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Abstract
Image segmentation of retinal blood vessels is a process that can help to predict and diag-

nose cardiovascular related diseases, such as hypertension and diabetes, which are known

to affect the retinal blood vessels’ appearance. This work proposes an unsupervised method

for the segmentation of retinal vessels images using a combinedmatched filter, Frangi’s filter

and GaborWavelet filter to enhance the images. The combination of these three filters in

order to improve the segmentation is the main motivation of this work. We investigate two

approaches to perform the filter combination: weightedmean andmedian ranking. Segmenta-

tion methods are tested after the vessel enhancement. Enhanced images with median rank-

ing are segmented using a simple threshold criterion. Two segmentation procedures are

applied when considering enhanced retinal images using the weighted mean approach. The

first method is based on deformable models and the second uses fuzzy C-means for the

image segmentation. The procedure is evaluated using two public image databases, Drive

and Stare. The experimental results demonstrate that the proposedmethods perform well for

vessel segmentation in comparison with state-of-the-art methods.

Introduction
Retinal vessel segmentation is an image processing procedure that can help in the detection of
numerous eye diseases [1]. Complete and correct segmentation is normally required for proper
analysis of the vessels and their branching patterns. Manual tracing of retinal vessels is one
method that can be used for segmentation. However, it is a long and tedious task which also
requires training and is prone to interoperator variability [2]. Automatic segmentation is desir-
able but is generally vulnerable to artifacts/noise, image resolution, illumination and other vari-
ations present in the images. Furthermore, the retinal images present two vascular networks:
the arterial and the venous. These vessels cross and overlap with some frequency, especially
next to the optical disc, hindering the automatic segmentation of the image. For these reasons,
retinal vessel segmentation still poses a great challenge.

A wide variety of blood vessel segmentation algorithms are described in the literature. In
general, these algorithms can be grouped into supervised and unsupervised methods.
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Supervised methods [1, 3–6] depend on a number of hand-labeled gold standard images. How-
ever, this type of approach presents two main problems. First, as noted by Hoover et al. [7] and
cited by Fraz et al. [2] there is significant disagreement in the identification of vessels, even
amongst expert observers. Secondly, not all problems are clearly labeled, for example there are
uncertainties in the boundary of a vessel, especially in the small vessels. Also, vessels near
pathology are difficult to label [7].

On the other hand, unsupervised vessel segmentation [7–16] is performed without training
data or hand labeled ground truths. Such algorithms are able to reveal correlations, patterns,
regularities or categories in the data samples. The ability to segment without hand labeled
images allows to operate at a wide range of conditions and with retinal images obtained from
different cameras.

Retinal vessel segmentation is a process that in most cases consists in enhancement of the
vessels combined with a segmentation method. Many methods for unsupervised retinal vessel
segmentation rely on information from vessel enhancement filters [7, 8, 10, 14, 17]. Popular fil-
ters are: matched filter [10], Frangi’s filter [18], and Gabor Wavelet filter [5]. Each filter
responds differently to a vessel pixel. The combination of various filter responses in order to
improve the segmentation results, is the main motivation of this work.

The idea is to weigh several individual filters and combine them in order to obtain an
enhanced image that outperforms each one of them. A necessary condition for a combined fil-
ter to be more accurate than any of its individual members is that the result of each individual
filter presents a high diversity [19]. In this work, an accurate vessel enhancement filter is one
that enhances the pixels of the vessels and suppresses the intensity of the pixels belonging to
the background.

Here, we propose an efficient unsupervised method for automatic retinal vessel segmenta-
tion that combines three vessel enhancement filters: matched filter [10], Frangi’s filter [18],
and Gabor Wavelet filter [5]. These filters were chosen because of their individual performance
and because they are based on different concepts, increasing the diversity of the filtering results.
Two approaches are used to perform the filter combination: weighted mean and median rank-
ing. The procedure is based on the combination of specific filters for the enhancement of ves-
sels in the images, which serves as input to the segmentation methods. The main advantage of
the proposed methods is that they are completely unsupervised. In addition, the approaches
combine different filters that yield better results than using a single filter.

Proposed Method
The proposed method for filter combination is divided into three steps, as shown in Fig 1.
After intensity normalization of the vessel image, three specific filters for the enhancement of
the blood vessels images are combined: matched filter [10], Frangi’s filter [18], and Gabor
Wavelet filter [5]. These filters were chosen because they are the most used in the literature in
retinal vessel segmentation [5, 7, 8, 10, 14, 17, 18]. The filters are based on Gaussian functions,
which ensures good responses to the vessel enhancement filters [10]. Moreover, they are fast
and easy to implement. The image is then segmented and noise is removed in a post-processing
step. In the segmentation step we use the Fuzzy C-means, ORSF and optimize threshold
approaches.

Intensity Normalization
The first stage of the proposed method for the segmentation of the retinal vessels using filter
combination is the pre-processing. In this step, we are concerned with the characteristic prob-
lem of retinal images, such as low contrast between the vessels, image background, and
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illumination. From the RGB model, only the green channel is selected because it exhibits the
best contrast between vessels and background while the red and blue channels tend to be very
noisy [20]. Contrast stretching improves the contrast and illumination of the image. The algo-
rithm requires two limits, a lower value α1 and a higher α2 (these limits are set 0 and 1, respec-
tively). Each pixel p is scaled according to

pout ¼ ðp� b1Þ
ða2 � a1Þ
ðb2 � b1Þ

þ a1; ð1Þ

where β1 and β2 are the lowest and highest pixel values present in the image, respectively.
Matched filters extract the blood vessels by convolving the image with predefined filters that

enhance the vascular structures features. The vessel intensity profile is symmetrical from a line
passing through the center of the vessels. Gaussian models are the basis for the generation of
filters for the vessels detection. Both matched [10] and Laplacian of Gaussian filters [8] are
proper choices for the vessels detection. However, while the matched filter enhances the vessels
using Gaussian filters with different orientations, the Laplacian of Gaussian is an isotropic fil-
ter. In this work, we used the matched filter as proposed by Chaudhuri et al. [10]. Fig 2C shows
an enhanced image using this filter.

Frangi et al. [18] presented a technique that enhances the blood vessels in the images. A
measure that describes the vascular structures is obtained from eigenvalues of the Hessian
matrix. The enhancement process of this method considers the vessels as tubular structures.
Since the vessels appear in different sizes, the process uses information obtained from a range
of scales. Fig 2D shows an enhanced retinal image using Frangi’s filter.

Gabor Wavelet is the last filter used by the proposed method for the filter combination.
Soares et al. [5] presented a method for the enhancement of the vessels using the Gabor

Fig 1. The proposedmethod. The method is composed of three different steps consisting of a combination
of different filters and a segmentation method.

doi:10.1371/journal.pone.0149943.g001
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Wavelet transform at various scales. The Gabor Wavelet is an elongated Gaussian function
modulated by a complex exponential. Fig 2E illustrates the results from the Gabor Wavelet
filter.

Filters Combinations. The main motivation for filter combination is the complementarity
that they provide. The Frangi’s filters, Gabor Wavelet and matched filter present different
results and when these filters are combined, the overall result can be improved. Fig 3A–3C
show a part of an enhanced image by the Frangi’s filter, Gabor Wavelet and Matched filter,
respectively. The Wavelet Gabor and matched filters enhance the small vessels better, while
Frangi’s filter is less sensitive to noise. In this subsection, the combination methods of weighted
mean and median ranking are described.

Weighted Mean and Optimization. The combination approach using the weighted mean
is similar to the method presented by Oliveira et al. [21]. It combines the filters through a
weighted mean using Fuzzy C-means and deformable models. The weights were defined
through many experiments. However, in this work we propose an approach for the automatic
selection of weights, using Genetic Algorithms (GA) [22].

Let G andW be the enhanced images and non negative weights sets, respectively, where
g 2 G and w 2W. Enhanced images are normalized between 0 and 1. The weighted mean is
then defined as follows:

F ¼ 1�
XN
k¼1

gkwk

 !
: ð2Þ

where N is the number of enhanced images.
The set of enhanced images can include: Matched Filter (MF), Frangi’s filter (FR), Gabor

Wavelet filter (GW), and Intensity Normalization (IN). The adjustment of the weights should
enhance the small vessels while suppressing background structures. The weights are obtained

Fig 2. Results obtained from the filters. (A) Green channel, (B) Enhanced image using intensity
normalization, (C) matched filter, (D) Frangi’s filter, and (E) Gabor Wavelet filter.

doi:10.1371/journal.pone.0149943.g002
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using genetic algorithms constrained to:

XN
k¼1

wk ¼ 1: ð3Þ

Genetic Algorithm is an optimization technique based on the principles of genetics and nat-
ural selection: from a population of individuals representing possible solutions, evolution is
carried out by means of selection and reproduction. The desired solution is a set of parameters
that minimizes the evaluation function (objective function). This function represents how
much a given solution fits to the reference set delineated by a specialist. Fig 4 shows the steps to
select the optimized weights using GA. These steps are executed for each possible combination
of the filters set τ. LetM be the number of images in the training dataset. For each possible
combination �t 2 t with N�t filters, the GA selects the weights �W 2 W at each iteration. Given a
training image Ii, i = 1, 2, . . .,M, the algorithm computes enhanced images subset �Gi 2 Gi and
then obtains the combined image �F i according to Eq (2). Otsu’s algorithm segments the image
�Fi. The algorithm evaluates the weights �W according to the fitness function defined by Eq (4).
This process is repeated until a stopping criterion has been reached. In the end, the algorithm
selects the optimized weights �W 0 that minimizes the fitness function. The stopping criterion
was defined as the maximum number of iterations without improvement of the current best
solution, which was 50 iterations.

f ¼ 1� 1

M

XM
i¼1

ACCi; ð4Þ

where ACCi is the accuracy of the image segmentation i defined by:

ACC ¼ Number of correctly classified points
Number of pixels inside FOV

¼ TP þ TN
TN þ TP þ FN þ FP

; ð5Þ

in which TP stands for True Positive, TN (True Negative), FP (False Positive) and FN (False
Negative). The ground truth databases used to calculate accuracy are described in [5] and [7].
For the segmentation procedure, we use the Otsu’s thresholding method [23]. In this work,
genetic algorithm is used to find the best filter combination that enhances the pixels of the ves-
sels and suppresses the intensity of the pixels belonging to the background, i.e facilitating the
segmentation of the pixels into two classes: vessel or non-vessel. The main motivation to use

Fig 3. Regions of enhanced images. (A) Enhanced image using Frangi’s filter. (B) Enhanced image using
Wavelet Gabor. (C) Enhanced image using matched filter.

doi:10.1371/journal.pone.0149943.g003
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Otsu as a segmentation algorithm in the process to select the optimized weights is because this
algorithm shows an excellent trade-off between speed and effectiveness for the segmentation. It
is a very fast method requiring no parameters to be set other than the number of classes, and
yields optimal segmentation results if the classes are Gaussian distributed. However, as retinal
images have many artifacts/noise, we use other, more sophisticated image segmentation meth-
ods to improve accuracy, as such fuzzy C-Means. For example, given a set of enhanced images
obtained by the optimized weighted mean, the segmentation accuracy using the Otsu’s algo-
rithm is 0.931, while the segmentation based on the fuzzy C-means algorithm presents accu-
racy equal to 0.94.

Median Ranking. Encouraged by the positive results involving system combination,
Belkin et al. [24] performed two other experiments and reported the following observations:
when multiple systems have incompatible scores, a combination method based on ranked out-
puts rather than the individual scores is the proper method for the combination. The enhanced

Fig 4. Steps to select the optimized weights using GA.

doi:10.1371/journal.pone.0149943.g004
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images obtained by the filters presented in this paper have exactly this characteristic. Table 1
shows the Pearson’s correlation coefficients [25] of the retinal images enhanced by the filters.
According to the table, Matched Filter (MF) and Frangi’s filter (FR) have higher linear correla-
tion, since they produce more compatible scores. However, other filter pairs exhibit low or
moderate correlation, meaning different incompatible scores.

In this work, we normalize the enhanced images obtained by the filters and then combine the
normalized images using the median ranking. For each filtered image, the pixels are ordered
from high to low according to the intensity of each pixel. High intensities usually indicate more
influential features. Let rkp be the position in the rank of the pixel p in the image enhanced by fil-
ter k, k = 1, 2, . . ., N, whereN is the number of filters. The pixel with higher intensity of image
enhanced by filter k is assigned rank by rkp = top, the runner-up, rkp = top − 1, and so on, where
top is the total number of pixels. We calculate the median ranking for each pixel p as:

�rp ¼ medðr1p ; r2p ; � � � ; rNp
Þ: ð6Þ

Fig 5 shows an example of an enhanced image using median ranking.

Segmentation Methods
In our filter combination system, after the enhanced images have been combined, we use differ-
ent segmentation methods. The segmentation methods are related to the type of approach for
filters combination. Enhanced images with median ranking are segmented with a simple
threshold, which is obtained automatically using Genetic Algorithms (GA) on the training
images of the Drive database and the six first images of the Stare database. In the case of the
Drive database, the authors provided a training dataset with 20 images. For the Stare database,
the total number of images was 20. We choose 6 training images that represent 30% of this
dataset. This value was obtained as a compromise between a good representation in the train-
ing of the images and sufficient number of images for the testing. The fitness function is based
on accuracy of the segmented images using the threshold obtained at each iteration of the GA,
similarly as shown in Eq (3). Whereas, for the enhanced retinal images based on weighted
mean, we used two approaches deformable models and fuzzy C-means algorithm, as described
below. These segmentation methods were chosen based on their performance. In our deform-
able model based approach, we have extended the previous approach [26], by modifying the
kernel function to account for the vessels orientation.

Deformable Models. Recently, image segmentation based on deformable models is con-
sidered one of the greatest successes in the area of image processing [26, 27]. The segmentation
of medical images is one of the fields in which this application has proved to be very useful.
Compared with other segmentation methods, an algorithm based on deformable models is
more flexible and can be used for more complex operations.

Table 1. Pearson’s correlation coefficients for the enhancement filters.

Filter MF FR GW IN

MF 1 0.69 0.52 0.30

FR 0.69 1 0.58 0.18

GW 0.52 0.58 1 0.26

IN 0.30 0.18 0.26 1

doi:10.1371/journal.pone.0149943.t001
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In this paper, the deformable model is based on the Region-Scalable Fitting (RSF) Energy
approach presented by [26]. This method is a variation of Chan and Vese model [27], described
as an active contours approach to the Mumford-Shah problem [28]. The advantage of this
approach is that it works well on images with non-homogeneous features, such as those pre-
sented in images of blood vessels. Furthermore, we propose a modification in order to make it
more efficient in the segmentation of the retinal images.

The algorithm is based on local information intensities controllable in terms of scale. The fit-
ting energy is defined by an active contour and two fitting functions that locally approximate the
image intensities on both sides of the contour. The RSF computes local intensity fitting energy on
the two sides of the active contour due to Gaussian kernel function with a scale parameter.

Let O�<2 be the image domain, I : O!< a given gray level image, C is defined as a closed
contour in the image domain O and x a point in O. The energy functional proposed to mini-
mize is [26]:

xðC; f1ðxÞ; f2ðxÞÞ ¼
X2
i¼1

li

Z Z
Oi

Ksðx � yÞjIðyÞ � fiðxÞj2dy
� �

dx þ njCj ð7Þ

where y are points in a neighborhood of x, O1 = outside(C) and O2 = inside(C), ν, λ1 and λ2 are
positive constants, and f1(x) and f2(x) are functions that approximate image intensities in O1

and O2, respectively. The kernel function K is defined as:

KsðuÞ ¼
1

2ps2
e�

u2

2s2 ð8Þ

where σ is the parameter that controls the scale and u = x − y.
In this approach, we propose a change from the original method. Because the intensity pro-

file of the vessel is symmetrical in relation to a line passing in the center of the vessels and the

Fig 5. Enhanced image usingmedian ranking.

doi:10.1371/journal.pone.0149943.g005
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vessels are present in the image in several orientations [10], we propose a new kernel function
to take into account the vessels orientation. Let �p ¼ ½x; y� be a discrete point in the kernel and
θi be an orientation. The rotation matrix is defined by:

�Ri ¼
cos yi �sin yi

sin yi cos yi

" #
ð9Þ

and the rotated point is given by �pi ¼ ½u; v� ¼ �p�RT
i . The Gaussian filters are obtained using the

following function:

Kiðx; yÞ ¼ e�
u2

2s2 8 �p 2 Z; ð10Þ

where Z is a neighborhood such that Z = {(u, v), |u|� 3σ, |v|� δ/2} and δ is the length of the
filter and the direction of the blood vessel is aligned along the y-axis. By varying the direction
in 15° steps, 12 Gaussian filters are generated. This function is similar to that described by [10].
The maximum response for each point of the image is retained.

The initialization of the contour is performed by the method proposed by Sofka and Stewart
[29], which detects the vessels centerlines. Once the initial contour is computed, the algorithm
uses an image obtained according to Eq (2). The result of this operation is a binary image. This
approach is referred to as the minimization of Oriented Region-Scalable Fitting energy (ORSF).

Segmentations using Fuzzy C-means. The fuzzy C-means clustering method is the sec-
ond approach used to segment an enhanced image by the combination using weighted mean.
Clustering is the task of assembling a set of objects into groups so that objects in the same
group are more similar to each other than those in other groups. The fuzzy C-means algorithm
(FCM), developed by Dunn [30] and improved by Bezdek [31], is one of the most common
approaches to solve a clustering problem. The FCM is a clustering method that allows that one
element can belong to one or more groups to a certain degree. The FCM is often used in pattern
recognition and image segmentation.

In this paper, we use the FCM algorithm to segment the image F formed by the combination
of filters. We observe that the non-vascular structures and the background have a lot of varia-
tion in gray level. Therefore, we choose c groups: c − 1 serve to group the pixels of non-vessels
and only one group is used to group the vessels pixels.

Post-processing
This step is necessary to remove noise and small regions that do not present elongated struc-
tures, since they are not part of the vessel. First, the blobs are identified in the binary segmented
image. Then, for each blob, a value that indicates how the blob is elongated is calculated by the
following equation:

E ¼ P2

4pa
; ð11Þ

where P is the perimeter and a is the object area. In case E is less than a threshold l, which is
obtained experimentally, in this case 2, the object is disposed.

Experiments and Results

Image Databases
The proposed segmentation method using a combination of filters is tested with two public ret-
inal image databases: Drive [3] and Stare [7]. The Drive database consists of 20 training images
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and 20 test images. The test set only contains four images with pathologies. The images were
captured using a Canon CR5 non-mydriatic camera with a field of view having 45 degrees. The
field of view (FOV) of each image is circular with a diameter of approximately 540 pixels. For
each image, a mask image is provided that delineates the FOV and also two manual segmenta-
tions of the vessels. Each image was captured at 768 × 584 pixels and use 8 bits per color chan-
nel in the RGB model. Fig 6 illustrates an image of the test set with its respective manual
segmentation.

The Stare database contains 20 retinal images, including ten images with pathologies. The
images were captured using a TopCon TRV-50 fundus camera at 35° FOV. The images were
digitalized to 700 × 605 pixels and 8 bits for each color channel. The database also provides
hand-labeled images as the ground truth for vessel segmentation so that the algorithms can be
evaluated. Fig 7 illustrates an image of this database and its corresponding manual
segmentation.

Fig 6. Example of an image of Drive database. (A) Image of Drive database and (B) its respective manual
segmentation.

doi:10.1371/journal.pone.0149943.g006

Fig 7. Example of an image of Stare database. (A) Image of Stare database and (B) its respective manual
segmentation.

doi:10.1371/journal.pone.0149943.g007
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Evaluation Metrics
The proposed method is evaluated both qualitatively and quantitatively. The quality of image
segmentation is based on visual observations. Quantitative evaluation is done by analyzing
error images, which are obtained from the difference in the segmentation of one of the pro-
posed methods in relation to the manual segmentation. The quantitative evaluation of the
image segmentation is not a straightforward procedure. There are different quality criteria
described in the literature. Accuracy rate (ACC), True Positive Rate (TPR), False Positive Rate
(FPR), Area Under the ROC Curve (AUC), Connectivity-Area-Length (CAL) and Matthews
Correlation Coefficient (MCC). We will now describe these measures in detail.

Accuracy is the degree of conformity of a measured quantity to its actual (true) value. It is
the most widely metric used to quantify the performance of the segmentation methods from
images of retinal vessels. The accuracy of the retinal vessel segmentation is defined in Eq (5).
The maximum value for the accuracy is 1.0. The true positive rate (TPR) is the sensitivity,
whereas the false positive rate (FPR) is associated with the specificity. A ROC curve is a plot of
the true positive rate versus the false positive rate by varying the threshold on the probability
map. The closer the curve approaches the top left corner, the better the performance of the sys-
tem. The Area Under the Curve (AUC), which is 1 for a optimum system, is a single measure
to quantify this behavior. The AUC is the unique measure calculated using the enhanced image
(gray level). All other measures are based on the binary image, where the operating point is
determined by the segmentation algorithm.

The Matthews Correlation Coefficient (MCC) is a measure of the quality of a binary classifi-
cation [32]. It is a measure suitable even when the samples in the two classes are unbalanced, as
is the case of the blood vessels in retinal images, where the number of non-vessel pixels is
higher than the number of vessel pixels. The MCC values vary between -1 and +1. A coefficient
of +1 represents a perfect prediction, 0 no better than random prediction and -1 indicates a
total discordance between the obtained classification and the ground-truth. This measure was
introduced in 1975 by Matthews [33] and the formula is defined as follows:

MCC ¼ TP � TN � FP þ FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp : ð12Þ

Gegúndez-Arias et al. [34] proposed a function, denoted by CAL, which evaluates the vessel
connectivity, area and length in a segmented image in comparison with those in a reference-
standard image. This measure analyzes the segmentation considering vascularity as a tree-like
connected structure with specific anatomical features and not an individual pixel-to pixel com-
parison. The function is given by:

f ðC;A; LÞ ¼ C � A� L � CAL: ð13Þ

Connectivity C is defined by Eq (14). S is defined as the segmentation to be evaluated and
SG as the reference image:

CðS; SGÞ ¼ 1�min 1;
j#cðSGÞ �#cðSÞj

#ðSGÞ
� �

; ð14Þ

where #c(S) and #c(SG) are the number of connected components in S and SG, respectively, and
#(SG) denotes the cardinality of SG.
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The degree of overlapping areas between the SG and S is calculated by:

AðS; SGÞ ¼
#ððdaðSÞ \ SGÞ [ ðS \ daðSGÞÞÞ

#ðS [ SGÞ
; ð15Þ

where δα is a morphological operator using a disk with radius equal to α.
The factor measuring the degree of coincidence in terms of length is given by:

LðS; SGÞ ¼
#ððφðSÞ \ dbðSGÞÞ [ ðdbðSÞ \ φðSGÞÞÞ

#ðφðSÞ [ φðSGÞÞ
; ð16Þ

where φ is the result of a skeletonization algorithm and δβ is a morphological dilation using a
disk of radius β. As suggested by Gegúndez-Arias et al. [34], α and β values were set to 2.

Choice of the Parameters
The weighted mean combination filters use Genetic Algorithm to select the best weights for the
Matched Filter (MF), Frangi (FR), Gabor Wavelet (GW), and Intensity Normalization (IN), as
explained in the Section Weighted Mean and Optimization. Table 2 shows the accuracy
obtained by varying all filters and contrast-enhanced image in combination with the weighted
mean. According to the table, for the Drive database we obtain accuracy greater than 89% for
any combination of filters and segmentation method. The combination using all filters and
image contrast shows the best result for this database. For the individual filters, the matched fil-
ter presented the best performance. The combination using the three filters showed a lower
accuracy rate than the combination of matched filters, Gabor Wavelet filter and intensity nor-
malization. However, for the Stare database, the combinations using MF & GW and MF & FR
& GW produced better results using FCM and ORSF methods, respectively.

The algorithm is configured having the following parameters obtained experimentally for
the Drive database: λ1 = 3, λ2 = 3, ν = 130. According to the results of Table 2, the combination
chosen is ALL filters, which has weights equal to 0.6187, 0.0105, 0.2580, and 0.1128 for filters
MF, FR, GW, and IN, respectively. The ORSF for Stare database has the following

Table 2. Accuracy obtained by varying all filters and contrast-enhanced image in the combination using weightedmean.

Combinations Drive Stare

FCM OSRF FCM OSFR

MF & FR & GW 0.9379 0.9320 0.9392 0.9429

MF & FR & IN 0.9340 0.9317 0.9115 0.9402

MF & GW & IN 0.9383 0.9329 0.9442 0.9378

FR & GW & IN 0.9345 0.9185 0.9121 0.9355

MF & FR 0.9297 0.9304 0.9262 0.9344

MF & GW 0.9340 0.9329 0.9446 0.9391

MF & IN 0.9346 0.9317 0.9442 0.9371

FR & GW 0.9313 0.9061 0.9264 0.9347

FR & IN 0.8993 0.9186 0.9262 0.9344

All 0.9402 0.9356 0.8736 0.9407

MF 0.9309 0.9302 0.9422 0.9370

FR 0.8961 0.9158 0.9262 0.9343

GW 0.9306 0.9007 0.8117 0.9077

IN 0.5287 0.9207 0.6271 0.9329

doi:10.1371/journal.pone.0149943.t002
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configuration, obtained experimentally λ1 = 2, λ2 = 2, ν = 130. The parameter l of the post pro-
cessing step in both database is equal to 3. The best weights selected by the genetic algorithm
are 0.5117, 0.3834, 0.1045 for filters MF, FR and GW.

For the fuzzy C-means algorithm, it is necessary to define the number of classes c. For the
Drive and Stare database two classes are used. For both databases, value of l of the post process-
ing step is equal to 2, determined experimentally. In the Drive database, the optimized weights
0.6187, 0.0105, 0.2580, and 0.1128 are defined for the filters MF, FR, GW, and IN, respectively.
Whereas for the Stare database, the algorithm uses the optimized weights 0.9058 and 0.0941
for MF and GW, respectively.

For the proposed approach using median ranking, the retinal images from the Drive data-
base are segmented using a threshold equal to 0.8602. Whereas for the Stare database, we use
the threshold equal to 0.8808. These thresholds were optimized using Genetic Algorithms
(GA) on the training images of the Drive database and the six first images of the Stare database.
The fitness function is based on the accuracy of the segmented images using the threshold
obtained at each iteration of the GA, similarly as shown in Eq (3).

Analysis of the Experiments
This paper proposes two approaches to combine vessel enhancing filters, named weighted
mean and median ranking. Fig 8 shows part of a retinal image, green channel (A), and the

Fig 8. Response obtained from the filters and our combination methods. (A) Green channel, (B)
matched filter, (C) Gabor Wavelet filter, (D) Frangi’s filter, (E) Weigthed mean, (F) Median ranking and (G)
Segmented image overlaid on the original image.

doi:10.1371/journal.pone.0149943.g008
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enhanced version using matched filter (B), Gabor Wavelet filters (C), Frangi’s filters (D), com-
bination using weighted mean (E) and median ranking (F). Notice that the combination of
weighted mean and median ranking give good results for thin vessels, whereas the combination
using weighted mean is more robust to the background of the image that are not vessels than
the combination using median ranking. Although the approach based on median ranking
enhances both noises and thin vessels, the final result is a good segmentation, as can be appre-
ciated from Fig 8G, because the pixel values in the blood vessels are significantly larger than the
noise level, requiring only a simple threshold to segment an retinal image.

Figs 9 and 10 show the Receiver Operating Characteristic (ROC) curves [35] of the pro-
posed approaches for both retinal image databases. The proposed approach using median
ranking has significantly better area under the ROC curve. Table 3 shows the performance of
the proposed approaches in relation to supervised and unsupervised methods for the Drive
database test set. The bold values represent the results of the proposed methods and the italic

Fig 9. ROC curves of the proposed approaches for the DRIVE database.

doi:10.1371/journal.pone.0149943.g009

Fig 10. ROC curves of the proposed approaches for the Stare database.

doi:10.1371/journal.pone.0149943.g010
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values represent the best rates. Comparing all methods, the proposed approach presents values
very close to the best supervised segmentation methods. The accuracy rate of Fraz’s supervised
[2] and Zhao [36] unsupervised approach are the two highest values in the table. The proposed
approach using median ranking has the fifth best accuracy and a value very close to both other
ones. For the unsupervised methods, the median ranking has the third highest performance
measures compared to other methods. The weighted mean approach using FCM and ORSF
have performance measures inferior to supervised methods. However, they are superior to
most unsupervised methods, where the use of FCM provides better results than using ORSF.
Similarly, the median ranking has the second highest MCC value among the unsupervised
methods. Comparing the three unsupervised methods presented in this paper, they all present
compatible result for each metric. This can be seen in Figs 11(A), 12(A) and 13(A), where the
result of segmentation using weighted mean with ORSF can be considered more tree-like con-
nected structure than the others. The character “-”means that the method was not imple-
mented and the value metric was not described by the authors in their paper. We do not
present all the values in Tables 3 and 4 because for some methods the authors did not present
the values for the AUC, TPR, FPR or CAL metrics and the codes are not available.

Table 4 presents the vessel segmentation accuracy rate (ACC), true positive rate (TPR), false
positive rate (FPR) and the three other measurements AUC, CAL and MCC for the Stare data-
base. The proposed unsupervised median ranking method, comparing ACC values, shows the
second best performance among all the other methods including three supervised learning
methods and it even outperforms the human observer. Among the unsupervised methods, the

Table 3. Performance results compared with others methods for the Drive database.

Methods ACC TPR FPR AUC CAL MCC

Supervised

2nd Observer 0.9473 0.7761 0.0275 - 0.8485 0.7601

Marin et al. [4] 0.9452 0.7067 0.0275 0.9588 - -

Soares et al. [5] 0.9466 0.7283 0.0212 0.9614 0.75068 0.74885

Niemeijer et al. [1] 0.9416 0.6898 0.0304 0.9294 0.68567 0.71779

Staal et al. [3] 0.9442 0.6780 0.0170 0.9520 0.71563 0.73228

Fraz et al. [37] 0.9480 0.7406 0.0193 0.9747 - -

Unsupervised

Weighted mean using ORSF 0.9356 0.7988 0.0475 0.9118 0.70209 0.69402

Weighted mean using FCM 0.9402 0.9106 0.0569 0.9118 0.55289 0.70417

Median ranking 0.9464 0.8644 0.0444 0.9513 0.68343 0.74253

Jiang et al. [13] 0.9212 - - 0.9327 - -

Mendonça et al. [15] 0.9463 0.7315 0.0219 - - -

Zana et al. [8] 0.9377 - - - 0.63949 0.72355

Martinez-Perez et al. [14] 0.9344 0.7246 0.0345 - 0.57846 0.66151

Al-diri et al. [9] 0.9258 - - - -

Chaudhuri et al. [10] 0.8773 - - 0.7878 0.24814 0.42088

Zhang et al. [17] 0.9382 0.712 0.0276 0.7878 - -

Li et al. [12] 0.9310 0.6455 0.0337 - - -

Bankhead et al. [11] 0.9371 0.7027 0.0283 0.7816 0.62534 0.7056

Yin et al. [16] 0.9475 0.7556 0.0344 - - -

George et al. [38] 0.9442 0.7655 0.0296 0.9614 - 0.7475

Zhao et al. [36] 0.953 0.744 0.0220 0.861 - -

doi:10.1371/journal.pone.0149943.t003
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approach of [36][38] and [17] have greater accuracy than the proposed approaches with
weighted mean using FCM and ORSF. However, the proposed approaches with weighted mean
exhibit better performance than the methods [14] and [13], and the use of FCM has higher
accuracy than using ORSF. Also the median ranking method shows high values for the AUC,
CAL and MCC when compared to Soares et al. [5] and Hoover et al. [7].

In both tables, the proposed approaches show high values of TPR, which means a high
degree of accuracy in the vessels, especially the median ranking approach. However, the high
value of FPR means that this accuracy in the vessels is accompanied by an error above the aver-
age of non-vessels pixels classified as vessels. For this reason metrics such as AUC, CAL and
MCC are important to be analyzed.

Analyzing the capacity of generalization of the approaches for combination, the weighted
mean is more sensitive to characteristics of the image database than median ranking because
the weights were optimized according to the training images. However, considering approach
weighted mean, the generalization of the optimized combination for the Drive database is
higher than the optimal combination for Stare database. The accuracy result for the Stare data-
base using the best combination for the Drive database with FCM and ORSF algorithms, given
by the combination All, are 0.8600 and 0.9245 for FCM and ORSF, respectively. Similarly, the
FCM and OSFR algorithms using the best combination for the Stare database in Drive database
images, given by MF & GW and MF & FR & GW, show accuracy values of 0.9332 for FCM and
0.9232 for ORSF. Although the accuracies are below of the best values for each database, it is

Fig 11. Result using ORSF. (A) Segmented image of the Drive database (Original image shown in Fig 6).
(B) Error image represented in black color referring to the image (A). (C) Segmented image of the Stare
database (Original image shown in Fig 7). (D) Error image represented in black color referring to the image
(C).

doi:10.1371/journal.pone.0149943.g011
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noticed that when we apply the best combination to database Stare in the Drive database, the
result is closer to the highest accuracy values in Table 2. The fact that the Stare database present
various pathological images, makes it difficult for any segmentation method that uses an opti-
mal combination of the Drive database to obtain a good result in the Stare database. This
becomes clear when we tested only the images without pathologies of the Stare database with
the best combination obtained in the Drive database. In this case, the FCM and ORSF algo-
rithms obtained accuracies equal to 0.9491 and 0.9362, respectively.

In terms of qualitative results, the Figs 11 and 12 show a segmented image of each database
for approach using weighted mean with FCM and ORSF, respectively. Fig 13 shows the qualita-
tive result for the median ranking approach.

Discussion and Conclusions
This work presents a framework to segment blood vessels in retinal images using unsupervised
approaches. The combination of filters have relatively better responses compared to a single fil-
ter. We use two approaches for the combination of the filters: median ranking and weighted
mean. The proposed methods benefit from the different responses to the same pixel.

The approaches were evaluated and compared with some of the best performing methods in
the area. According to [5], one of the difficulties found in the evaluation of the segmentation
methods of retinal vessel is the establishment of a reliable metric from manually labeled images.
Both Drive and Stare databases have 20 labeled images for testing, which were manually

Fig 12. Result using FCM. (A) Segmented image of the Drive database (Original image shown in Fig 6). (B)
Error image represented in black color referring to the image (A). (C) Segmented image of the Stare database
(Original image shown in Fig 7). (D) Error image represented in black color referring to the image (C).

doi:10.1371/journal.pone.0149943.g012
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Fig 13. Result usingmedian ranking. (A) Segmented image of the Drive database (Original image shown
in Fig 6). (B) Error image represented in black color referring to the image (A). (C) Segmented image of the
Stare database (Original image shown in Fig 7). (D) Error image represented in black color referring to the
image (C).

doi:10.1371/journal.pone.0149943.g013

Table 4. Performance results compared with others methods for the Stare database.

Methods ACC TPR FPR AUC CAL MCC

Supervised

2nd Observer 0.9354 0.8949 0.0610 - 0.6504 0.7224

Marin et al. [4] 0.9526 0.6944 0.0181 0.9769 - -

Soares et al. [5] 0.9480 0.7165 0.0252 0.9671 0.58928 0.58305

Staal et al. [3] 0.9516 0.6970 0.0190 0.9614 - -

Fraz et al. [37] 0.9534 0.7548 0.0237 0.9768 - -

Unsupervised

Weighted mean using ORSF 0.9429 0.8377 0.0491 0.9170 0.53154 0.64838

Weighted mean using FCM 0.9446 0.8049 0.0408 0.8794 0.58461 0.68583

Median ranking 0.9532 0.8254 0.0353 0.9544 0.64687 0.72458

Jiang et al. [13] 0.9009 - - 0.9298 - -

Mendonça et al. [15] 0.9440 0.6996 0.0270 - - -

Zhang et al. [17] 0.9484 0.7177 0.0247 - - -

Martinez-Perez et al. [14] 0.9410 0.7506 0.0431 - - -

Hoover et al. [7] 0.9267 0.6751 0.0433 0.7590 0.54037 0.61474

Li et al. [12] 0.9407 0.7191 0.0313 - - -

George et al. [38] 0.9497 0.7716 0.0299 0.9563 - 0.7335

Zhao et al. [36] 0.951 0.786 0.0250 0.881 - -

doi:10.1371/journal.pone.0149943.t004
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obtained by an expert. Therefore, the ground truth is also subjective to this expert.
Ideally, each image should have several manual segmentations performed by different experts.
Moreover, a precision measure for pixel-by-pixel classification, such as the sensitivity and the
specificity, raises some questions. A pixel that is correctly classified does not necessarily corre-
spond to a good vessels segmentation when considering the context. Since most of the image is
defined as background, if the whole image is set as background, we would obtain a good value
for the accuracy. However, this would not provide any image segmentation. Metrics such as
AUC, CAL and MCC are of interest because they try to overcome this difficulty. They are pres-
ently not widely used, specially CAL and MCC. However we think they are important, because
they consider the quality of the segmentation process in a more global way.

However, only 20 images or 40, if we take both databases in consideration, may not be
enough to perform a statistical test reliably. Soares et al. [5] suggested the use of experts for the
tests realization.

The proposed approaches are very effective for the retinal vessels segmentation. In quantita-
tive terms, the approach using the median ranking has superior performance than using the
weighted mean approach. Moreover, it presents rates higher than the unsupervised methods,
described in this work. This approach has better accuracy rate than the supervised methods for
the Stare database and performance close to the best method for the Drive database. The
weighted mean approach using FCM has better results in terms of accuracy than the ORSF
method.

A qualitative visual evaluation is still important, allowing to define advantages and disad-
vantages of the method, despite being subjective [5]. Even though quantitative results were
good, especially in terms of accuracy, in the qualitative evaluation the approaches presented
some problems in the segmentation, such as in the thin vessels and in areas close to the borders.
These are still some of the challenges in vessel segmentation. In recent years, several articles
have been published proposing different methods to segment retinal vessel images. However,
an important question that still needs a better clarification is how to best compare the different
methods, since ACC by itself is a limited measurement because most of the image can be con-
sidered as background. This is an issue not only limited to retinal vessel segmentation but also
to any image segmentation problem that have subjective ground truth. For the retinal vessel
segmentation problem, we made use of the measurements AUC, CAL and MCC to improve
the comparison.

Algorithm availability
The MATLAB implementation of our algorithm is included as supporting information (S1
File). For sample data, the Drive and Stare databases are available at http://www.isi.uu.nl/
Research/Databases/DRIVE/ and http://www.ces.clemson.edu/~ahoover/stare/ respectively.

Supporting Information
S1 File. MATLAB implementation of our algorithm.
(ZIP)

Acknowledgments
This work was partially supported by Brazilian agencies CNPq (Ciências Sem Fronteiras),
Capes, Facepe and by the Flemish Government Agency for Innovation by Science and Tech-
nology, Belgium through the SBO TOMFOOD project.

Unsupervised Retinal Vessel Segmentation Using Combined Filters

PLOS ONE | DOI:10.1371/journal.pone.0149943 February 26, 2016 19 / 21

http://www.isi.uu.nl/Research/Databases/DRIVE/
http://www.isi.uu.nl/Research/Databases/DRIVE/
http://www.ces.clemson.edu/~ahoover/stare/
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149943.s001


Author Contributions
Conceived and designed the experiments: WSO TIR JVT GDCC JS. Performed the experi-
ments: WSO TIR JVT GDCC JS. Analyzed the data: WSO TIR JVT GDCC JS. Contributed
reagents/materials/analysis tools: WSO TIR JVT GDCC JS. Wrote the paper: WSO TIR JVT
GDCC JS.

References
1. Niemeijer M, Staal J, van Ginneken B, Loog M, Abramoff MD. Comparative study of retinal vessel seg-

mentation methods on a new publicly available database. Proc SPIE. 2004; 5370:648–656. doi: 10.
1117/12.535349

2. Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, et al. Blood Vessel Seg-
mentation Methodologies in Retinal Images—A Survey. Computer Methods and Programs in Biomedi-
cine. 2012 Oct; 108(1):407–433. doi: 10.1016/j.cmpb.2012.03.009 PMID: 22525589

3. Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B. Ridge-based vessel segmentation
in color images of the retina. IEEE Transactions on Medical Imaging. 2004 April; 23(4):501–509. doi:
10.1109/TMI.2004.825627 PMID: 15084075

4. Marin D, Aquino A, Gegundez-Arias ME, Bravo JM. A New Supervised Method for Blood Vessel Seg-
mentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features. IEEE Trans-
actions on Medical Imaging. 2011 jan; 30(1):146 –158. doi: 10.1109/TMI.2010.2064333 PMID:
20699207

5. Soares JVB, Leandro JJG, Cesar Júnior RM, Jelinek HF, Cree MJ. Retinal vessel segmentation using
the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging. 2006; 25
(9):1214–1222. doi: 10.1109/TMI.2006.879967 PMID: 16967806

6. Oliveira WS, Tsang IR, Cavalcanti GDC. Retinal vessel segmentation using Average of Synthetic
Exact Filters and Hessian matrix. In: IEEE International Conference on Image Processing; 2012.
p. 2017 –2020.

7. Hoover A, Kouznetsova V, GoldbaumM. Locating blood vessels in retinal images by piecewise thresh-
old probing bof a matched filter response. IEEE Transactions on Medical Imaging. 2000; 19:203–210.
doi: 10.1109/42.845178 PMID: 10875704

8. Zana F, Klein JC. Segmentation of vessel-like patterns using mathematical morphology and curvature
evaluation. IEEE Transactions on Image Processing. 2001 jul; 10(7):1010–1019. doi: 10.1109/83.
931095 PMID: 18249674

9. Al-Diri B, Hunter A, Steel D. An Active Contour Model for Segmenting and Measuring Retinal Vessels.
IEEE Transactions Medical Imaging. 2009; 28(9):1488–1497. doi: 10.1109/TMI.2009.2017941

10. Chaudhuri S, Chatterjee S, Katz N, Nelson M, GoldbaumM. Detection of blood vessels in retinal
images using two-dimensional matched filters. IEEE Transactions on Medical Imaging. 1989 sep; 8
(3):263–269. doi: 10.1109/42.34715 PMID: 18230524

11. Bankhead P, Scholfield CN, McGeown JG, Curtis TM. Fast Retinal Vessel Detection and Measurement
UsingWavelets and Edge Location Refinement. PLoS ONE. 2012 03; 7(3):e32435. doi: 10.1371/
journal.pone.0032435 PMID: 22427837

12. Li Q, You J, Zhang D. Vessel segmentation and width estimation in retinal images using multiscale pro-
duction of matched filter responses. Expert SystemsWith Applications. 2012 jul; 39(9):7600 –7610.
doi: 10.1016/j.eswa.2011.12.046

13. Jiang X, Mojon D. Adaptive Local Thresholding by Verification-Based Multithreshold Probing with Appli-
cation to Vessel Detection in Retinal Images. IEEE Transactions Pattern Analyses Machine Intelli-
gence. 2003 January; 25:131–137. doi: 10.1109/TPAMI.2003.1159954

14. Martínez-Pérez ME, Hughes AD, Stanton AV, Thom SA, Bharath AA, Parker KH. Segmentation of reti-
nal blood vessels based on the second directional derivative and region growing. In: IEEE International
Conference on Image Processing. vol. 2; 1999. p. 173 –176.

15. Mendonça AM, Campilho A. Segmentation of retinal blood vessels by combining the detection of cen-
terlines and morphological reconstruction. IEEE Transactions on Medical Imaging. 2006; 25(9):1200–
1213. doi: 10.1109/TMI.2006.879955 PMID: 16967805

16. Yin X, Ng BWH, He J, Zhang Y, Abbott D. Accurate Image Analysis of the Retina Using Hessian Matrix
and Binarisation of Thresholded Entropy with Application of Texture Mapping. PLoS ONE. 2014 04; 9
(4):e95943. doi: 10.1371/journal.pone.0095943 PMID: 24781033

Unsupervised Retinal Vessel Segmentation Using Combined Filters

PLOS ONE | DOI:10.1371/journal.pone.0149943 February 26, 2016 20 / 21

http://dx.doi.org/10.1117/12.535349
http://dx.doi.org/10.1117/12.535349
http://dx.doi.org/10.1016/j.cmpb.2012.03.009
http://www.ncbi.nlm.nih.gov/pubmed/22525589
http://dx.doi.org/10.1109/TMI.2004.825627
http://www.ncbi.nlm.nih.gov/pubmed/15084075
http://dx.doi.org/10.1109/TMI.2010.2064333
http://www.ncbi.nlm.nih.gov/pubmed/20699207
http://dx.doi.org/10.1109/TMI.2006.879967
http://www.ncbi.nlm.nih.gov/pubmed/16967806
http://dx.doi.org/10.1109/42.845178
http://www.ncbi.nlm.nih.gov/pubmed/10875704
http://dx.doi.org/10.1109/83.931095
http://dx.doi.org/10.1109/83.931095
http://www.ncbi.nlm.nih.gov/pubmed/18249674
http://dx.doi.org/10.1109/TMI.2009.2017941
http://dx.doi.org/10.1109/42.34715
http://www.ncbi.nlm.nih.gov/pubmed/18230524
http://dx.doi.org/10.1371/journal.pone.0032435
http://dx.doi.org/10.1371/journal.pone.0032435
http://www.ncbi.nlm.nih.gov/pubmed/22427837
http://dx.doi.org/10.1016/j.eswa.2011.12.046
http://dx.doi.org/10.1109/TPAMI.2003.1159954
http://dx.doi.org/10.1109/TMI.2006.879955
http://www.ncbi.nlm.nih.gov/pubmed/16967805
http://dx.doi.org/10.1371/journal.pone.0095943
http://www.ncbi.nlm.nih.gov/pubmed/24781033


17. Zhang B, Zhang L, Zhang L, Karray F. Retinal vessel extraction by matched filter with first-order deriva-
tive of Gaussian. Computers in Biology and Medicine. 2010 apr; 40(4):438–445. doi: 10.1016/j.
compbiomed.2010.02.008 PMID: 20202631

18. Frangi AF, NiessenWJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. In: Medi-
cal Image Computing and Computer-Assisted Intervention. vol. 1496. Springer; 1998. p. 130–137.

19. Zheng Y, Kwong MT, MacCormick IJC, Beare NAV, Harding SP. A Comprehensive Texture Segmenta-
tion Framework for Segmentation of Capillary Non-Perfusion Regions in Fundus Fluorescein Angio-
grams. PLoS ONE. 2014 04; 9(4):e93624. doi: 10.1371/journal.pone.0093624 PMID: 24747681

20. Ricci E, Perfetti R. Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Clas-
sification. IEEE Transactions on Medical Imaging. 2007 oct; 26(10):1357–1365. doi: 10.1109/TMI.
2007.898551 PMID: 17948726

21. Oliveira WS, Tsang IR, Cavalcanti GDC. An Unsupervised Segmentation Method for Retinal Vessel
Using Combined Filters. In: IEEE International Conference on Tools with Artificial Intelligence. Athens,
Greece; 2012. p. 750–756.

22. Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. 1st ed. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.; 1989.

23. Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man
and Cybernetics. 1979 jan; 9(1):62–66. doi: 10.1109/TSMC.1979.4310076

24. Belkin NJ, Kantor PB, Fox EA, Shaw JA. Combining the Evidence of Multiple Query Representations
for Information Retrieval. Information Processing and Management. 1995; 31(3):431–448. doi: 10.
1016/0306-4573(94)00057-A

25. Gibbons JD, Chakraborti S. Nonparametric Statistical Inference (Statistics: a Series of Textbooks and
Monographs). 4th ed. Hardcover; 2003.

26. Yang Y, Li C, Kao CY, Osher S. Minimization of Region-Scalable Fitting Energy for Image Segmenta-
tion. IEEE Transactions Image Processing. 2008 Oct; 17(10):1940–1949. doi: 10.1109/TIP.2008.
2002304

27. Chan TF, Vese LA. Active contours without edges. IEEE Transactions on Image Processing. 2001; 10
(2):266–277. doi: 10.1109/83.902291 PMID: 18249617

28. Mumford D, Shah J. Optimal Approximation by Piecewise Smooth Functions and Associated Varia-
tional Problems. Communications on Pure Applied Mathematics. 1989; 42:577–685. doi: 10.1002/cpa.
3160420503

29. Sofka M, Stewart CV. Retinal Vessel Centerline Extraction Using Multiscale Matched Filters, Confi-
dence and Edge Measures. IEEE Transactions on Medical Imaging. 2006 dec; 25(12):1531–1546. doi:
10.1109/TMI.2006.884190 PMID: 17167990

30. Dunn JC. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated
Clusters. Journal of Cybernetics. 1973; 3(3):32–57. doi: 10.1080/01969727308546046

31. Bezdek JC. Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell, MA, USA: Kluwer
Academic Publishers; 1981.

32. Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H. Assessing the accuracy of prediction algo-
rithms for classification: an overview. Bioinformatics. 2000; 16(5):412–424. doi: 10.1093/bioinformatics/
16.5.412 PMID: 10871264

33. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.
Biochimica et Biophysica Acta (BBA)—Protein Structure. 1975; 405(2):442–451. doi: 10.1016/0005-
2795(75)90109-9

34. Gegundez-Arias ME, Aquino A, Bravo JM, Marin D. A Function for Quality Evaluation of Retinal Vessel
Segmentations. IEEE Transactions on Medical Imaging. 2012 Feb; 31(2):231–239. doi: 10.1109/TMI.
2011.2167982 PMID: 21926018

35. Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters. 2006 jun; 27(8):861–874. doi:
10.1016/j.patrec.2005.10.010

36. Zhao Y, Liu Y, Wu X, Harding SP, Zheng Y. Retinal Vessel Segmentation: An Efficient Graph Cut
Approach with Retinex and Local Phase. PLoS ONE. 2015 04; 10(4):e0122332. doi: 10.1371/journal.
pone.0122332 PMID: 25830353

37. Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, et al. An Ensemble Clas-
sification-Based Approach Applied to Retinal Blood Vessel Segmentation. IEEE Transaction Biomedi-
cal Engineering. 2012; 59(9):2538–2548. doi: 10.1109/TBME.2012.2205687

38. Azzopardi G, Strisciuglio N, Vento M, Petkov N. Trainable COSFIRE filters for vessel delineation with
application to retinal images. Medical image analysis. 2015; 19(1):46–57. doi: 10.1016/j.media.2014.
08.002 PMID: 25240643

Unsupervised Retinal Vessel Segmentation Using Combined Filters

PLOS ONE | DOI:10.1371/journal.pone.0149943 February 26, 2016 21 / 21

http://dx.doi.org/10.1016/j.compbiomed.2010.02.008
http://dx.doi.org/10.1016/j.compbiomed.2010.02.008
http://www.ncbi.nlm.nih.gov/pubmed/20202631
http://dx.doi.org/10.1371/journal.pone.0093624
http://www.ncbi.nlm.nih.gov/pubmed/24747681
http://dx.doi.org/10.1109/TMI.2007.898551
http://dx.doi.org/10.1109/TMI.2007.898551
http://www.ncbi.nlm.nih.gov/pubmed/17948726
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1016/0306-4573(94)00057-A
http://dx.doi.org/10.1016/0306-4573(94)00057-A
http://dx.doi.org/10.1109/TIP.2008.2002304
http://dx.doi.org/10.1109/TIP.2008.2002304
http://dx.doi.org/10.1109/83.902291
http://www.ncbi.nlm.nih.gov/pubmed/18249617
http://dx.doi.org/10.1002/cpa.3160420503
http://dx.doi.org/10.1002/cpa.3160420503
http://dx.doi.org/10.1109/TMI.2006.884190
http://www.ncbi.nlm.nih.gov/pubmed/17167990
http://dx.doi.org/10.1080/01969727308546046
http://dx.doi.org/10.1093/bioinformatics/16.5.412
http://dx.doi.org/10.1093/bioinformatics/16.5.412
http://www.ncbi.nlm.nih.gov/pubmed/10871264
http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://dx.doi.org/10.1109/TMI.2011.2167982
http://dx.doi.org/10.1109/TMI.2011.2167982
http://www.ncbi.nlm.nih.gov/pubmed/21926018
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1371/journal.pone.0122332
http://dx.doi.org/10.1371/journal.pone.0122332
http://www.ncbi.nlm.nih.gov/pubmed/25830353
http://dx.doi.org/10.1109/TBME.2012.2205687
http://dx.doi.org/10.1016/j.media.2014.08.002
http://dx.doi.org/10.1016/j.media.2014.08.002
http://www.ncbi.nlm.nih.gov/pubmed/25240643

