of prediction set was .9953, and the RMSEP was 0.0029.

3.5 | Visualization of moisture content

The spectral data of each pixel in the ROI were brought into the 
optimal model to calculate the predicted value of pit mud moisture 

content, and then, pseudocolor processing was carried out to ob-
tain the visual distribution map (Figure 7). The result shows that the 
moisture in the cellar of 6  years was generally lower than that of 
30 years, the new cellar was about 36%–38% and the old was about 
37%–40%, and the moisture distribution of the old pit mud was 
more even compared with the new pit. This may be due to the long-
term succession of microbial communities, which resulted in the ac-
cumulation of a large number of nutrients in pit and increased water 
holding capacity of pit mud. Moreover, the moisture content of the 
same cellar increased from top to bottom in turn.

4  | CONCLUSION

Pit mud, as the foundation of Luzhou-flavor liquor brewing, plays 
a decisive role in quality and liquor yield. Moisture content was a 
crucial factor for the normal metabolism of beneficial microbes in 
pit mud. In this work, a rapid and nondestructive detection method 
for moisture in pit mud using hyperspectral imaging was investi-
gated. Raw spectral data of 108 pit mud samples in near-infrared 
and visible range were collected. SNV was used to remove noise 
and prevent baseline variation, which may reduce the accuracy of 

TA B L E  4   Statistical table of performance of fitting models

Region
Pretreatment 
or not Spectral range

Prediction 
models

Calibration set Prediction set

R2
cal

RSMEC R2
pre

RSMEP

In near-infrared Untreated Full spectrum PLSR .9953 0.0026 .9717 0.0067

SVM .9581 0.0078 .9260 0.0108

BP .6278 0.0232 .6180 0.0246

SPA PLSR .9933 0.0031 .9833 0.0051

SVM .9524 0.0083 .9303 0.0105

BP .9396 0.0152 .9402 0.0152

SNV Full spectrum PLSR .9958 0.0024 .9678 0.0074

SVM .9994 0.0009 .9936 0.0033

BP .3998 0.0291 .4549 0.0303

SPA PLSR .9927 0.0032 .9721 0.0069

SVM .9995 0.0008 .9953 0.0029

BP .7805 0.0193 .8002 0.0191

In visible Untreated Full spectrum PLSR .9891 0.0040 .9281 0.0109

SVM .9998 0.0005 .9709 0.0069

BP .6829 0.0217 .4644 0.0291

SPA PLSR .9909 0.0037 .9396 0.0100

SVM .9991 0.0034 .9991 0.0040

BP .9971 0.0064 .9968 0.0072

SNV Full spectrum PLSR .9989 0.0013 .9830 0.0052

SVM .9978 0.0018 .9948 0.0029

BP .6008 0.0247 .5742 0.0258

SPA PLSR .9985 0.0015 .9902 0.0039

SVM .9992 0.0011 .9709 0.0018

BP .6821 0.0219 .7279 0.0207
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the model. SPA was used to select characteristic wavelengths cor-
related with moisture. Twenty-four quantitative prediction models 
were developed for calibration samples based on full spectrum and 

specified spectrum; according to the R2 and RMSE of the calibra-
tion and prediction set, SNV-SPA-SVM in near-infrared region was 
considered as the optimal prediction model. Based on this model, 
the visual distribution map of pit mud moisture was obtained. The 
result shows that the moisture content in the new cellar was gen-
erally lower than that of old, and the moisture of the same cellar 
increased from top to bottom in turn. The cloud image can visually 
display the moisture distribution of pit mud and help to judge the 
complex fermentation state, thus providing a reference for the on-
line monitoring of pit fermentation.

Consequently, a rapid prediction method for pit mud moisture 
content was firstly established, which opens the door for the ap-
plication of hyperspectral imaging technology in liquor solid-state 
field, and also injects new vigor into the transformation and upgrad-
ing of industrialization of Chinese baijiu.
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