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ABSTRACT: Organic semiconductors have been widely studied owing to their potential applications in various devices, such as
field-effect transistors, light-emitting diodes, solar cells, and image sensors. However, they have a limitation of significantly lower
carrier mobility compared to silicon, which is a widely used inorganic semiconductor. Therefore, to address such limitations, these
molecules should be further explored. Hole reorganization energy has been known to influence carrier mobility; that is, lower energy
results in higher mobility. This study uses Bayesian optimization (BO) to identify molecules with low hole reorganization energies.
While several acquisition functions (AFs), including probability of improvement, expected improvement, and mutual information,
have been proposed for use in BO, it is well established that the performance of AFs can vary depending on the data set. We evaluate
the performance of AFs applied to a data set of organic semiconductor molecules and propose a novel approach that alternates the
use of AFs in the BO process. Our findings conclude that alternating AFs in BO enhance the stability of the search for molecules
with low reorganization energy.

■ INTRODUCTION
Organic semiconductors have been intensively investigated
because of their potential applications in various devices, such
as field-effect transistors, light-emitting diodes, solar cells, and
image sensors.1−5 Using organic materials for semiconductors
instead of traditional inorganic materials offers various
advantages. These include simple processing, low-cost and
large-area manufacturing, lightweight structures, mechanical
flexibility, and versatile molecular design, owing to their vast
chemical design space. Carrier mobility is an important
characteristic of semiconductors, and significant efforts have
been made to obtain organic materials with enhanced
mobilities. For this purpose, various classes of molecules,
such as oligoacenes,6 polythiophenes,7 heteroarenes,8 and
fullerenes,9 have been investigated. To this date, the highest
electron and hole mobilities reported are 11 cm2/(V s) for
C60

10 and 40 cm2/(V s) for rubrene,11 respectively. However,

these mobility values are still significantly lower than those of
silicon, which has mobilities of 1200 cm2/(V s) for electrons
and 500 cm2(V s) for holes.12 Therefore, there is a need to
explore molecules with even higher carrier mobilities.

The carrier transport phenomena of molecules can be
described based on the Marcus theory,13 −16 where the charge-
hopping rate of the local dimer of molecules, k, is formulated
by eq 1.
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where ℏ is Planck’s constant divided by 2π, kB is Boltzmann’s
constant, T is the temperature, ΔG is the free energy difference
for charge transfer, λ is reorganization energy, and Hab is the
intermolecular electronic coupling. The four parameters Hab,
ΔG, λ, and T in this equation determine the charge transfer
rate. Among them, λ has a considerable effect on charge
transfer as it decreases the transfer rate exponentially.
Multiple studies have explored molecules with low

reorganization energies to identify molecules with enhanced
carrier mobilities. For example, Schober et al.17 calculated the
reorganization energy and intermolecular electronic coupling
of 95,445 molecular crystal structures obtained from the
Cambridge Structural Database.18 They successfully extracted
four promising molecules with reorganization energies ranging
from 0.121 to 0.169 eV.17 A comprehensive theoretical
screening of hole-conducting heteroacene molecules has also
been conducted, where the hole reorganization energies of a
quarter million heteroacenes were calculated using a cloud-
computing environment.19 This screening led to the
identification of various promising structures.
Using the aforementioned quarter-million values of hole

reorganization energy, we evaluate the effect of acquisition
functions (AFs) in Bayesian optimization (BO)20,21 on
exploring molecules with enhanced reorganization energy. A
Gaussian process regression (GPR)22 model was constructed
using an initial data set of molecules. The candidate molecules
were searched based on the predictions of the objective
variable y and its variance using the constructed GPR model.
While using a basic regression model y = f(x) to identify
candidates with enhanced predicted y values may lead to
locally optimal solutions, BO mitigates this risk by exploring
the extrapolation and interpolation of x.
In BO, an AF is calculated using the predicted y values and

their variance, and the next candidates are selected to maximize
the value of the function. The probabilities of improvement
(PI),23 expected improvement (EI),23 and mutual information
(MI)24 are commonly used AFs. However, it is important to
note that no single AF is universally effective across different
optimization tasks. Additionally, the calculation of x requires
the application of molecular descriptors, such as RDKit,25

Mordred,26 and Morgan fingerprints.27 Similarly, there is no
universal set of molecular descriptors that works for every
scenario.
In this study, we examine the effect of AFs and molecular

descriptors on molecular design aimed at minimizing the hole
reorganization energy using BO. Our study uses a data set
containing a quarter million values of hole reorganization
energy obtained from density functional theory (DFT)
calculations.28 We applied BO to identify molecules with low
hole reorganization energy in the data set. The process began
with a limited data set, where some molecules exhibiting high
hole reorganization energy in the quarter-million data set were
selected. Based on our findings, we propose a method that
combines multiple AFs in BO to efficiently explore a diverse
design space for enhanced molecular designs.

■ METHOD
Data Set. We utilized the hole reorganization energies of a

quarter-million heteroacenes obtained from DFT calcula-

tions.28 The acene structures consist of 2−8 fused rings,
incorporating hydrogen, carbon, oxygen, sulfur, and selenium
elements in various positions according to combinatorial rules.
The building blocks of the fused ring structures were benzene,
acenaphthylene, pyracyclene, pyrene, perylene, cyclopenta-
diene, furan, thiophene, and selenophene.

The hole reorganization energies in the data set were in the
range of 0.0548−0.490 eV, and their distribution on a
logarithmic scale (base: 10) is shown in Figure 1, where the
energy values span from −1.26 eV to −0.31 eV.

Molecular Descriptors. We used RDKit,25 Mordred,26

and Morgan fingerprints27 to calculate the molecular
descriptors. RDKit calculated 200 descriptors, including
molecular weight and number of atoms, based on the two-
dimensional (2D) structure of molecules. Mordred calculates
1600 descriptors from both the 2D and three-dimensional
(3D) structures of molecules, with the Boruta method29 used
for variable selection to reduce the number of descriptors.
Morgan fingerprints are calculated based on structural
information on atoms that are located within a certain distance
of a given atom; in our study, we set the parameters to radius =
2 and nBits = 2048.
GPR. GPR22 is a linear regression method in which input

variables x are transformed to high-dimensional space using
basis functions φ. Linear regression is then performed on the
vector φ(x) as follows:

y x w x( ) ( )T= (2)

where w is the weight vector. Further, as a prior distribution of
w, an isotropic Gaussian distribution with mean and variance
equal of 0 and α−1I is assumed as follows:

p w w I( ) ( 0, )1= | (3)

where, α−1 and I denote the hyperparameters corresponding to
the inverse and identity matrix of variance σ2, respectively.
Additionally, Ν denotes the probability density function of the
Gaussian distribution, which for x with mean μ and variance σ2
is expressed as follows:

N x x( , )
1

(2 )
exp

1
2

( )2
2 1/2 2

2{ }| =
(4)

y(x) can be obtained for x by determining the probability
distribution of w from eq 2 and deriving the probability
distribution of y(x) from eq 3. For example, if there are N
samples used to construct model, the output vector y with

Figure 1. Distribution of hole reorganization energy within the
quarter-million data set.
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elements yi= y(xi) can be expressed using the matrix Φ, where
the elements are Φi = Φ(xi), as follows:

wy = (5)

Because y is represented by a linear combination of w
following a Gaussian distribution, y also follows a Gaussian
distribution. Therefore, the probability distribution of y(x) can
be obtained by determining the mean and covariance of y. The
mean and covariance of y are denoted as E[y] and cov[y],
respectively. From eq 4, we have the following equation:

E Ey w 0[ ] = [ ] = (6)

cov E Ey yy ww K1[ ] = [ ] = [ ] = =
(7)

where K can be expressed as follows:

K k x x x x( , )
1

( ) ( )ij i j i j= =
(8)

The matrix K is a Gram matrix with elements k(xi, xj), where
k(xi, xj) is the kernel function. From eqs 6 and 7, we can obtain
Kij and cov[y] by calculating the dot product of Φ(xi) and
Φ(xj). This dot product is known as the kernel function. We
used the following 11 types of kernel functions:

ConstantKernel() ∗ DotProduct() + WhiteKernel()
ConstantKernel() ∗ RBF() + WhiteKernel()
ConstantKernel() ∗ RBF() + WhiteKernel() +
ConstantKernel() ∗ DotProduct()
ConstantKernel() ∗ RBF(np.ones(n_features)) +
WhiteKernel()
ConstantKernel() ∗ RBF(np.ones(n_features)) +
WhiteKernel() + ConstantKernel() ∗ DotProduct()
ConstantKernel() ∗ Matern(nu = 1.5) + WhiteKernel()
ConstantKernel() ∗ Matern(nu = 1.5) + WhiteKernel()
+ ConstantKernel() ∗ DotProduct()
ConstantKernel() ∗ Matern(nu = 0.5) + WhiteKernel()
ConstantKernel() ∗ Matern(nu = 0.5) + WhiteKernel()
+ ConstantKernel() ∗ DotProduct()
ConstantKernel() ∗ Matern(nu = 2.5) + WhiteKernel()
ConstantKernel() ∗ Matern(nu = 2.5) + WhiteKernel()
+ ConstantKernel() ∗ DotProduct()
n_features: number of explanatory variable X

In this study, the sklearn.gaussian_process.GaussianProcess-
Regressor module from scikit-learn30 was used to construct the
GPR model. Five functions, including DotProduct, White-
Kernel, RBF, ConstantKernel, and Matern, were used to
calculate the kernel functions. The kernel parameters were
optimized with the L-BFGS30 for each kernel function. The
best kernel was selected from 11 different kernels using cross-
validation (CV).31 This process involved dividing the data set
into several groups, building models for all but one group, and
estimating the excluded samples. The CV process was repeated
for each group, and the estimates were computed. The actual
and estimated values were then evaluated using performance
indicators to select appropriate parameters for model building.
In this study, the scikit-learn module “sklearn.model_selec-
tion.cross_val_predict”32 was used for CV with a holdout
number of 5. The sklearn.metrics.r2_score33 module was used
to calculate the performance measures, and the kernel function
with the largest determinant coefficient R2 after cross
validation was selected.

We also note that in our study, y represents the logarithm of
hole reorganization energy multiplied by −1. The negative sign
was used to minimize the hole reorganization energy, whereas
the GPR is designed to maximize the target y.
BO. In this study, we applied BO,20,21 which utilizes the

variance of the estimates from GPR to transform them into an
AF. We used three AFs, including PI,23 EI,23 and MI.24 The
BO method identifies the next candidate experiment as the one
with a higher AF value of the AF compared to the calculated
value. New molecules that are not included in the data set can
be proposed, as well as extrapolation in x can be performed, by
applying BO. The source code of BO is available at DCEKit.34

PI. The PI23 is calculated as the probability of exceeding the
objective variable in the existing sample, using the following
function:

l
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where u(xnew) represents the est imated y value
(i.e., -log(reorganization energy)) obtained GPR, and
σ2(xnew) is its variance. Additionally, the term ε is defined as
the product of relaxation and the standard deviation of the
reorganization energy of the model data, with relaxation set to
0.01.
EI. The EI23 represents the expected increase in the

maximum y value within the existing sample. Assuming that
the EI value for a new sample xnew is denoted as EI(xnew), it can
be expressed by the following equation:

l
moo
noo
|
}oo
~oo

EI x x Y PI x

x x

Y x

( ) ( ( ) ) ( )

1

2 ( )
exp

1
2 ( )

( ( ))

new new max new

new new

new

2
2 2

max
2

=

+

+
(10)

It is noteworthy that ε in EI is the same as that in PI.
MI. The MI24 method selects the maximum sum of

prediction and variance and updates this variance with each
new experiment. Assuming that the value of MI in a new
sample xnew is denoted as MI(xnew), it can be expressed by the
following equation:

MI x x x( ) ( ) ( )new new
i

i new
i= + (11)

( )x x( ) ( )i new
i

new
i

i i
2

1 1= + (12)

x( )i i new
i

1
2 ( )= + (13)

where γ0 = 0, α = log(2/δ), δ = 10−6, and σ2(x(i)new) = 0. It is
noteworthy that γi is always set to 0.
Combination of AF. In this study, BO was applied by

calculating various combinations of the AFs, as follows.
Using only PI to search for next molecules.
Using only EI to search for next molecules.
Using only MI to search for next molecules.
Alternating between EI and MI in the molecular search
process. Specifically, after searching for candidate
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molecules using EI, MI was used, and this process was
repeated using EI. (EI-MI)
Alternating among PI, EI, and MI in the molecular
search process. Initially, PI was used to search for
candidate molecules, followed by EI and then MI. This
cycle was repeated multiple times. (PI-EI-MI)

Protocol of Optimization. From the quarter-million data
set, we first selected molecules exhibiting high hole
reorganization energies. We then applied BO to search for
molecules with lower reorganization energies. The maximum
number of BO cycles required to search for molecules with
lower reorganization energy was fixed at 100, and we examined
whether such molecules could be explored within the given
number of cycles. The details of the BO protocol are
summarized as follows:

The quarter-million values of y (i.e., -log(reorganization
energy)) were sorted in descending order. Subsequently,
100 molecules were randomly selected from the bottom
10% of these values to build the initial model.
A GPR model using these 100 selected molecules was
built.
Variances were calculated by applying the GPR model to
molecules other than those used to build the model.
AFs were calculated with predictions and their variances.

A molecule with the largest AF was added to the
molecules for model building.
Steps 2−5 were repeated 100 times, and a molecule with
the maximum y value was selected.
Step 6 was repeated 100 times, and a histogram of the
maximum values was created.

■ RESULTS AND DISCUSSION
One hundred cycles of 100 BO calculations were performed
for each AF using the RDKit descriptor. Figure 2 shows a
histogram of the minimum values of the hole reorganization
energy for 100 trials of BO with different initial samples. Figure
3 shows examples of the hole reorganization energy per cycle
number in BO. The black points represent the initial data set
before the BO calculations, while the blue points represent the
molecules selected for the BO calculations. When PI was used,
the molecule with the lowest value (−2.90 = log (0.0548 eV))
of reorganization energy was identified. However, as shown in
Figures 2 and 3a,b, the search for molecules with low
reorganization energies was highly dependent on the selection
of the initial samples; hence, a stable search for molecules with
low reorganization energies was not possible. When EI was
used, the molecule with the lowest reorganization energy was
identified; however, the histogram in Figure 2b and the scatter

Figure 2. Histograms of the minimum values of the logarithm of hole reorganization energy (in eV) for 100 BO trials with different initial samples
(RDKit), obtained using different AFs and their combinations: (a) PI, (b) EI, (c) MI, (d) EI-MI, and (e) EI-MI-PI. The base of the logarithm is
10.
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plots in Figure 3c,d indicate that only a limited number of
molecules with low reorganization energies were identified.
When MI was used, the molecules with the lowest
reorganization energy were identified. Figures 2c and 3e,f
show that while some samples yielded low values, some initial

samples were not explored at all. This suggests that the
effectiveness of the search for molecules with low reorganiza-
tion energies is highly influenced by the selection of the initial
samples. Therefore, a stable search for molecules with low
reorganization energies cannot be conducted using MI. When

Figure 3. Examples of hole reorganization energy per cycle number in BO (RDKit) performed using different AFs and their combinations: (a,b) PI,
(c,d) EI, (e,f) MI, (g,h) EI-MI, and (i,j) EI-MI-PI. The black points indicate the initial data set before the BO calculations, while the blue points
indicate the molecules selected in BO.
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EI and MI were used alternately to select the next molecules in
the BO, the combination successfully identified the molecule
with the lowest reorganization energy. The histogram in Figure
2d shows that the frequency increases as the reorganization
energy decreases. Although BO did not consistently select
molecules with low reorganization energies, 100 BO trials
resulted in the selection of molecules with reorganization
energies close to the lowest value at least twice. The above
results indicate that when EI and MI are used alternately,
molecules with low reorganization energies can be stably
selected. When BO was performed by alternating between EI,
MI, and PI, the combination succeeded in identifying the
molecule with the lowest reorganization energy. Figure 3i
shows that the selection of molecules with high reorganization
energies was minimized, whereas a higher number of molecules
with low reorganization energies were selected compared to
the combination of EI and MI, as shown in Figure 3g,h. In
addition, even in instances where molecules with lower
reorientation energies were not immediately identified, as
shown in Figure 3j, the reorientation energy values tended to
decrease as the search progressed. From the above results, it
can be concluded that EI, MI, and PI should be used
alternately for the stable selection of molecules with low
reorganization energies.
In addition, 100 cycles of 100 BO calculations were

performed for each AF using Mordred descriptors. Figure 4

shows a histogram of the minimum values of the hole
reorganization energy for 100 BO trials with different initial
samples. Figure 5 shows examples of the hole reorganization
energy per cycle number in BO. The black points represent the
initial data set before the BO calculations, while the blue points
represent the molecules selected for the BO calculations. Using
PI, the molecule with the lowest organization energy was
identified; however, the histograms in Figures 4a and 5a,b
show that the search for molecules with low reorganization
energies was highly dependent on the selection of the initial
samples. Consequently, performing a stable search for
molecules with low reorganization energies using this AF was
not feasible. The molecule with the lowest reorganization
energy was also identified using EI. However, results in Figure
5c,d show that the AF tends to select molecules with high
values of reorganization energy, and molecules with low
reorganization energies could only be selected for a limited
number of trials. Thus, EI may not be suitable for performing
stable searches of molecules with low reorganization energies
because it mostly identifies molecules with high reorganization
energies. Further, MI also successfully identified molecules
with the lowest reorganization energy. The histogram in Figure
4c shows an increasing frequency trend toward lower
reorganization energies. Figure 5e,f shows that some initial
samples could not be searched for molecules with low
reorganization energies; however, most of the initial samples

Figure 4. Histograms of the minimum values of hole reorganization energy for 100 BO trials with different initial samples (Mordred), obtained
using different AFs and their combinations: (a) PI, (b) EI, (c) MI, (d) EI-MI, and (e) EI-MI-PI. The base of the logarithm is 10.
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succeeded in continuously searching for molecules with low
reorganization energies. These observations indicate that MI
can stably search for molecules with low reorganization
energies. When EI and MI were alternately used for selection,
molecules with the lowest reorganization energies were

identified. The histogram in Figure 4d shows that the
frequency increased with decreasing reorganization energy,
although the frequency at the lowest reorganization energy was
lower than that in MI. Figure 5g,h shows that molecules with
higher reorganization energies tended to be selected over those

Figure 5. Examples of hole reorganization energy per cycle number in BO (Mordred) performed using different AFs and their combinations: (a,b)
PI, (c,d) EI, (e,f) MI, (g,h) EI-MI, and (i,j) EI-MI-P. The black points represent the initial data set before the BO calculations, while the blue points
represent the molecules selected in BO.
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with MI; however, molecules with lower reorganization
energies were always searched after 100 BO cycles. Thus,
when used alternately, EI was able to stably select molecules
with low reorganization energies. The selection of the BO
using EI, MI, and PI allowed us to identify the molecule with
the lowest reorganization energy. Figure 4e shows that the
frequency increased with decreasing reorganization energy,
although the frequency for the lowest reorganization energy
range was lower than that when MI was applied. Figure 5i,j
shows that molecules with lower reorganization energies can
be selected, suppressing the selection of molecules with higher
reorganization energies compared to EI and MI when used
alternately. Thus, EI, MI, and PI can be alternately used to
select molecules with low reorganization energies.
A total of 100 cycles of 100 BO calculations were performed

for each AF using the Morgan fingerprint descriptors. Figure 6
shows a histogram of the minimum values of the hole
reorganization energy for 100 BO trials with different initial
samples. Additionally, Figure 7 shows examples of the hole
reorganization energy per cycle number in BO. The black
points represent the initial data set before the BO calculations,
while the blue points represent the molecules selected in BO.
Using PI, the molecule with the lowest reorganization energy
could not be identified. Figure 6a shows that the selection was
not affected by the choice of initial sample; however, the search

for molecules with low reorganization energies was un-
successful. Figure 7a,b shows that most of the initial samples
stably selected molecules with low reorganization energies;
however, there were some initial samples in which the selection
of BO did not proceed. These observations indicate that PI
stably selected molecules with low reorganization energies,
although it failed to identify the molecule with the lowest
reorganization energy. Figure 6b shows that using EI,
molecules with low reorganization energies in almost all initial
samples were identified. Figure 7c,d shows that molecules with
the lowest reorganization energy were identified; however, the
search was not as stable, as it frequently selected molecules
with reorganization energy values similar to those of the initial
samples. Thus, EI can identify molecules with the lowest
reorganization energy but not in a stable manner. When MI
was used, molecules with the lowest reorganization energy
were obtained. Figure 6c shows that the selection progressed in
a stable manner in all initial samples; however, molecules with
reorganization energies close to the lowest were not effectively
selected. Figure 7(e) and (f) show that most of the initial
samples consisted of stably selected molecules with low
reorganization energies; however, there were some initial
samples in which the BO selection did not progress effectively.
Thus, while MI could reliably search for molecules with low
reorganization energies, its effectiveness is dependent on the

Figure 6. Histograms of the minimum values of hole reorganization energy for 100 BO trials with different initial samples (Morgan fingerprint),
obtained using different AFs and their combinations: (a) PI, (b) EI, (c) MI, (d) EI-MI, and (e) EI-MI-PI. The base of the logarithm is 10.
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choice of initial samples. When alternating between EI and MI
for selections, molecules with the lowest reorganization energy
were obtained. Figure 6d shows that, compared to MI, the
combination of EI and MI can identify molecules with the
lowest reorganization energy more efficiently, and the
frequency increases as the reorganization energy decreases.
Figure 7g,h shows that compared to MI, the combination of EI
and MI selected molecules with high reorganization energies;
however, molecules with low reorganization energies were
always explored after 100 BO cycles. Thus, alternating between

EI and MI effectively enabled stable exploration of molecules
with low reorganization energies. When EI, MI, and PI were
alternately used for selection, molecules with the lowest
reorganization energy were selected. In the case of alternating
EI, MI, and PI, the frequency increased with decreasing
reorganization energy, as shown in Figure 6e. However,
compared to EI-MI, the combination of EI, MI, and PI did not
identify molecules with the lowest reorganization energy as
effectively. Figure 7i,j illustrates that the combinations of EI,

Figure 7. Examples of hole reorganization energy per cycle number in BO (Morgan fingerprint) performed using different AFs and their
combinations: (a,b) PI, (c,d) EI, (e,f) MI, (g,h) EI-MI, and (i,j) EI-MI-P. The black points represent the initial data set before the BO calculations,
while the blue points represent the molecules selected in BO.
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MI, and PI identified molecules with low reorganization
energies.
When using the RDKit descriptor, AFs differed significantly

in their ability to search for molecules with lower
reorganization energies. Without using the combinations of
the AFs, BO did not consistently locate molecules with low
reorganization energies. However, when the combinations of
the AFs were used, the search for molecules with low
reorganization energies progressed. When the Mordred
descriptor was used, BO without AF combination was effective
in consistently searching for molecules with low reorganization
energies or those with the lowest reorganization energy.
Combining AFs also allowed for the stable identification of
molecules with low reorganization energies. When using the
Morgan fingerprint, BO without AF combinations successfully
identified molecules with low reorganization energies or those
with the lowest reorganization energies. When the AF
combinations were used, the search for molecules with low
reorganization energies remained stable.
When using PI, it was challenging to identify molecules with

reorganization energy logarithms in the range of −1.3 to −1.2
eV. Nevertheless, it was still possible to identify molecules with
the lowest reorganization energy. Using EI, stable identification
of molecules with low reorganization energies was not
achieved; however, it was possible to search for molecules
with the lowest reorganization energies. Using MI, molecules
with the lowest reorganization energy were successfully
identified, and depending on the descriptor selected, the
search for lower reorganization energies could be conducted.
When alternating between EI and MI, molecules with
reorganization energies close to the minimum were identified
in a stable manner. In contrast, when EI, MI, and PI were used
together, while it was less effective in identifying molecules
with reorganization energies close to the minimum compared
to using EI and MI alone, it still allowed for a more stable
selection of molecules with lower reorganization energies.
As described above, the data set varied significantly with the

use of the three descriptors; however, in all cases, combining
the AFs led to a more stable identification of molecules with
lower reorganization energies. These results suggest that the
combined use of AF is effective for search tasks.

■ CONCLUSION
This study uses BO to identify molecules with a low hole
reorganization energy, which dominates the carrier mobility of
organic semiconductors. BO was performed using RDKit,
Mordred, and Morgan fingerprints to quantify the molecules
and combine PI, EI, and MI as AFs. One hundred different sets
of initial data sets were prepared, and searches to minimize the
reorganization energy were conducted for each initial data set
and descriptor set, comparing individual AFs and their
combinations for BO. The use of AF alone did not enable
stable searches for molecules with low reorganization energy
for all descriptors. However, combining acquisition functions
during Bayesian optimization resulted in more stable searches
for molecules with lower reorganization energies compared to
the initial data set and increased the likelihood of identifying
molecules with the lowest reorganization energy. These results
suggest that the AFs should be combined when performing BO
for the reorientation energy. The combinations of different AFs
enhance the diversity of the selected molecules by incorporat-
ing diverse selection criteria. Although PI, EI, and MI were
used in this study, other AFs such as upper and lower

confidence bounds can be also combined with them to further
improve the performance of BO, which should be tested. The
proposed BO method is expected to accelerate the develop-
ment of not only organic semiconductors but also other
materials.
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