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Abstract

Archaeological excavations of historical fishing sites across the North Atlantic have recov-

ered high quantities of Atlantic cod (Gadus morhua) bones. In the current study we use

Atlantic cod otoliths from archaeological excavations of a historical fishing sites in north-

west Iceland, dated to AD 970 –AD 1910 to examine historical growth trajectories of cod. No

large scale growth variations or shifts in growth patterns were observed in the current chro-

nologies, supporting the stability of historical Atlantic cod growth trajectories. The most sig-

nificant variation in growth patterns was consistent with those that have been observed in

recent times, for example, reduced early juvenile growth during periods of colder ocean tem-

perature. The current results represent a high resolution chronological record of north-east

Atlantic cod growth, greatly increasing the prior temporal range of such data, thereby provid-

ing a valuable baseline for a broad range of studies on Atlantic cod growth.

Introduction

Historical baselines of ecological states can improve the interpretation of current anthropogen-

ically induced change. Such baselines have already shown their value as a guide to modern day

management and conservation [1]. Records of fish landings and imports have, for example,

been used to reconstruct past fish abundance and size [2–7]. Zoo-archaeological material of

exploited animal populations may be particularly useful for reconstructing historical baselines

[8] as they provide a population level link between written historical sources and paleo-envi-

ronmental data series.

Otoliths, a calcified structure in the inner ear of fish, are occasionally recovered during

archaeological excavations [9]. They are unique among zoo-archaeological material in that

they simultaneously convey information on individual fish age [10], growth [11] and reflect

the environmental conditions that the fish encountered throughout life-history [12–14]. Oto-

liths from archaeological excavations have been used to examine historical changes in fish age

[15, 16], trophic position [17] and seasonality of human site occupation [18]. Importantly, oto-

liths allow measures of annual growth, and thereby retrospective reconstructions of fish

growth patterns. Growth reconstructions from archaeological otoliths have for example shown

higher growth rate of Neolithic Baltic cod than in the modern population, particularly in the
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first year of growth [19]. Conversely, research from the North Sea finds slightly slower growth

rate of cod (as well as haddock and plaice) in early modern times than in recent times [16].

Fish growth trajectories are plastic and correlate with a number of environmental factors

including food availability [20], temperature [21, 22] and acidification [23]. Recent reductions

in length at age have been noted for many exploited fish species [24–26]. The trend for reduced

size is attributed to fisheries induced selection on fish life history traits, importantly on size at

maturity, as fishing with common gear, such as trawls, favors individuals that mature at a

smaller size [27–29]. Climate change may also result in evolutionary reductions in fish size

through physiological adaptations [30]. To facilitate interpretation of ongoing change in fish

growth long term historical time series of growth trajectories are needed.

Archaeological excavations of historical fishing sites across the North Atlantic have

unearthed high quantities of Atlantic cod bones [31, 32] and the species composition of bone

assemblages suggests an early specialization on Atlantic cod fisheries [33–35]. The quantity

and often good preservation of the zoo-archaeological material at these sites offer unparalleled

opportunities of retrospective examinations of Atlantic cod biology, including estimation of

historical growth trajectories. Previous research on Atlantic cod bones from archaeological

excavations have suggested ecological changes before industrial fisheries, for example, a dis-

ruption in growth of north-east Arctic cod [36] and loss of genetic diversity in Icelandic cod in

the 16th century [37].

In the North Atlantic, the medieval and early modern periods were characterized by rapid

increase in marine fisheries; as urbanization and globalization in western Europe drove increas-

ing demand for stock fish; and multinational fishing fleets sought favorable fishing grounds for

Atlantic cod [38]. At the same time a cooling climate significantly affected societies across

northern Europe, with the onset of the “little ice age” and subsequent temperature fluctuation;

including a North Atlantic temperature minimum in the 17th century [39, 40]. Adult Atlantic

cod are tolerant to a wide range of temperature [41] and are known to migrate to areas with

favorable temperature [41, 42]. However, age 0+ juveniles are dependent on shallow nearshore

areas and may therefore be more affected by changes in sea temperature [43, 44].

In the current study, we analyze growth patterns of Atlantic cod otoliths from archaeolog-

ical excavations of historical fishing sites in NW Iceland, dated to AD 970 –AD 1910. First, we

examine the significance of change in otolith size, linear and quadric growth patterns across

the millennium. Our initial hypothesis was based on faster growth in the medieval warm

period followed by reductions in growth rate, particularly during the North Atlantic tempera-

ture minimum in the 17th century.

Materials and methods

Archaeological excavations and zoo-archaeological analysis

The archaeological excavations were carried out at the historical fishing sites; Breiðavı́k (BRV,

24˚24’45.98”W, 65˚32’38.13"N) and Kollsvı́k (KOV, 24˚21´6.19”W, 65˚36´36.07”N) in north-

western Iceland (Fig 1). In July 2012 we excavated two trenches; one in Breiðavı́k (50cm x

50cm) and one in Kollsvı́k (1m x 80cm). In July 2015 we again excavated two trenches; both in

Breiðavı́k (the first 2m x 50cm, the second 1m x 50cm).

Archaeological units, i.e. individual cultural deposits, were identified, recorded and exca-

vated in reversed order, starting with the youngest. Each deposit was sieved with a 4mm mesh

to retrieve bones, otoliths and finds. During the post excavation work all identifiable bones

were identified to a species level and all Atlantic cod otoliths were removed from the bone

assemblage for further analysis. The deposits were initially dated by their context, i.e. strati-

graphical sequence or finds, and ultimately by 14C dating (Scottish Universities Environment
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Research Centre). Mean 14C age, quoted in years AD, was used in analysis. The error around

the mean (Table 1), is expressed at the one sigma level of confidence, including components

from the counting statistics on the sample, modern reference standard and blank and the ran-

dom machine error. Five deposits could not be dated by 14C and were assigned an “informed

mean date” based on their stratigraphical sequence and 14C dates of the adjacent deposits

formed the error around the informed mean date (Table 1).

We used a total of 220 archaeological specimens for the current analysis. Sample numbers

can be found in S1 File. The archaeological excavations were permitted by the Icelandic Cul-

tural Heritage Agency: Permit no: 21505–0060. The samples used in this study were deposited

at the National Museum of Iceland: Conservation no: 2015–33.

Otolith aging and annotation

A total of 220 otoliths were used for aging and growth determination, n = 57 from the 2012

excavation and n = 163 from the 2015 excavation (Table 1). All otoliths used were well

Fig 1. Map depicting sample sites. The map shows Breiðavı́k (BRV) and Kollsvı́k (KOV) the historical fishing sites were the excavations were

conducted.

https://doi.org/10.1371/journal.pone.0187134.g001
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preserved, although broken otoliths were used for age determination and growth estimates

when it was possible to clearly identify all annual rings. Age determination and growth mea-

sures were done “blinded”, that is, without information on 14C dating.

The sagittae otoliths were sectioned along the transverse axis (cross-sectioning), this

involves embedding the otoliths in black resin blocks, removing a thin section from the trans-

verse midplane. Images were taken of each otolith again using Leica IC80 HD (Digital Camera

Module by Leica Microsystems) under a stereomicroscope at 10× magnification using a

reflected light setting, with resolution 2048 x 1536 pixels. The age determination and annota-

tion of cod otoliths in this study were carried out by highly experienced otolith reader. The

otolith sizes at the mid-point of respective annual translucent zones were then marked along a

transect from the core to the outer distal edge of the otolith, with the transect being approxi-

mately perpendicular to the width of the otolith (following Li et al. [11], Fig 2). Only the first

five years of growth were measured. Fish growth slows with age and accurate estimates of

annuli growth along the distal axis became increasing difficult with age, particularly in the very

old individuals.

We did not attempt back calculations of fish size as archaeological otoliths are known to be

subject to shrinkage and estimates of life fish length based on archaeological otoliths may be

underestimated [9]. We therefore used otolith increment measures directly in subsequent sta-

tistical analysis. Note that this equates to not consider the biological intercept model [45], that

is, the non-linear relationship between somatic and otolith growth. Both the data and figures

presented should be interpreted with this in mind.

Statistical analysis

First, we examined if growth patterns differed between archaeological deposits using the first

five years of growth of 220 otoliths, a total of 1100 growth measures (Table 1). A second-order

Table 1. Summary information of the otoliths used for age and growth analysis.

Deposit date Dating Site.year n otoliths Age mean Age SD

AD 970 C14 (970±30) BRV.15 17 10.18 3.45

AD 1360 Context (< 1410) BRV.15 5 13.00 4.92

AD 1410 C14 (1410±30) BRV.15 44 10.52 2.47

AD 1490 Context (1410–1570) BRV.15 7 8.29 2.75

AD 1570 Context (1410–1570) BRV.15 9 5.67 0.95

AD 1621 C14 (1621±30) BRV.12 6 8.67 2.67

AD 1637 C14 (1637±32) BRV.15 23 7.94 2.09

AD 1649 C14 (1649±32) BRV.15 7 7.00 2.92

AD 1660 Context (1637–1680) BRV.15 11 9.36 2.83

AD 1680 C14 (1680±32) BRV.15 7 10.14 2.84

AD 1710 C14 (1710±28) KOV.12 10 11.80 1.80

AD 1744 C14 (1744±32) KOV.12 14 10.50 2.74

AD 1785 C14 (1785±30) BRV.15 6 8.50 3.04

AD 1795 C14 (1795±28) KOV.12 16 10.47 2.98

AD 1820 C14 (1820±32) BRV.15 12 8.25 3.14

AD 1890 C14 (1890±32) BRV.15 11 8.45 3.88

AD 1910 Context (>1890) BRV.15 15 8.07 2.95

Sample sizes of otoliths from each archaeological deposit. Dating information is given as mean 14C dates and the associated error and for deposits with no
14C information as informed estimates and range (see text for details). Age represents fish otolith age within deposits.

https://doi.org/10.1371/journal.pone.0187134.t001
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polynomial (Eq 1) was fitted using a generalized linear mixed model (GLMM) [46].

Yij ¼ b0i þ b1i � Timej þ b2i � Time2
j þ εij ð1Þ

Where Yij is the otolith size observation of individual i at Time j, β0i is the intercept, β1i is

the linear slope and β2i the quadratic curvature, εij is the residual error and T is time of the

observation (fish age in years). The mean estimated date (AD) for each archaeological deposit

(Table 1) formed a fixed effect on both the linear and quadric term and fish ID and fish age at

mortality were set as random effects. We used the deposit closest to modern times as the refer-

ence point (AD 1910). Statistical significance (p-values) for parameter estimates was assessed

using the normal approximation (i.e., treating the t-value as a z-value). Models were fitted

using the lme4 package v. 1.1–12 [47] in R version 3.0.2 [48].

Second, as there were often few otoliths in each archaeological deposit, we divided the oto-

liths into three non-overlapping temporal groups, the first represented samples dated to before

AD 1499 (Medieval period), the second group included samples dated to AD 1500—AD 1784

(Early Modern period) and finally samples dated to post AD 1785 (Modern period). This

Fig 2. Otolith thin section from the transverse midplane. The red dots show age denotation and the black dots an example of five-year

increment measures from the core to the outer distal edge of the otolith.

https://doi.org/10.1371/journal.pone.0187134.g002
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classification represents a common historical designation of periods. We then repeated the

GLMM, as described above, but replacing archaeological deposit with period as a fixed effect.

Finally, we estimated the typical von Bertalanffy growth function (vBGF, Eq 2) parameters

for each of the three periods (Medieval, Early Modern and Modern).

Yij ¼ L1
�1 � expð� K�ðTimej � t0ÞÞ ð2Þ

Where Yij is the otolith size observation of individual i at Time j and T is time of the obser-

vation (fish age in years). L1 is the maximum length (in the current analysis of otolith incre-

ment), K is the relative growth rate, t0 is the theoretical age for time at which length is zero.

The vBGF is widely used in fisheries biology [49, 50] and our aim was to facilitate comparison

of historical Atlantic cod growth rate to previous studies as well as to test for parameter differ-

ences between periods. Two models were fitted, 1) a model assuming the same parameters val-

ues for all 220 otoliths and 2) a model allowing all parameters to differ between the three

periods. vBGF models 1 and 2 were then compared using a likelihood ratio test. Models were

implemented in R version 3.0.2 [48] using the package FSA [51]. The current growth data is

based on otolith increments and within individual measures are expected to be non-indepen-

dent. Therefore, we attempted to fit a non-linear mixed model with a user defined vBGF using

nlme in the lme4 package v. 1.1–12 [47]. However, vBGF models including random effects did

not converge (data not shown). Code for statistical analysis can be found in S2 File.

Results

The results support consistent growth patterns of Atlantic cod through the millennium, that is,

repeated fluctuations but no long term shifts in growth patterns. Fig 3 depicts the otolith

growth data and fitted growth patterns for each archaeological deposit examined.

In the first generalized linear mixed model, comparing across all archaeological deposits,

the intercept, the linear term and the quadratic term were all significant (Table 2) showing that

Fig 3. Raw otolith increment growth data and fitted growth patterns. The figure depicts five-year otolith increment growth (mean and SE), as well

as the fitted quadric growth patterns for each of the seventeen archaeological deposits. Archaeological deposits are represented by mean 14C or

estimated mean date AD. The color represents designated historical periods, red = Medieval, blue = Early modern and green = Modern.

https://doi.org/10.1371/journal.pone.0187134.g003
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both linear and quadratic growth curves represent the observed growth pattern (note that this

does not indicate any difference between archaeological deposits). The effects of archeological

deposit as a fixed effect on otolith increment size was significant for AD 1680 (using AD 1910

as a base for comparison) (Table 2). There were significant interaction effects of the linear

term and the archaeological deposits dated to AD 1680 and AD 1621, showing significantly

lower linear growth rate in AD 1680 and higher linear growth rate in AD 1621. Finally, there

was significant interaction of the quadric term the archeological deposit dated to AD 1570,

representing increased quadric curvature, that is, relatively slower growth at age 3+ and age

4+.

When the otoliths were grouped by periods, the intercept, the linear term and the quadratic

term were all significant but no significant difference in growth patterns were observed

between periods (S2 Table).

Estimates of vBGF parameters did not differ significantly between periods, that is, the

model allowing all vBGF parameters to differ between periods was not a significantly better

fit than a model with the same parameter values for all otoliths (df = 6, difference in log likeli-

hood = -0.61, χ2 = 1.23, p = 0.98). L1 estimates for the three periods varied between 2.203 and

2.441, estimates of K varied between 0.204 and 0.248 and estimates of t0 varied between -0.018

and 0.124 (Table 3). Any comparison of these parameter values should acknowledge the

shrinkage of archeological otoliths [9].

Discussion

Examination of growth trajectories across AD 970 to AD 1910 showed significantly slower

growth, as well as smaller total otolith increment lengths, in the late 17th century signaling

reduced growth of age 0+ juveniles. Other notable changes in the polynomial growth model

include negative estimates of the quadratic term in AD 1570, suggesting slower growth of age

3+ and age 4+ juveniles, and finally steeper linear growth in AD 1621 (Table 2, Fig 3). Despite

these variations between the archaeological deposits we highlight that no consistent or long

Table 2. Results from the generalized linear mixed model analysis of growth patterns.

Estimate SE t-value p-value

Intercept 1.080 0.043 25.390 0.000

Linear term 0.878 0.022 40.644 0.000

Quadric term -0.110 0.021 -5.285 0.000

AD 1680 -0.150 0.074 -2.025 0.043

Linear term: AD 1621 0.122 0.038 3.220 0.001

Linear term: AD 1680 -0.091 0.036 -2.512 0.012

Quadric term: AD 1570 -0.070 0.033 -2.113 0.035

Note that only significant result (p < 0.05) are presented. Full model results can be found in S1 Table.

https://doi.org/10.1371/journal.pone.0187134.t002

Table 3. Estimates and 95% confidence intervals of the vBGF model parameters, L1, K and t0, for the medieval, early modern and modern periods.

Medieval (< AD 1499) Early Modern

(AD 1500—AD 1784)

Modern (> AD 1785)

L1 K t0 L1 K t0 L1 K t0

Estimate 2.343 0.219 0.020 2.441 0.204 -0.018 2.203 0.248 0.124

95% LCI 1.988 0.144 -0.220 1.915 0.078 -0.487 1.974 0.182 -0.044

95% UCI 2.993 0.308 0.222 4.563 0.331 0.279 2.608 0.312 0.271

https://doi.org/10.1371/journal.pone.0187134.t003
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term shifts in Atlantic cod growth patterns growth trajectories were noted between periods, as

may have been expected, for example, between the medieval warm period and modern times

(Fig 3, S2 Table).

Atlantic cod growth has been examined across 20th century time series that have shown

considerable short term and inter-annual fluctuations in growth [52, 53]. Archaeological data-

sets do not capture intra-annual or between cohort variation as cohorts and multiple years are

inevitable pooled within a single archaeological deposit. The current results may therefore

underestimate temporal fluctuations in growth and this is further indicated by the loss of any

significant effects when the otoliths were pooled to three historical periods (S2 Table). How-

ever, the current data signals a notable decline in juvenile growth the 17th century. This is con-

sistent with the results of Geffen et al., [36] that showed decreased growth of north-east Arctic

cod between the early 16th century and the 18th century. The current results add to those previ-

ously reported as they provide a second geographically distinct dataset and the temporal reso-

lution of the current data allows further deductions on the timing and extent of growth shifts

in Atlantic cod.

The reduction in growth in the late 17th century appears to represent slower growth of age 0

+ juveniles (Fig 3). The North Atlantic cooled in the 17th century and historical documents

report harsh winters and inshore conditions e.g. icebergs and ice covered fjords around Ice-

land [39, 40]. Juvenile Atlantic cod nursery areas are in inshore waters and age 0+ juveniles are

particularly likely to be found in shallow nearshore waters [43, 44]. Atlantic cod age 0+ juve-

niles may therefore be more effected by local climate effects than older cod that can seek favor-

able temperature and foraging conditions [41, 42]. Previous research has shown that ocean

temperature was not a primary source of otolith growth variation in juvenile Atlantic cod [13].

However, lower sea temperatures in the 17th century may also have affected food availability.

Juvenile cod feed predominantly on zooplankton and are dependent on phenological match-

ing of zooplankton blooms [54–56]. This matching may be disrupted by climate effects sug-

gesting that food limitation could also explain slower growth of age 0+ juvenile Atlantic cod in

the 17th century.

The current data suggests that Atlantic cod growth was not more rapid in the warmer

period preceding the 17th century sea temperature minimum. In fact, growth in the 4th and 5th

year of life was less rapid in AD 1570 (Table 2, Fig 3). This result may be consistent with previ-

ous research that show that adult growth is maximized at cooler sea temperatures [41, 57–59],

as well as studies from the 20th century that have shown that warmer periods in Icelandic

waters negatively impact cod, primarily through northward migrations of capelin; favored for-

age fish [60]. Finally, the current growth reconstructions support that the large sized fish

described in the medieval and early modern periods by anecdotes and archaeological recon-

struction [1, 31] is not likely to represent a shift in growth patterns but the higher age of the

pristine cod populations. Higher mean age of historical Atlantic cod populations has been

found in previous studies [31, 37] and the current study (Table 1).

As any fisheries samples, archaeological fish remains can be biased, for example; by season,

fishing methods and market preferences, all of which could affect the size of the landed fish. A

particular consideration for interpreting growth patterns based on Atlantic cod otoliths from

archaeological sites is that growth trajectories differ between populations of Atlantic cod,

importantly, between migratory and coastal ecotypes [61, 62]. Any shifts in population distri-

butions or in the frequency of populations or ecotypes in the catch could result in concurrent

signals of change in growth patterns. Ólafsdóttir et al., [37] reported lower incident of PanI
genotypes, representative of migratory Atlantic cod, in archaeological samples dated to post

AD 1600. Therefore, we suggest that further research is needed to conclude on historical

growth trajectories of migratory and coastal ecotypes.
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To conclude, the current results provide a high resolution chronological record of consis-

tent growth patterns of north-east Atlantic cod on a millennium scale; a potentially valuable

baseline for modern day studies of environmental effects on Atlantic cod growth. We more-

over propose that further study on otoliths from archaeological excavations has the potential

to increase understanding on environmental effects on fish growth trajectories.
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37. Ólafsdóttir GÁ, Westfall KM, Edvardsson R, Pálsson S. Historical DNA reveals the demographic history

of Atlantic cod (Gadus morhua) in medieval and early modern Iceland. Proc R Soc Lond B. 2014; 281

(1777), p.20132976.

38. Barrett JH, Locker AM, Roberts CM. The origins of intensive marine fishing in medieval Europe: the

English evidence. Proc R Soc Lond B. 2004; 271: 2417–2421.

39. Ogilvie AE, Jónsson T. " Little ice age" research: A perspective from Iceland. Climatic Change. 2001;

48: 9–52.

40. Patterson WP, Dietrich KA, Holmden C, Andrews JT. Two millennia of North Atlantic seasonality and

implications for Norse colonies. Proc Nat Acad Sci. 2010; 107: 5306–5310. https://doi.org/10.1073/

pnas.0902522107 PMID: 20212157

41. Drinkwater KF. The response of Atlantic cod (Gadus morhua) to future climate change. ICES J Mar Sci.

2005; 62: 1327–1337.

42. Freitas C, Olsen EM, Moland E, Ciannelli L, Knutsen H. Behavioral responses of Atlantic cod to sea

temperature changes. Ecol Evol. 2015; 5: 2070–2083. https://doi.org/10.1002/ece3.1496 PMID:

26045957

43. Dalley EL, Anderson JT. Age-dependent distribution of demersal juvenile Atlantic cod (Gadus morhua)

in inshore/offshore northeast Newfoundland. Can J Fish Aquat Sci. 1997; 54:168–176.

44. Gibb FM, Gibb IM, Wright PJ. Isolation of Atlantic cod (Gadus morhua) nursery areas. Mar Biol. 2007;

151:1185–1194.

45. Campana SE. How reliable are growth back-calculations based on otoliths? Can J Fish Aquat Sci.

1990; 47: 2219–2227.

46. Mirman D. Growth curve analysis and visualization using R. CRC Press.2014.
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