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A clear understanding of the origins of cancer is the basis of successful strategies for effective cancer prevention and management.
The origin of cancer at the molecular and cellular levels is not well understood. Is the primary cause of the origin of cancer the
genomic instability or impaired energy metabolism? An attempt was made to present cancer etiology originating from life’s
major evolutionary transition. The first evolutionary transition went from simple to complex cells when eukaryotic cells with
glycolytic energy production merged with the oxidative mitochondrion (The Endosymbiosis Theory first proposed by Lynn
Margulis in the 1960s). The second transition went from single-celled to multicellular organisms once the cells obtained
mitochondria, which enabled them to obtain a higher amount of energy. Evidence will be presented that these two transitions,
as well as the decline of NAD+ and ATP levels, are the root of cancer diseases. Restoring redox homeostasis and reactivation of
mitochondrial oxidative metabolism are important factors in cancer prevention.
1. Introduction

Could cancer causation be interpreted as an allegory not to
the damaged hardware (damaged genetic material caused
by chance mutation) but to an incorrect function of a soft-
ware (a metabolic program)? Do we thence use wrong
approaches to treat the cancer disease with chemotherapy
and radiation therapy, which are aimed at destroying the
hardware (killing cells), instead of a more sophisticated
approach aimed at reprogramming the software inside the
cells in order to restore the normal mitochondrial function
and metabolism?

There are carcinogenic and tumorigenic cells with zero
mutations [1], and there are many somatic mutations in
cancer-driver genes in healthy tissue, which does not become
a cancer [2], with so-called driver mutations [3]. Further-
more, experiments on the nucleus and mitochondrial trans-
fer revealed that tumorigenic phenotype is upgraded when
tumor mitochondria are transferred to a normal cell cyto-
plasm and vice versa. This can be illustrated by the transplan-
tation of noncancerous mitochondria which can inhibit
tumor properties of metastatic cells [4–9]. Additionally,
tumorigenesis may be suppressed by normal mitochondrial
function [10–12], and metabolic enzymes of the Krebs cycle
have been recognized as oncosuppressors [13].

Both abnormalities in tumor suppressor genes (antion-
cogene acting to inhibit cell proliferation and tumor devel-
opment) and oncogenes can be caused by impaired
mitochondrial function [14]. Aerobic glycolysis of tumors
is in some measure displayed by activation of oncogenes or
absence of tumor suppressors, which are then additionally
intensified by stabilization of the hypoxia-inducible factor
(HIF) [15], which encodes for all of the glycolytic enzymes.
It seems that fully operating mitochondria regulate apoptosis
by releasing cytochrome c [16] and suppressing genes of
cancer-like metabolism, which have been conserved from
500,000 million years ago and persist in cells of multicellular
organisms. Such a program, which enables the development
of cancer, preexists in genes in the nucleus from the season
of low O2 atmosphere and single-celled life. Namely, cancer
cells shift their metabolism toward glycolysis, a strategy that
allows for their survival when oxygen is limited [17], and
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consequently increase the availability of biosynthetic inter-
mediates needed for cellular growth and proliferation [18].
Du [19] proposed a hypothesis that “the survival style of
cancer cells was the reevolution from eukaryotic to prokary-
otic cells by the alteration of energy metabolism.” A human
body is a sum of colonies of cells and their mitochondria.
The cells composing the human body are similar to single-
celled eukaryotes (existing 500,000 million years ago)
although human cells can no longer survive on their own
and generally do not use the primitive source of energy,
e.g., substrate-level phosphorylation, to produce ATP. The
first life emerged on Earth around 3.5 billion years ago, when
the early biosphere was more reduced. The increased
amounts of dioxygen (O2) emerged approximately 2.4 billion
years ago when cyanobacteria, as a product of oxygenic pho-
tosynthesis, triggered the “Great Oxidation Event” [20]. Due
to the elevated O2 in the atmosphere, methods of mitigating
its toxicity inside cells had to evolve [21], and the existing
metabolic pathways had to be reshaped in early aerobic
organisms, which adapted to use O2 as a high-potential redox
couple. Multicellular life appeared more than a billion-and-a-
half years ago, and the Cambrian explosion (somewhere
around 542 million years ago) resulted in the divergence of
major animal groups. Both metabolic transitions have
allowed divergence of life forms on Earth, but evolution has
not provided a way to prevent the onset of cancer. Since the
entire history of humanity, with the exception in the last
100 years, the average lifespan was between 20 and 30 years;
consequently, there might not be much evolutionary pressure
to eradicate cancer as a disease of mostly elderly persons.

1.1. Somatic Mutation Theory vs. Metabolic Impairment
Theory/Mitochondrial Theory of Cancer. At present, cancer
is regarded a genetic disease arising from numerous muta-
tions in oncogenes and tumor suppressor genes. Are gene
mutations in the cell nucleus the causal event in the origin
of cancer (as suggested by the somatic mutation theory) or
is the damaged genetic material just the consequence and
not the primary cause of cancer? Is cancer caused by
damaged mitochondria (impaired mitochondrial function)
and metabolic dysfunction, which activates the divergence
of the glucose metabolism away from the energy production
and stimulates cell growth (transition from oxidative phos-
phorylation to glycolysis/fermentation)? Is it genomic insta-
bility or debilitated energy metabolism that is essentially in
charge of the cause of cancer? While tumor growth could
be explained by the classical multistage model of carcinogen-
esis, the model does not provide rationale for the beginning
of tumor development [22]. In the last 50 years, it has been
accepted that initiation is the one event during which one
or more mutations transform a normal somatic cell into a
latent neoplastic cell, that is, a tumor cell still lacking multi-
plicative autonomy. This phase is then followed by promo-
tion in which further mutations and proliferative stimuli
induce the initiated cell to give rise to the progeny constitut-
ing the tumor. However, it remains to be elucidated what is
the effect and what is the cause of normal-to-tumor cell
transformation. Cancer was primarily considered as a type
of somatic genetic disease in accordance with Boveri’s cancer
theory [23, 24] where harm to a cell’s nuclear DNA underlies
the change of a normal cell into a cancer cell [25–27]. Indeed,
multiple and heterogeneous mutations are found in cancer
cells [22]. The question however remains whether DNA
mutations are the initiating event causing cancer or are they
merely necessary contributors to the progression of tumor
after its initiation? Are we battling cancer from the right front
considering the hypothesis that DNA mutations as drivers
are not that significant in initiation of tumors? Can tumors
arise with regular division and mutation rates? Namely,
spontaneous mutations are of the order 10-5 [28]. Estimated
probability of mutating five genes, such as both alleles of a
particular tumor suppressor gene and an oncogene, is 10-20

[29]. Thus, in terms of genetic hits in one cell, it is difficult
to explain cancer formation as a result of the acquirement
of random genetic mutations.

On the other hand, Seyfried et al. [27] explain cancer as
essentially a metabolic disease related to disturbances in
energy production through respiration and fermentation.
According to the metabolic impairment theory/mitochon-
drial theory of cancer [4, 27, 30–34], cancer can best be
explained as a class/kind of mitochondrial disease. As indi-
cated by Warburg’s hypothesis, cancer cells emerge from
normal body cells through steady and irreversible harm to
their respiratory capacity. Just those body cells which are able
to increase glycolysis during intermittent respiratory damage
are viewed as fit for forming cancers [31, 32]. The gene theory
of cancer suggests that dysfunctional mitochondria could be
the resultative and not the causative factor of cancers. On
the other hand, the metabolic impairment theory indicates
the contrary. Abnormal energy metabolism characterises
most tumor cells in all types of tissues [14]. It was further
observed that genes for glycolysis are excessively expressed
in the major part of cancers explored into [35, 36]. What is
more, the cancer cell metabolism is regulated also by meta-
bolic oncogenes and tumor suppressor genes (e.g., K-ras,
p53, PI3K, Akt, and MYC) which have evolved to regulate
the Warburg effect [37]. Several studies indicate that the
structure and function of tumor mitochondria are not
normal and as such not capable to generate the adequate
levels of energy [38–47]. The mitochondrial structure is inti-
mately related to mitochondrial function. Abnormalities in
both the content and composition of mitochondria have been
observed in different tumor tissues in vivo. On the contrary,
in different human and animal tumor cells, when they are
grown in the in vitro conditions, in contrast to structural
defects, reduced numbers or the absence of mitochondria is
commonly not observed [27]. Moreover, some researchers
observed that in different tumor types, mitochondria and
OXPHOS are normal. However, such results were noticed
mainly from the in vitro studies measuring oxygen consump-
tion rates in tumor cells [48–53]. Already half a century ago,
Warburg suggested that oxygen consumption could be com-
parable in normal and tumor cells although ATP formation is
significantly lesser in tumor cells. The fact that the oxygen
consumption rate can be similar or even greater in cultured
tumor cells than in nontumorigenic cells was claimed also
by different other authors [40, 54, 55]. However, it has been
established that the oxygen consumption rate alone cannot
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Figure 1: O2 and NAD+ as limiting factors in driving oxidative phosphorylation. The figure presents a hypothesis that in situations with
limited availability of NAD+, the cells will activate the program which switches off Krebs cycle and electron transport chain (process
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be considered as an indicator of coupled respiration. This can
be explained by the fact that some tumor cells consume oxy-
gen while the glycolytically derived ATP is imported and
hydrolysed through the mitochondrial adenine nucleotide
transporter 2 so as to preserve the proton motive gradient
[56]. Moreover, the cultured cell lines are usually derived
from only a single cell or a few cells of a heterogeneous
tumor. It can be concluded that mitochondria might appear
functionally normal in many types of cultured tumor cells
but appear structurally abnormal when evaluated in the
tumor cells of many primary malignant cancers.

1.2. Mitochondrial Substrate-Level Phosphorylation (mSLP)
Provides Energy Source for Cancer Cells: The Missing Link
in Warburg’s Theory. Reduced ATP formation through
impaired oxidative phosphorylation or hypoxia must be
compensated by tumor cells with an alternative source of
energy. Glucose and glutamine represent available ferment-
able fuels, since acetate and branched chain amino acids
are not present in adequate quantities and other amino
acids can be used only with the presence of high-energy
phosphates for the metabolic conversion to succinyl-CoA,
which is the substrate for mSLP [57]. mSLP produces high-
energy phosphates through glutaminolysis and represents a
compensatory energy mechanism for cancer cells with insuffi-
cient or defective OXPHOS [58]. According to Seyfried et al.
[57, 58], the missing link in Warburg’s theory is the succinic
acid fermentation which uses glutamine as a major substrate
through sequential conversion of glutamine→ glutamate→
alpha‐ketoglutarate→ succinyl‐CoA→ succinate.

1.3. Deficiency of Energy: From Respiration to Fermentation.
In order to enable multicellular life, cells must adapt to strict
control of cell division and differentiation. Such cooperation
works until there is enough energy supply in the form of
NAD+ and ATP. However, both NAD+ levels and energy
production in the form of ATP decline with age [59–61],
and the incidence of many types of cancer increases with
aging [62, 63].

Age-related decline of NAD+ leads to mitochondrial dys-
function (Figure 1), which leads to the Warburg effect [64].
NAD+ or NAD+/NADH ratio can have an impact on the fre-
quency of DNA mutation, epigenetic changes in DNA, and
also metabolic programming [65]. The role of NAD+ is in
accepting hydride equivalents, from glycolytic and TCA cycle
metabolites, to form reduced NADH, which enables mito-
chondrial electron transport chain (ETC) to fuel oxidative
phosphorylation [66]. In addition, high NAD+ levels regulate
SIRT activity which influences metabolism, DNA repair,
stress resistance, cell survival, inflammation, mitochondrial
function, and lipid and glucose homeostasis, by targeting
FOXO, PGC-1α, p53, NF-κB, HIF-1α, and many other cellu-
lar targets [65].

According to Warburg’s theory of cancer, the energy
through fermentation gradually compensates for insufficient
respiration [31, 67] which allows a cell to stay alive. NAD+
content is a basic protective factor at the beginning of carci-
nogenesis, and decreased NAD+ intracellular concentration
might play a significant role in the process of cancer develop-
ment by limiting energy production which negatively affects
genomic stability by altering responses to stress and efficiency
of the DNA repair [65, 68].

1.4. Potential Protumorigenic Side Effects of Increased NAD+.
NAD+ can act as both pro- and antitumorigenic due to its
mediated reactions on the mechanism of apoptotic cell death
and inflammation. Different inflammatory soluble molecules
secreted by senescent cells that could promote tumor growth
and progression as well as NAD+ metabolism might influ-
ence the senescence-associated secretory phenotype (SASP)
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as discussed in the recent paper of Nacarelli et al. [69]. In
their research, it was shown that increased NAD+ influences
the inflammatory signaling of senescent cells in vivo in
mouse models of pancreatic and ovarian cancers through
the higher HMGAs and nicotinamide phosphoribosyl-
transferase (NAMPT) expression, which promotes the pro-
inflammatory SASP through NAD+-mediated suppression
of AMPK kinase, leading to suppression of the p53-
mediated inhibition of p38 MAPK and enhanced NF-κB
activity [69]. Moreover, FK866, a compound which inhibits
nicotinamide-recycling enzyme NAMPT/PBEF, which is
the bottleneck for NAD biosynthesis, resulted in anticancer
effect [70] as a tumor apoptosis inducer due to NAD+
depletion [71].

It seems that NAD+ levels are a critical protective factor
in early carcinogenesis and might become a detrimental
factor later in the cancer progression and promotion phase.
Namely, during cancer promotion, progression and
treatment-increased NAD+ levels could have deleterious
effects on the malignancy process due to increased cell sur-
vival, growth advantage, increased resistance to radio and
chemotherapy, and promotion of inflammation (reviewed
in [65]). The tumor promoting vs. inhibiting properties of
NAD+ depend on the stages of cancer development and
NAD+ concentration/time-dependent activation of PARPs
and sirtuins, which interfere with the cell survival. Sirtuins
and PARPs could have both procancer and anticancer effects,
and their role in cancer prevention and promotion remains to
be fully elucidated [72–77].

1.5. Cancer and Mitochondrial Damage. There are many
environmental agents (e.g., radiation, pollutants, and hyp-
oxia) that humans are exposed to through their lives which
damage mitochondria and cellular respiration through
increased generation of reactive oxygen species (ROS).
Therefore, ROS-induced damage to the respiratory system
promotes a hypoxic-like state [31], stabilizes the transcrip-
tion factor HIF, and upregulates glucose transporters into
the cell. Additionally, oncogenes have to turn on because they
are the transcription factors that upregulate the transporters
for glucose and glutamine. The efficiency of mitochondrial
oxidative phosphorylation decreases with age, and pseudohy-
poxia increases which leads to increased apoptosis (every
day, 50-70 billion cells of a human body activate apoptotic
death). However, in rare cases, a “renegade cell” decides not
to sacrifice itself and undergo apoptotic cell death for higher
purposes—to preserve the organism. Contrarily, in order to
preserve its own life, a “selfish renegade cell” activates a pre-
historic program in order to obtain enough energy levels. The
aforementioned program activates fermentation and conse-
quently shuts down genomic stability, tumor-suppressive
control mechanisms, and mitochondrial apoptotic response
[78] allowing such a cell to enter its primitive state. Activa-
tion of such processes results in a higher entropy state level
inside the cell. A typical cell is a highly ordered low entropy
system and invests much energy to keep the entropy of the
system low. So as to keep up stable entropy, which is far from
thermodynamic balance, living systems use information and
energy. Energy loss due to impaired mitochondria limits
supply of energy invested for damage repair, and genomic
stability increases entropy and impairs order of the cell orga-
nization. Namely, glycolysis generates only two moles of ATP
per one mol of glucose whereas oxidative phosphorylation
generates about 36mols of ATP per mol of glucose [79]
(Figure 1). Hence, carcinogenesis represents a reverse process
with the progressive functional decline, disordered morphol-
ogy, and accumulation of mutations. Energy restriction due
to mitochondrial dysfunction might represent the metabolic
initiator that “triggers the genetic mutations that drive the
somatic evolution of the malignant phenotype” [80].

In cases of glucose deprivation, efficient glucose con-
sumption and catabolism are critical for survival. It was
observed that cells switch to glycolysis in combination with
lactate dehydrogenase as an adaptation to limited glucose
availability [81]. When NAD+ levels within the cell become
critically limited, both the TCA cycle in the mitochondria
and glycolysis in the cytoplasm can be halted. Despite having
an excess of available glucose, this can lead to cell death
[82–85]. A less severe reduction in NAD+ levels (e.g.,
from 30 to 85%) has been observed in the muscle tissue
of aged mice with an associated deterioration in mito-
chondrial function but not glycolysis [6, 64, 86–88]. It
seems that cytoplasmic NAD+ pool is less susceptible to
scarcity since “cytoplasmic NAD/NADH ratios range
between 60 and 700 in a typical eukaryotic cell, while
mitochondrial NAD/NADH ratios are maintained at 7 to
8” [89, 90]. The availability of NAD+ is thus critical for
mitochondrial function [91–93].

1.6. Is the “Default” Metabolic Program Incorporated in the
Cells of Multicellular Organisms’ Glycolysis or Oxidative
Phosphorylation? It seems that cancer does not develop as a
result of hypoxia due to damaged mitochondria or cell mass
growth (hypoxic regions of tumors) that leads to impaired
aerobic respiration as was first hypothesized by Warburg
[31]. Some studies suggest that mitochondria are not dam-
aged in some cancer cells [94–96], as discussed in the previ-
ous paragraph, and cancer cells seem to use glycolytic
metabolism prior to the exposure to hypoxic conditions
[97] as observed in leukemic cells [50, 98] and lung tumors
which use aerobic glycolysis even though these tumor cells
are exposed to high oxygen levels during tumorigenesis
[99, 100]. Alteration in the metabolic switch to the aerobic
glycolysis by cancer cells may thus result in the prehistoric
(re)program that reverses premalignant cells to an embry-
onic program that supports cell growth by nutrient acquisi-
tion and metabolism. Before oxygen was formed in the
atmosphere, proliferation and fermentation was the domi-
nant phenotype and the default state of metazoan cells
[101]. According to Szent-Györgyi [101], cancer is a condi-
tion of unrestricted cell development, which is typical of
free-living cells 500,000 million years ago, before the exis-
tence of multicellular life. Cancer is a normal growth from
before half a billion years ago, preceding the Cambrian time
frame. That was before plants and before oxygen-rich atmo-
sphere; life was just fermentation, with boundless telomerase.
When nutrients are available, the unicellular organisms have
evolutionary pressure to multiply as soon as possible by
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fermentation of glucose to generate biomass, which enables
them to maintain the building blocks needed to produce a
new cell [97]. In 1940, the French biologist Jacques Monod
was the first to discover that genes can be regulated by meta-
bolic readjustment in the experiment with E. coli fed on glu-
cose or lactose sugar [102]. Although anaerobic glycolysis is
less efficient, it is much more rapid than oxidative phosphor-
ylation. Warburg observed that in the same amount of time a
normal cell takes to consume one glucose molecule through
OXPHOS, the cancer cell consumes 13 glucose molecules,
only one of which through OXPHOS [103]. Such a switch
can be explained from the evolutionary viewpoint as this
may have helped a unicellular organism to speedily monopo-
lize sugars when available and create an unfavorable environ-
ment for competing microorganisms [104].
1.7. Why Do Cancer Cells Prefer a Relatively Inefficient Way
(in terms of ATP Production) of Extracting Energy from
Glucose?Warburg effect enables cancer cells to convert nutri-
ents into building blocks to form different macromolecules in
order to divide fast. Cancer cells must be directed either to
cell death or to adaptation to a glycolytic phenotype once
their cells reach the oxygen diffusion limit and become hyp-
oxic. If “renegade cells” do not shift to such a primitive form
of energy, they will die from apoptosis or lack of ATP. There-
fore, cells deficient in ATP often undergo apoptosis [105].
Contrary, by activating glycolysis, “a renegade cell” stimu-
lates cell division and suppresses apoptosis and differentia-
tion [14] as well as the “multiunit teamwork.” Such a cell
evolved to survive on its own. When cooperation is stopped,
and fermentation is preferred, differentiation and specializa-
tion are reversed to a more primitive form, and transition to
dedifferentiated cells is favored. Such a cell passes the energy
needed for self-preservation/regeneration to increased repro-
duction; consequently, energy for the repair of cells and also
the adaptive response to stress as cell cycle arrest regulation
and apoptotic removal of damaged cells is depleted. Further-
more, glycolysis significantly diminishes cellular oxidative
stress [106]. Both glucose and glutamine-derived glutamate
are needed for synthesis of glutathione, which provides high
antioxidant capacity and protect cancer cells from elevated
ROS formation during chemo- and radiotherapies [107–109].
1.8. Why Did Evolution Preserve the Ability of Cells to
Activate Aerobic Glycolysis? The antagonistic pleiotropy
hypothesis would explain fermentation as a beneficial pro-
cess to the organism’s fitness at the first week of embryo life
when fast-growing cells of an embryo resemble more a cancer
mass than normal differentiated tissue. An embryo must
survive the first days without blood supply and oxygen.
When the ovum reaches the uterus, it develops into a blasto-
cyst consisting of over 100 cells. Upon entering the uterus,
the embryo attaches into the uterine lining. Only after the
embryo reaches the womb does it obtain blood supply and
oxygen, which enables its organized growth [110]. However,
later in life, the ability to activate “cancer genes” to drive
glycolysis could become detrimental to the organism’s fitness
as a cell might become cancerous.

What is more, anaerobic glycolysis is activated during
short, intense exercise, providing energy to escape during
fight-or-flight response. After only 10-30 seconds of short-
duration high-intensity anaerobic exercise, the majority of
cellular energy come from the anaerobic glycolytic system
manifested in the elevation of the blood-lactate level. This
system provides ATP for up to 2–3 minutes. Then, the gener-
ation of energy switches back to oxidative phosphorylation
[111–113]. While the acute switch from oxidative phosphor-
ylation to anaerobic glycolysis is triggered by high-intensity
anaerobic training, the cause of the permanent switch to
chronic glycolysis remains unknown (Figure 2). One trigger
might be increased and permanent inflammation and oxida-
tive stress, which stabilize HIF-1-alpha, which advances a
hypoxic-like (Warburg effect) state in the cell resulting in
metabolic reinventing toward glycolysis and thus encourag-
ing tumor development [114–116]. Anaerobic glycolysis
and imperfect respiratory chain produce a lot of ROS and
frame an endless loop which creates significantly more dam-
age to mtDNA and decreases energy formation from oxida-
tive phosphorylation and further invigorates fermentation.
1.9. CSC Metabolic Reprogramming. The cancer stem cell
(CSC) hypothesis states that malignant tumors are initiated
and maintained by a population of tumor cells that share
similar biologic properties to normal adult stem cells [117].
Transformation of a normal stem cell into a CSC may occur
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through dysregulation of the proliferation and differentiation
pathways or by inducing oncoprotein activity [118]. An alter-
native is the potential dedifferentiation of mutated cells so
that these cells acquire stem cell-like characteristics [119],
which is applicable to cells of all origins. It was observed
that non-CSCs could be shifted to CSCs and vice versa in
response to intrinsic and/or microenvironmental signals
(e.g., oncogenes, tumor suppressor genes, hypoxia, oxidative
stress, nutrient starvation, and epigenetics), which means
that metabolic reprogramming might play a significant role
during CSC transition [37]. Menendez et al. [37] argue that
CSC bioenergetics might be another cancer and that meta-
bolic reprogramming of CSCs has cancer-causing action.
Increased glycolytic activity observed in early embryonic
cells and high proliferation and diffusion are similar (or
being reactivated) in cancer stem cells, which resume a
more primitive metabolic pattern of energy production
[13]. Cancer stem cells express the same metabolic defect
as seen in all types of cancer cells. Mitochondrial function,
redox status, and ROS formation play an important role in
differentiation, maintenance, and self-renewal of CSC13. As
in cancer cells, the stimulation of aerobic glycolysis sup-
ports, while the blockade of glycolytic enzymes blunts
cancer-like metabolic reprogramming, phenomena observed
in Induced Pluripotent Stem Cells (iPSCs) [120–123]. Even
in the absence of genetic alterations, the Warburg effect and
inhibition of OXPHOS are triggered in iPSCs by two pri-
mum movens: downregulation of the expression of the cat-
alytic subunit of the AMP-activated protein kinase (AMPK)
[124] and H+-ATPase synthase-geared metabolism switch
[125–127]. Increased glycolysis in the presence of O2 and
impaired oxidative phosphorylation are observed in both
embryonic cells and CSC and other tumor cells [128].

1.10. Reprogramming of the Glycolytic Metabolism and
Oxidative Phosphorylation: Is the Trigger the Inflammatory
Stresses? Numerous studies indicate a strong link between
chronic inflammation and cancer (reviewed in [129–138]).
Although mechanisms of chronic inflammation are very
complex and the precise role of increased inflammation and
cancer remain largely unknown, a nuclear factor-κB (NF-
κB), considered as the master activator of inflammation
[139], and p53, the major tumor suppressor, play a pivotal
role. Activation of the NF-kappaB system increases the
apoptotic resistance, activates the chronic inflammatory
response, and reduces the autophagic cleansing [140].
Besides, macrophages that secrete cytokines and growth
factors are attracted by the inflammatory response which
promotes tumor cell growth and metastasis [141].

Chronic inflammation and accumulation of oxidative
stress during aging also lead to NAD+ depletion [142], result-
ing in loss of sirtuin and PARP activity. Chronic inflamma-
tion will result in increased ROS formation leading to a
decrease in intracellular NAD+ and cell death via energy
restriction as a result of DNA strand breaks and PARP activa-
tion [143]. For example, in the brain cells, increased PARP
activity, which leads to decreased NAD+, has been shown to
decrease ATP as well as cause cell death [144, 145]. In partic-
ular, DNA repair enzyme PARPs utilize a lot of intracellular
NAD+ (100 molecules of NAD+ when activated by one
DNA break) and are in this manner in rivalry with sirtuins
for the constrained supply of NAD+. Deacetylation by SIRT1
reprograms inflammation and cancer [146]. Constrained
accessibility of NAD+ and reduced expression of SIRT1 may
sustain aberrant chromatin structure and functions. Subse-
quently, reduced cellular NAD+ limits the efficacy of sirtuins
(SIRT1), possibly deacetylating tumor suppressor proteins
such as p53 [147]. p53 differentially controls a cluster of its
target genes, encompassing the arrest of cell cycle, autophagy,
apoptosis, and senescence, to apply its function in the
damage of DNA and suppression of tumors. Consequently,
a depletion of p53 gives a growth advantage to tumor cells;
for example, it empowers cell survival under constraining
nutrient conditions [148]. Moreover, NAD+-dependent tan-
kyrases (PARP-5a and PARP-5b), which control telomerase
activity and telomere maintenance, may likewise impact the
cancer-causing process [149].

SIRT1 likewise impacts inflammation and cancer by
straightly deacetylating targets like p65, p53, and NF-κB,
which produce proinflammatory products. NAD+ levels
steadily decline with age [129] due to loss of SIRT3 activity
in mitochondria, loss of PARP activity, and increased levels
of NADase CD38 during aging [86, 142]. Since NF-κB regu-
lates the CD38 expression [150], the increase in low-grade
inflammation with age might be the reason for NAD+
decline. Consequently, cells with high levels of CD38 use less
oxygen, have increased lactate, and have dysfunctional mito-
chondria [142]. During chronic inflammation, NAD+ levels
and SIRT transcription and/or protein levels are persistently
reduced in different tissues [151]. Chronic inflammation
and the release of proinflammatory mediators might thus
reprogram cellular metabolism and energy production. For
example, the induction of anabolic glycolysis is observed in
cells of the immune system (e.g., monocytes and macro-
phages) exposed to inflammatory stress [152–155]. With
increased age, the innate immune system does not efficiently
clears the senescent cells as emitters of signals that drive
inflammation and the vicious cycle initiates [156].
1.11. Prevention of Glycolysis and Reactivation of
Mitochondrial Oxidative Metabolism: Approaches That
Target Cell Energy Metabolism and Restore
Mitochondrial Function

1.11.1. Targeting Aerobic Glycolysis Pathways and the
Warburg Effect. Many compounds affect aerobic glycolysis
and would be efficient in depleting ATP in cells with mito-
chondrial defects and triggering cell death. Different small
molecules target aerobic glycolysis and could be used as novel
tumor therapeutics, for example, 2-deoxyglucose [157], loni-
damine, 3-bromopyruvate [158, 159], imatinib, oxythiamine,
and 6-aminonicotinamide [160–162]. Another way of action
is to inhibit glucose transport by phloretin [163] or stimula-
tion of mitochondrial oxidative metabolism through overex-
pression of mitochondrial frataxin, which inhibits tumor
growth [164, 165]. Already in clinical use are imatinib and
trastuzumab (Herceptin), which target signaling pathways
linked to glucose metabolism [98, 166], primarily in those
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individuals with mutations in specific receptors linked to
the insulin-like growth factor 1-Akt/protein kinase B
(IGF-1/PI3K/Akt) pathway. Many studies are showing that
the Warburg effect can be targeted with dichloroacetate
(DCA) and increased mitochondrial activity of glutamino-
lysis with arsenic trioxide (ATO). It was observed that
DCA induces apoptosis in cancer cells but does not induce
apoptosis in normal cells [167–172].

There are many agents that can act as anti-Warburg
agents. Their way of acting is to increase the NAD+ levels
and promote the oxidative metabolism [173]. For example,
SIRT3 can restrain the “Warburg effect” by controlling
HIF-1α and change the cancer cell metabolism programming
from highly glycolytic toward oxidative phosphorylation
[116, 174, 175]. Besides, by inactivating HIF-1α, SIRT1
represses HIF-1 target genes and adversely effects tumor
growth and angiogenesis [176]. By increasing levels of
sirtuins, PARPs, and PGC-1α, oxidative metabolism, inflam-
mation, epigenetic gene silencing, cell cycle control, genome
stability, apoptosis, stress resistance, energy efficiency, DNA
repair, cell death, genome integrity, cellular differentiation,
gene expression, and antiaging could be promoted.

Finally, mitochondria could be used as a potential anti-
cancer drug target. The apoptotic process could be regulated
by reactivating or by transferring mitochondria [5].
1.11.2. Enhancing Mitochondrial Biogenesis and Efficacy and
Boosting Oxidative Metabolism. By enhancing the bioavail-
ability of NAD+, oxidative capacity of mitochondria could
be restored. NAD+ levels could be raised with exercise,
restriction of calories (CR), and ingestion of NAD+ precur-
sors and intermediates. Alternatively, NAD+ bioavailability
can be increased by using poly-ADP-ribose polymerase
(PARP), CD 38, and SAM1 inhibitors [60, 65, 177–185].
Consequently, increased NAD+ levels could activate PARPs
and sirtuins which control the genes that play a role in the
process of DNA repair and maintenance [173]. Additionally,
different NAD(+) precursors can be used through distinct
metabolic pathways to form NAD(+), such as nicotinamide,
nicotinamide mononucleotide, tryptophan, nicotinic acid,
and nicotinamide riboside. Further, consumption of foods
that contain molecules necessary for respiratory enzyme
function (riboflavin, nicotinamide, iron salts, and pantothe-
nic acid) could help to maintain health when it is combined
with dietary energy restriction [186] since CR increases the
efficiency of the electron transport in the mitochondrial
respiratory chain [187]. Pyrroloquinoline quinone (PQQ)
might increase the number and efficiency of mitochon-
dria. PQQ interacts with cell signaling pathways and
influences energy-related mitochondrial metabolism [188].
The mitochondrial biogenesis is stimulated through a path-
way that activates the cAMP response element-binding pro-
tein (CREB) and peroxisome proliferator-activated receptor
gamma coactivator-1alpha (PGC-1alpha) [189].

While raising NAD+ levels for cancer prevention might
be beneficial, increasing NAD+ levels might be detrimental
during the precancerous stage or once the cancer is formed
[65] (discussed in the previous paragraph).
1.11.3. Increasing the Intracellular Oxygen Level with
Hyperbaric Oxygen Therapy. Hyperbaric oxygen therapy
raises oxygen levels in tumors and reverses the cancer-
promoting effects of tumor hypoxia [190, 191]. By enhanc-
ing oxygen delivery to cells, more ATP can be obtained
through oxidative phosphorylation since cells make use
of oxygen acting as a final electron acceptor in the process
of generating ATP in their mitochondria and mitochon-
drial integrity could be preserved [192]. Poff et al. [193]
observed that a combination of the ketogenic diet with
hyperbaric oxygen therapy resulted in a noticeable drop
in blood sugar and the rate of tumor development and
increased mean survival of mice with systemic metastatic
cancer.

1.11.4. Increasing Regulation of Contact Inhibition (Density-
Dependent Inhibition) and Proliferation. Due to the loss of
growth control, the growth and division of cells are
uncontrolled. Cells should be informed that they are a part
of a multicellular organism and that they have to obey the
control of proliferation or to activate apoptosis if being
damaged. This could be achieved by increasing the response
to the signals that cause healthy cells to cease prolifera-
tion and enter the G0 phase and by decreasing the pro-
duction of growth factors that stimulate cancer cells to
own proliferation [194–196].

1.11.5. Targeting Glucose and Elevating Blood Ketone Bodies
through a Calorie-Restricted Ketogenic Diet (KD-R). The
energy metabolism in glycolysis-dependent tumors can be
targeted by a transition from carbohydrate to ketones.
Healthy cells can be protected from such glycolytic inhibi-
tion, and the brain can be protected from hypoglycaemia by
elevating blood ketones, which occurs when a low-
carbohydrate and a high-fat ketogenic diet is carried out
in limited amounts [34]. Exogenous ketone supplementa-
tion on its own inhibits cancer cell proliferation and via-
bility in vitro, slows tumor growth, and prolongs survival
in vivo [197]. Caloric restriction/KD-R reduces carbons
needed in glycolytic and pentose phosphate pathways in
order to provide ATP, precursors for lipid and nucleotide
synthesis and formation of antioxidant glutathione. Due to
impaired mitochondrial function, cancer cells are depend-
ing on substrate-level phosphorylation, and during ketone
body metabolism, mSLP is bypassed. Ketone bodies may
elicit their anticancer effects, most likely by glycolytic
enzyme inhibition [198]. Numerous research studies docu-
mented that in vitro cancer cells were deficient in metabo-
lizing of ketone bodies [199, 200]. Ketone bodies generate
ATP energy only through oxidative respiration in the mito-
chondria and cannot be fermented. While dietary energy
reduction lowers blood glucose levels and restricts the
energy supply to cancer cells, some of the tumor cells might
still obtain enough energy to survive due to the endogenous
glucose and amino acid influx.

1.11.6. Targeting Glutamine. For cell growth and division,
cells need a supply of carbon, nitrogen, free energy, and
reducing equivalents, which can be obtained through glucose
and glutamine metabolism [97]. Glutamine functions as a
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significant energy metabolite for some cancers. For example,
tumors with deregulated MYC expression may be less sensi-
tive to inhibition of glycolysis than tumors with overactiva-
tion of the Akt pathway [178, 201]. Glutamine provides a
source of carbon and nitrogen needed for nucleotide synthe-
sis, and targeting glutamine metabolism with the glutamine
antagonist 6-diazo-5-oxo-norleucine (DON) might be used
in cancer treatment [202–204]. For example, it was shown
in two glioblastoma mouse models that administration of
DON and calorically restricted ketogenic (KD-R) diet killed
tumor cells, reversing disease symptoms and increasing
overall mouse survival. Simultaneous administration of
DON and KD-R both targeted substrate-level phosphoryla-
tion reactions in mitochondria (glutaminolysis) and in the
cytoplasm (glycolysis), respectively, thus enabling ATP for-
mation and synthesis of proteins, nucleotides, and lipids
[205]. It should be stressed that glutamine is needed for
appropriate functioning of the immune system and the gut
[206]; thus, glutamine targeting is more demanding than
glucose targeting.

1.11.7. “Press-Pulse” Therapeutic Strategy. The team of
Seyfried developed a so-called “press-pulse” therapeutic
strategy [107, 207]. The general concept of press disturbances
(chronic metabolic stress on tumor cell energy disturbance)
and pulse disturbances (acute metabolic stressors that restrict
glucose and glutamine availability) could be applied for the
management of cancer. Press therapies reduce systemic
glucose concentrations and elevate ketone bodies; pulse
therapies use cocktails which interfere with glycolysis and
glutaminolysis metabolic pathways [107, 207].

1.11.8. Targeting Insulin/Insulin-Like Growth Factor (IGF)
Signaling, Mammalian Target of Rapamycin (mTOR), and
AMP-Activated Protein Kinase (AMPK) Pathways.Metabolic
therapies that lower circulating glucose levels were reported
to significantly reduce growth and progression of numerous
tumor types [14]. A number of epidemiological studies ini-
tially concluded that in patients with diabetes who controlled
their blood sugar levels by taking metformin, the develop-
ment of cancer was less likely. It was also observed that their
survival rate was improved once cancer was initiated. Several
retrospective studies indicated that people with diabetes had
increased cancer mortality compared with nondiabetics and
that people with diabetes on metformin had a substantially
(∼40%) reduced cancer burden compared with diabetics on
other treatments [208]. For example, glucose reduction
lowers insulin and IGF-1 levels, which is required for driving
tumor cell metabolism and growth [209, 210]. Caloric restric-
tion specifically influences the IGF-1/PI3K/Akt/HIF-1α
signaling pathway, which regulates several cancer hallmarks
like evasion of apoptosis, cell proliferation, and angiogenesis
[14]. Diabetes drugs metformin and phenformin might have
benefit in cancer prevention as activators of AMPK in cells.
AMPK is activated by also salicylate in vitro and by “nutra-
ceuticals” such as resveratrol, epigallocatechin gallate, and
berberine, which activate AMPK by inhibiting mitochondrial
ATP production [211]. AMPK is also activated in the rest-
ing muscle with 5-aminoimidazole-4-carboxamide-riboside
(AICAR), which enters the muscle and is phosphorylated
to ZMP (5-aminoimidazole-4-carboxamide-1-β-D-ribofura-
nosyl-5′-monophosphate, an AMP analog). ZMP is a nucle-
otide that mimics the effect of 5′-AMP [212–214]. 3,3′
-Diindolylmethane (DIM) from cruciferous vegetables and
epigallocatechin gallate (EGCG) from green tea have been
reported to be effective AMPK activators in a prostate or
breast cancer model system, both in vitro and in vivo [215].
Additionally, AMPK was demonstrated to suppress tumor
growth in vivo as a negative regulator of the Warburg effect
[216]. AMPK in muscles is activated, in response to both
in vivo exercise and ex vivo contraction [217, 218]. The varied
role of AMPK on cancer cell survival and tumor progression
and suppression is explained in detail elsewhere [219]. The
induction of AMPK activity inhibits the activity of rapamy-
cin (mTOR) [220]. Mammalian target of rapamycin (mTOR)
regulates a translational control over cell division, growth,
and energy metabolism, while IGF-1/Akt regulates the tran-
scriptional regulators of these processes. The inhibition of
apoptosis and the promotion of growth and division are,
therefore, the result of the activated IGF/Akt pathway
[221]. A serine/threonine protein kinase mTOR controls
the growth, proliferation, motility, and survival of cells;
protein synthesis; and transcription [222, 223] in response
to nutrients (e.g., glucose and amino acids), growth factors
(e.g., increased levels of insulin, IGF-1, and platelet-derived
growth factor (PDGF)), and cellular energy status (ATP).
CR and p53 (a nuclear transcription factor with a proapopto-
tic function) may also inhibit mTOR activity [148].

1.11.9. Shifting from Anabolic to Catabolic Metabolism
Suppresses High Rates of Proliferation. Anabolic pathways
that advance growth are stimulated in cancer by means of
tumorigenic mutations, especially PI3K-mTOR signaling
[224]. PI3K-Akt-mTOR network signaling, where many
oncogenes and tumor suppressors reside, is acquired with
minimal reliance on external stimulation by growth factors
[225]. Additionally, glucose metabolism generates glycolytic
intermediates (hexosamine pathway, PPP, and one-carbon
metabolism) which promote anabolic pathways that support
cell growth [226]. On the other hand, only a couple of short
periods of fasting activates AMPK, which triggers repair
and catabolic processes. Alongside, AMPK-mediated inhibi-
tion of mTOR activity [226] and downstream anabolic
pathways establishes separation of anabolic and catabolic
processes [227]. Tumor cells have aberrant activation of
mTORC1 that evokes an anabolism leading to nucleotide,
protein, and lipid synthesis. A depletion of tumor suppres-
sors, such as p53, or activation of oncogenes, e.g., MYC, to
a greater extent enhances an anabolic growth program by
metabolic gene transcriptional regulation.

Currently, there are many other strategies under inves-
tigation targeting mitochondrial energy metabolism to
2inhibit or delay tumor growth. Some of them deal with
DNA methylation pattern, epigenetic reprogramming, and
aberrant microRNA (miRNA) levels and/or investigate the
role of intermediates of the Krebs cycle on “nonmetabolic”
signaling which alters the immune system, the role of
DJ-1 (Parkinsonism-associated deglycase) as a modulator
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of mitochondrial metabolic efficiency and a switch
between glycolysis and oxidative phosphorylation, and
the role of bouchardatine in suppressing cancer by dis-
rupting its metabolic pathways via activating the SIRT1-
PGC-1α-UCP2 axis. Detailed descriptions of their princi-
ples are beyond the scope of this paper. More information
can be found elsewhere [228–231].
1.12. Chemoresistance. Drug-resistant tumor cells arise in a
large part from the damage to respiration in bystander pre-
cancerous cells. While cytotoxic drugs and radiation create
tumor cells that become highly resistant to the classical treat-
ment approaches, this is not probable when dietary energy
reduction and approaches aimed at reversing abnormal
energy metabolism and growth behavior in tumor cells
are used [107, 232]. Chemoresistance is the result of the
fermentation metabolism in the tumor cells. Glucose and
glutamine contribute to the synthesis of glutathione, which
protects tumor cells from oxidative stress [205]. Inhibition
of glycolysis in cancer cells increases the sensitivity to com-
mon anticancer agents and overcomes the drug resistance
[232]. Dietary restriction, periodic fasting, and fasting-
mimicking diets are emerging as interventions used to
prevent and treat cancer in combination with chemo- and
radiotherapy [233–235].
2. Conclusion

A clear understanding of the origins of cancer is the basis of
successful strategies for effective cancer prevention and man-
agement. Results are indicating that the carcinogenic process
is not driven by the accumulation of random or stochastic
genetic mutations, but instead, a mitochondrial metabolic
disease [4] was presented. However, it remains to be eluci-
dated what exactly triggers the reprogrammed metabolism
in cancer cells. Additional studies are needed to investigate
the causation-consequence relationship between metabolic
abnormalities and the causation of the genetic mutations
and, on the other hand, the mutation ability to trigger the
metabolic abnormalities.

Both metabolic and standard cytotoxicity-based treat-
ment approaches should be coupled. Strategies that restore
mitochondrial metabolism/functions could have both tumor
preventive (e.g., caloric restriction or intermittent fasting)
and therapeutic implications in cancer (use of drugs, such
as glutamine antagonist and 6-diazo-5-oxo-L-norleucine
(DON), and others including KD-R). Evidence was presented
that restoring redox homeostasis and reactivation of mito-
chondrial oxidative metabolism are important factors in
cancer prevention. Preclinical studies are needed, followed
by controlled-randomized clinical trials, investigating strate-
gies to restore mitochondrial metabolism as well as synergis-
tic effect of metabolic and standard cytotoxicity-based
treatment approaches. Without findings of additional stud-
ies, no specific therapy can be currently favorited. The effi-
cacy of the proposed treatment approaches should be
further studied to determine their potential for clinical use
in the future.
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