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Understanding the patterns of human mobility between cities has various applications

from transport engineering to spatial modeling of the spreading of contagious diseases.

We adopt a city-centric, data-driven perspective to quantify such patterns and introduce

the mobility signature as a tool for understanding how a city (or a region) is embedded

in the wider mobility network. We demonstrate the potential of the mobility signature

approach through two applications that build on mobile-phone-based data from Finland.

First, we use mobility signatures to show that the well-known radiation model is more

accurate for mobility flows associated with larger Finnish cities, while the traditional gravity

model appears a better fit for less populated areas. Second, we illustrate how the SARS-

CoV-2 pandemic disrupted the mobility patterns in Finland in the spring of 2020. These

two cases demonstrate the ability of the mobility signatures to quickly capture features

of mobility flows that are harder to extract using more traditional methods.
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1. INTRODUCTION

Collective humanmobility patterns describe populationmovements between regions. To predict or
quantify the flow volumes between regions, several classical theoretical models have been proposed
by considering the impact of distances (Zipf, 1946; Wilson, 1971) or intervening opportunities
(Stouffer, 1940; Simini et al., 2012; Yan et al., 2017). From the network science perspective, the
collective human mobility pattern is usually represented as a weighted mobility network (Barbosa
et al., 2018). Such networks have proven to be useful for transport engineering (Wang et al., 2012;
Ren et al., 2014; Guirao et al., 2018) and they have provided crucial information for emergency
management (Lu et al., 2012; Huang et al., 2018). Mobility flows have been used for clustering
cities (Ratti et al., 2010; Liu et al., 2014; Louail et al., 2015; Sen and Dietz, 2019) and they have
been shown to correlate with the socioeconomic status of cities (Amini et al., 2014; Barbosa et al.,
2021). The mobility network also plays an important role in predicting the spreading of epidemics
(Brockmann and Helbing, 2013; Oliver et al., 2020), and evaluating the effects of interventions
(Arenas et al., 2020; Kraemer et al., 2020).

There is, however, still a gap in quantifying the mobility characteristics of individual cities or
regions. Here, a city-centric viewpoint that focuses on the mobility flows surrounding a city can be
useful. As an example, mobility patterns to and from cities of different sizes and population density
might respond differently to the SARS-CoV-2 pandemic.
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In this article, we introduce the city-centric mobility network
similar to egocentric networks that are used in social network
analysis (Saramäki et al., 2014; Heydari et al., 2018). City-centric
networks can be used to study and quantify the mobility patterns
which characterize how cities are embedded in country-wide
networks of mobility. In this network, a city is connected to
all other cities to which there is outgoing travel, with flows to
these different destinations as link weights. Normalizing the flows
by the total outgoing travel flow and sorting the destinations
from the most to the least visited yields a signature curve,
similar to social signatures in Saramäki et al. (2014). We describe
this method in detail in Section 4. The shape of the signature
provides information about the mobility interaction patterns
between a region and other regions: a smoother curve indicates
that there is a more uniform flow of outgoing travelers to
other areas, while a steeper curve indicates that there are a few
dominant destinations.

We apply the above methods to human mobility data for 310
municipalities in Finland using aggregated, anonymized mobile
phone data from the teleoperator Telia. Then, we compare the
structure of mobility signatures associated with empirical data
to the mobility signatures extracted from mobility flows from
two theoretical models (radiation model and gravity model). The
results reveal that the mobility signatures of large municipalities
are more compatible with the estimated mobility flows from the
radiation model, while the signatures associated with the gravity
model are a good estimation for mobility patterns for regions
with medium or small populations. These results highlight a clear
relation between mobility signatures and municipality size.

Next, we focus on changes in the mobility signatures. To
this end, we investigate the effects of the SARS-CoV-2 pandemic
on the mobility patterns in Finland using the city-centric point
of view. During the first phase of the SARS-CoV-2 outbreak,
most countries across the globe established policies to control
the spread of the disease by restricting human movements.
Several studies (Schlosser et al., 2020; Potgieter et al., 2021)
have investigated the structural changes in human movement
from different perspectives in various regions. For example, in
Schlosser et al. (2020) represent that long-distance travel in
Germany has reduced, and consequently the mobility network is
transformed into a more local and clustered one. In this article,
we monitor changes in the shapes of the mobility signatures of
Finnish cities during the four months (February, March, April,
and May) in 2019 and 2020 using mobile phone data. The results
show that typically, there is a drop in the signature length, i.e., in
the number of destinations. Most of this change is associated with
reduced long-distance travel to destinations with lower mobility
flows in the cities’ pre-pandemic signatures.

2. RESULTS

2.1. Mobility Signatures of Cities
Themobility flow between two regions can be captured by origin-
destination (OD)matrices. These matrices contain the number of
trips between two geographical points or areas. There are several
choices that need to be made when constructing OD matrices,
including choosing spatial scales and period of observations

(Friedrich et al., 2010; Mungthanya et al., 2019). The spatial
scale represented by the elements of the OD matrix can be,
for example, a city, county, municipality, or country. While the
period of observation may be limited by data availability, one
can, depending on the application study the dynamics of OD
matrices by constructing daily, weekly, or monthly matrices, or
alternatively aggregate over all available data.

Generally, OD matrices can be cast as a directed weighted
network, where the nodes represent chosen geographic regions,
and weighted edges denote the mobility flows between them. In
this study, we investigate the structure of country-wide mobility
networks, where the nodes represent municipalities (see Section
4.1). Regarding the temporal dimension, in the two applications
below, we study networks aggregated over an entire year as well
as the dynamics of monthly networks.

Here, we want to focus on the features of individual
municipalities and cities—how are they embedded in the
country-wide mobility networks? To this end, we adopt the
concept of egocentric networks from social-network studies to
mobility networks. An egocentric network contains information
on the direct social relationships of the ego (the focal node)
and her/his alters (friends, acquaintances, family members).
Analogously, a city-centric network contains all mobility flows
to/from a city; the country-wide mobility network can therefore
be split into as many city-centric networks as there are cities.
Note that in the following, we will use the terms city and city-
centric network, even though the underlying data have been
aggregated to the level of municipalities, as the vast majority of
municipalities are technically cities.

To construct city-centric mobility networks for each
municipality (Figure 1A), we use mobile-phone-based data on
the number of individuals traveling from each municipality
(ego) to all destinations (alters). The mobility flows are used as
the link weights (Figures 1B,D). We use mobility signatures to
characterize the city-centric networks (Figures 1C,E). Mobility
signatures are constructed as follows: we first count the number
of trips to each destination (alter) and then normalize the flows
by the total outgoing flow. We then sort the destinations from
the most to the least visited (see Materials and Methods). In
other words, we calculate the fraction of trips as a function of
destination rank to generate the mobility signature of each city.

The mobility signatures are characterized by a heavy tail as
illustrated in Figures 1C,E: there is a small number of top-ranked
destinations that attract a large number of trips, and numerous
destinations with increasingly smaller mobility flow.

2.2. Mobility Signatures Derived From
Theoretical Models
We first explore the signatures of long-term mobility patterns
and analyze the performance of two classic mobility models
(i.e., radiation model and gravity model) from the perspective
of signature curves, i.e., how well the theoretical models capture
the mobility characteristics of individual cities. Since population
data are often updated annually, these mobility flows estimated
from the two models generally reflect the mobility pattern of the
corresponding year. We calculate the signatures of two classic
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FIGURE 1 | City-centric networks and mobility signatures. A city-centric network studies the network surrounding one particular city/municipality. (A) Outgoing

mobility flows for Kajaani (blue) and Helsinki (orange). (B,D) The city-centric networks for Kajaani and Helsinki, respectively. (C,E) The mobility signatures for Kajaani

and Helsinki; these signatures are constructed by counting the number of outgoing trips from each municipality to destinations, ranking the destinations based on this

number, and then calculating the fraction of mobility flow to the total number of outgoing trips.

mobility models by using the population data of 2019. Note
that since in Telia data, flows below 20 trips per day have
been excluded due to privacy requirements. In order to keep
consistent with Telia data, in the theoretical models, we use the
same threshold and omit flows of less than 20 trips between any
two cities.

Results for the mobility-derived and model-based signatures
are displayed in Figure 2, for six Finnish cities. It can be seen that
the radiation model performs rather well in Helsinki, especially
for the top 15 destinations (Figure 2E). For the other five
cities, the signature curves from the radiation model have fewer
destinations than the empirical signature curves; note that flow
corresponding to less than 20 trips per day has been removed, as
discussed above, which limits the signature length. The gravity
model, on the other hand, generally underestimates the mobility
flow for the top 15 destinations for all cities.

The above hints that the radiation model could be more
accurate for larger cities (Oulu and Helsinki in Figure 2). To
test this hypothesis, we need to quantify the levels of similarity
between the signatures extracted from empirical observations
and theoretical models. To this end, we compare the Jensen-
Shannon divergence (JSD) between the mobility signatures of the
empirical data and each model (see Section 4.4). A low value
of the JSD indicates a high level of similarity. For all cities, the

mean JSD of the gravity model is 0.33, while this value for the
radiation is 0.52, indicating that the gravity model is generally
more accurate. However, the city size plays a role here. As seen in
Figure 3A, the gravity-model signature performs better with an
average JSD of 0.31 for almost 84% of cities; these are typically
small- to medium-sized cities (Figure 3B). The 16% of cities
whose signatures match better with the radiation model are
located in the larger end of the Finnish city size distribution.

2.3. The Change of Mobility Patterns in
Finland Due to SARS-CoV-2 Lockdown
During the SARS-CoV-2 pandemic, countries across the globe
implemented different mobility restrictions to control disease
spreading. In Finland, in the spring of 2020, these policies
included the closure of the nations’ borders, restrictions on public
activities, school closures, and travel bans in the Uusimaa region
(Finnish Government, 2021). There was no general lockdown,
so beyond travel to and from Uusimaa, changes in mobility
patterns reflect peoples’ voluntary responses. To explore changes
in mobility patterns during the pandemic, we study howmobility
signatures have changed considering 2019 as the baseline period
and compare the mobility patterns with the corresponding
months in 2020. In addition to mobility signatures that are based
on the relative number of trips, we will also look at trip distances.
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FIGURE 2 | Mobility signatures extracted from empirical data (mobile-phone data for 2019) and from theoretical models, for six selected cities across Finland. The two

cities of the top row are in northern Finland, the cities of the middle row in central Finland, and the bottom cities in southern Finland. The first 15 top-ranked

destinations are shown in the inset of each plot. Note that the cities on the left (A,C,E) are larger than the cities on the right (B,D,F).

To investigate relative changes in trip numbers, we plot the
mobility signatures for the same cities as above in Finland for four
months in 2019 and during the first pandemic spring of 2020,
as seen in Figures 4A–F. For all cities, the distance between the
2020 and 2019 signature curves is much larger for April than for
the other months, which indicates that there was a disruption in
mobility patterns in April 2020. This disruption is visible as the
shortening of mobility signatures, which indicates a drop in the
number of traveled destinations for individual cities.

It also reflects the drop in the total mobility flow that coincides
with the high number of infected cases in April (Figure 4G).
Although government-imposed travel restrictions applied to the

Uusimaa region only, here reflected only in themobility signature
of Helsinki (panel F), there are changes in the signatures of all
six cities.

To study how the travel distances have changed, we plot
their probability density function (PDF) for the two cities of
Helsinki and Oulu (Figures 5A,B). We use geographic centroids
of municipalities for computing the distances. The trip distance
distributions show that for both cities, the share of long-distance
trips reduced in 2020. To compare the average traveling distances
for all cities during 2019 and 2020, we calculate their average
outgoing trip distances. As Figure 5C illustrates, the reduction
in long-distance travel is clearly larger than in shorter trips. To
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FIGURE 3 | (A) The Jensen-Shannon Divergence (JSD) between empirical signatures and signatures from theoretical models. Orange dots represent cities whose

signatures match better with the radiation model, and blue dots represent cities for which the gravity model works better. A low value of the JSD indicates a high level

of similarity. (B) City population distribution for the two groups. In group I (blue), the gravity model performs better than the radiation model, and the opposite is true for

group II (orange).

further quantify the differences in travel distance distributions,
we performed Kolmogorov-Smirnov tests [K-S tests, Hodges,
1958] on the travel distance distributions (Table 1). All p-values
of K-S tests are ≪10−9, and therefore the differences between
the distributions are statistically significant; the p-values are small
because the sample sizes for the travel distance distributions are
very large as the number of trips for each month is larger than 5
million.We also see that the K-S distances clearly increase during
April and May compared to February, which reflects the altered
travel patterns during the early months of the pandemic.

Combining the above results with the results shown in
Figure 4, the picture that emerges is that the drop in mobility
signature length and the changes in the shapes of the signatures’
tails are mainly due to reduced long-distance travel. Even though
the total travel volume decreased for all trips in spring 2020, the
overall pattern of short-distance travel remained mostly similar.

3. DISCUSSION

In this study, we introduce mobility signatures as a tool for
quantifying the patterns of travel of individual cities in the
overall mobility network. Similar to the signatures of egocentric
networks in the social science literature, mobility signatures
capture the relative importance of different destinations, and
provide a way of measuring the heterogeneity of destinations.

We apply this method to mobility networks constructed from
mobile phone data for 310 Finnish municipalities. To assess to
what extent the mobility signatures of cities can be explained
by mobility patterns generated with the two commonly-used
theoretical models, we measure the similarity of the mobility
signatures extracted from empirical data and models. We find
that the mobility signatures generated by the radiation model
match better with the empirical signatures of larger cities,

whereas the gravity model is more accurate for small and mid-
sized cities.

It would be interesting to see if the above result holds for other
countries as well; it is worth noting that Finland’s largest cities are
fairly small compared to many countries, and that in Finland the
population density is generally low and the distances large (5.5
million people in a country of 338,000 km2). As the radiation
model is based on the concept of intervening opportunities,
sparsely populated regions may be outside its scope. On the other
hand, the gravity model only depends on the distance between
the two cities and their populations, which may explain why it
works better for smaller cities.

Application of the mobility signature approach to the
comparison of mobility patterns between 2019 and 2020 showed
that the disruption caused by the SARS-CoV-2 pandemic is seen
as changes in signature shapes. These changes are associated
with larger reductions in long-distance travel. This observation
is similar to the one made in Schlosser et al. (2020) for Germany.
For mitigating the effects of the pandemic, a reduction in long-
distance travel is rather beneficial: it makes the spread of the
pathogen more localized and therefore more controllable. The
difference to Germany is that the changes in mobility patterns
in Finland were only partially attributable to government
interventions: travel to and from the Uusimaa region in southern
Finland, including the capital city of Helsinki, was restricted
in April 2020, but outside this cordon sanitaire, no mobility
restrictions were in place. Despite this, long-distance travel was
reduced in the whole country.

An interesting future direction would be to use mobility
signatures and their features as correlates in social and regional
studies, e.g., by grouping together cities with similar signatures
and analyzing their demographic patterns. One can also see if
it is possible to perceive urban development dynamics through
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FIGURE 4 | (A–F) Month-to-month comparison of mobility signatures during February-May in 2019 (orange curves) and 2020 (blue curves). The relative differences

(i.e., R.D. in insets) are the difference between fractions of trips during 2019 and fractions of trips during 2020 divided by fractions of trips during 2019. (G) The

number of infected SARS-CoV-2 cases in Finland during the same time period.
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FIGURE 5 | Mobility changes in Finland in terms of travel distance during 2020. (A) The distance distribution of outgoing trips for Helsinki; (B) The same distribution

for Oulu. The greatest reduction occurs for long-distance trips. The vertical lines indicate the average outgoing trip distance for each period (orange: 2019, blue:

2020). (C) Scatterplot of the average outgoing trip distances for all cities for 2019 and 2020.

changes in city signatures, e.g., by combining city signatures with
socioeconomic and urban development indicators.

4. MATERIALS AND METHODS

4.1. Dataset
We use aggregated and anonymized OD data provided by
the mobile network operator Telia (Telia, 2020). These OD
data provide the numbers of daily trips between 310 Finnish
municipalities. The number of trips has been extrapolated by
the operator based on its market share to represent the whole
population (Telia’s market share in Finland ∼32% Telia, 2019).
To our best knowledge, Telia has not released demographic
information on its user base, and therefore one cannot be
certain of the representativeness of the sample. Mobility flows
smaller than 20 people per day have been removed from the
data for privacy. In our analysis, the intra-municipality flows are
discarded (i.e., we set Tii : = 0). The data are from February,
March, April, and May in 2019 and 2020. The daily average
number of trips between all pairs of locations is 3.4 million (2019)
and 2.7 million (2020). For the two theoretical mobility models,
we also use the population data for 2019 from Statistics Finland
(StatFinland, 2020).

4.2. Computing Mobility Signatures
In this study, human mobility patterns are studied by focusing
on cities and their connections to the rest of the country-wide
mobility network. For each city, we construct a city-centric
mobility network, where the city is connected to all other cities
if there is outgoing travel. Link weights represent the mobility
flows to different destinations. Normalizing the flows by the total
outgoing flow and sorting the destinations from the most to the
least visited yields a city-specific signature curve, similar to the
social network studies in Saramäki et al. (2014). The signature of
city i is defined as

σi = [
Ti1

Ti
,
Ti2

Ti
, ...,

Tiki

Ti
], (1)

where Ti is the total number of outgoing travelers from the focal
city i, Tij is the number of trips from i to destination j, and ki is
the total number of destinations with trips from i.

4.3. Theoretical Models of Collective
Mobility
Theoretical collective mobility models provide estimates of the
number of trips between regions or cities. Theoretical models
are useful in cases where knowledge of mobility flows is needed
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TABLE 1 | Kolmogorov-Smirnov distances.

Feb. Mar. Apr. May

Helsinki 0.005* 0.022* 0.057* 0.065*

Oulu 0.013* 0.038* 0.083* 0.050*

*Indicates p-value less than 10−9.

but empirical data is inaccessible, for example when modeling
geographic patterns of the spread of disease without data on
people’s mobility. In this study, we use two well-known mobility
models to investigate the mobility signatures associated with the
estimated mobility flows.

The gravity model is inspired by Newton’s law of gravity (Zipf,
1946). This model determines the mobility flow between two
cities from their populations and their distance. In the model, the
mobility flow between two cities i and j with populations of mi

and mj is proportional to the product of their populations and
inversely proportional to some function of their distance f (dij):

Tij ∝

{

0, j = i,
mimj

f (dij)
, j 6= i,

(2)

where mi is the number of residents who live in city i, mj is
number of residents in city j and dij is the geographic distance
between city i and city j. In the original formulation of Zipf
(1946), f (dij) = dij.

The basic version of the gravity model is evidently a gross
simplification, and it has been shown that often, the model does
not match with actual empirical observations (Masucci et al.,
2013; Lenormand et al., 2016). Therefore, many researchers have
investigated different distance functions (Flowerdew and Aitkin,
1982) and developed the model by applying constraints to the
basic gravity model (Wilson, 1971). In this study, we chose
the model that has performed best in the literature: the doubly
constrained gravity model, with a distance function that decays
exponentially with distance at a rate defined by the parameter β :

f (dij) = exp (−βdij). (3)

The double constraint includes outgoing trips (“production”)
and incoming trips (“attraction”) (Wilson, 1971). The production
constraint ensures that the total number of estimated trips that
depart from the city i equals the empirical number of total
outgoing trips ni+, and the attraction constraint is similar but
regarding incoming trips:

∑

j

Tij = ni+, (4)

∑

i

Tij = n+j. (5)

The parameters of this model are fitted using the open-source
library scikit-mobility (Pappalardo et al., 2019).

The radiation model (Simini et al., 2012; Ren et al., 2014) is
based on the concept of spatially distributed opportunities. Each
opportunity at every location is assigned a fitness value, and
the model sorts opportunities according to their distances from
the origin. A traveler then chooses the closest opportunity with
fitness higher than the traveler’s fitness threshold. The model
predicts the commuting flows between cities i and j with the
number of opportunities mi and mj, respectively, which are a
distance dij apart by:

Tij = Ti
1

1−mi/M

mimj

(mi + sij)(mi +mj + sij)
, (6)

where sij is the total number of opportunities in the circle of
radius dij centered at i, Ti is the total number of travelers that
start their trips from city i, andM =

∑

mi is the total number of
opportunities (Masucci et al., 2013). In this study, the population
of each location is considered as the number of opportunities,
similar to the original version of the radiation model.

4.4. Quantifying the Similarity of Pairs of
City Signatures
The similarity of signatures of different cities and time intervals
can be investigated using the Jensen-Shannon divergence (JSD).
This measure is a generalized version of the Kullback-Leibler
Divergence (KLD). Unlike the KLD, the JSD is symmetric,
always well defined, and bounded (Lin, 1991). The JSD of two
distributions σ1 and σ2 is defined as

JSD(σ1, σ2) = H(
1

2
σ1 +

1

2
σ2)−

1

2
(H(σ1)+H(σ2)), (7)

where H(σi) is the Shannon entropy of σi:

H(σi) = −

k
∑

j=1

Tij logTij, (8)

where k is the total number of destinations and Tij represents the
number of outgoing trips from city i to city j. The JSD values are
between 0 and 1, so that the closer the value is to zero, the more
similar the pair of signatures is.
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