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Publique-Hôpitaux de Paris, Paris, France, 4 Paris-Descartes Sorbonne-Paris-Cité University, Paris, France,
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Abstract

Purpose

This study investigated relationships between neuroblastomas (NBs) imaging phenotypes,

tumor genomic profile and patient outcome.

Patients and methods

This IRB-approved retrospective observational study included 133 NB patients (73 M, 60 F;

median age 15 months, range 0–151) treated in a single institution between 1998 and 2012.

A consensus review of imaging (CT-scan, MRI) categorized tumors according to both the

primarily involved compartment (i.e., neck, chest, abdomen or pelvis) and the sympathetic

anatomical structure the tumors rose from (i.e., cervical, paravertebral or periarterial chains,

or adrenal gland). Tumor shape, volume and image-defined surgical risk factors (IDRFs) at

diagnosis were recorded. Genomic profiles were assessed using array-based comparative

genomic hybridization and divided into three groups: “numerical-only chromosome alter-

ations” (NCA), “segmental chromosome alterations” (SCA) and “MYCN amplification”

(MNA). Statistical analyses included Kruskal–Wallis, Chi2 and Fisher’s exact tests and the

Kaplan-Meier method with log-rank tests and Cox model for univariate and multivariate sur-

vival analyses.
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Results

A significant association between the sympathetic structure origin of tumors and genomic

profiles was demonstrated. NBs arising from cervical sympathetic chains were all NCA.

Paravertebral NBs were NCA or SCA in 75% and 25%, respectively and none were MNA.

Periarterial NBs were NCA, SCA or MNA in 33%, 56% and 11%, respectively. Adrenal NBs

were NCA, SCA or MNA in 16%, 36% and 48%, respectively. Among MNA NBs, 92% origi-

nated from the adrenal gland. The sympathetic anatomical classification was significantly

better correlated to overall survival than the compartmental classification (P < .0003). The

tumor volume of MNA NBs was significantly higher than NCA or SCA NBs (P < .0001).

Patients with initial volume less than 160 mL had significantly better overall survival (P <
.009). A “single mass” pattern was significantly more frequent in NCA NBs (P = .0003). The

number of IDRFs was significantly higher in MNA NBs (P < .0001).

Conclusion

Imaging phenotypes of neuroblastomas, including tumor origin along the sympathetic sys-

tem, correlate with tumor genomic profile and patient outcome.

Introduction

Neuroblastomas (NBs) are the most common extracranial solid tumors in children. NBs derive

from the sympathetic nervous system originating from neural crest cells. Therefore, these

tumors may theoretically arise from any migratory pathway [1, 2]. NBs mostly arise from the

abdomen (adrenal gland 48%, extra-adrenal retroperitoneum 25%), less frequently from the

chest (16%) and rarely from the pelvis (3%) or the neck (3%)[3]. NBs are associated with

remarkable biological heterogeneity and outcome. Some tumors undergo spontaneous regres-

sion, some are cured by surgery alone or after chemo-reduction, while other exhibit extremely

aggressive behavior.

Among prognostic factors previously identified, many are associated with each other and

define pretreatment risk groups[3]. Major prognostic factors are: the age at diagnosis (better

prognosis if younger than 18 months), the tumor stage (according to the International Neuro-

blastoma Staging System (INSS)[4] or the International Neuroblastoma Risk Grouping Staging

System (INRGSS)[5]), the pathology based on the International Neuroblastoma Pathology

Classification (INPC)[6–8], various biological factors [3], and somatic genetic abnormalities,

especially the amplification of the MYCN oncogene, which occurs in 20 to 25% of NBs[9].

Whole-genome DNA copy number analysis with array-based comparative genomic hybridiza-

tion (aCGH) provided further critical prognostic information, especially in patients without

MYCN amplification [10]. Tumors that present exclusively whole-chromosome copy number

variations are associated with excellent survival, but tumors with any type of segmental chro-

mosome alterations exhibit a high risk of relapse[11–13], which increases with the number of

alterations[14].

The anatomical location of the primary tumor, which can be assessed by imaging methods,

was also described as a prognostic factor [15–28]. However, the primary site was always

reported according to the anatomical compartment (e.g., neck, chest, abdomen or pelvis)

although NBs may arise from distinct sympathetic structures within a single compartment. A

sympathetic anatomical classification might be more relevant in terms of prognosis than a sim-

ple compartmental anatomical classification.

Radiogenomics of neuroblastomas

PLOS ONE | https://doi.org/10.1371/journal.pone.0185190 September 25, 2017 2 / 17

Soins); http://www.e-cancer.fr/, http://social-sante.

gouv.fr/ministere/organisation/directions/article/

dgos-direction-generale-de-l-offre-de-soins; PHRC

AOM 02014 and PHRC IC2007-09 (Direction

Générale de l’Offre de Soins); http://social-sante.

gouv.fr/ministere/organisation/directions/article/

dgos-direction-generale-de-l-offre-de-soins;

Institut National de la Santé et de la Recherche
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Imaging techniques (CT-scan, MRI) recommended at diagnosis for disease staging[5, 29]

allow identifying the tumor origin precisely, its volume, shape and its local extension and

might therefore represent a non-invasive method to get relevant prognostic information. To

the best of our knowledge, no study specifically investigated the relationships between imaging

patterns of NBs and survival or other prognostic factors, especially the genomic profile.

The present study therefore investigated relationships between the anatomical origin of

NBs along the sympathetic system, their imaging pattern, their genomic profile and patient

outcome. As a secondary objective, this study assessed the accuracy of imaging for the identifi-

cation of the primary tumor site compared to surgical and pathological findings.

Patients and methods

The Institut Curie Institutional Review Board approved this study. Written informed consent

was obtained from parents or guardians for inclusion in the clinical trials. Analysis of tumor

samples was performed according to the relevant national law on the protection of participants

in biomedical research. This retrospective observational study was conducted according to

STROBE guidelines.

Inclusion criteria

The following inclusion criteria were used: (1) patient age 18 years or younger at diagnosis, (2)

patient referred to our institution before 2013, (3) cytologically or histologically proven NB,

(4) frozen tumor material obtained at the time of diagnosis that enabled DNA extraction and

molecular analysis, (5) availability of DICOM (Digital Imaging and Communications in Medi-

cine) imaging data (i.e., CT scan or MRI) at diagnosis and during follow-up, (6) operative

report availability in cases of surgery, and (7) availability of pathological reports of material

obtained.

Our institutional database identified 203 eligible patients. DICOM data were missing for 56

patients, aCGH data for 11 patients and follow-up data for 3 patients. As a result, 133 patients

were included for analysis.

Clinical, surgical and pathological data

Clinical, surgical and pathological data was extracted from medical charts including surgical

and pathological reports. INPC classification (i.e., “favorable” or “unfavorable” subtypes)

derived from the pathological description at diagnosis, except when cellular material was

obtained using only fine-needle aspirates.

All patients were treated using previous or ongoing protocols or trials of the International

Society of Paediatric Oncology European Neuroblastoma (SIOPEN) (NCT 01704716, 00025

428, 00025597, 00025649, 00025623, 00025610; details available in S1 File): 18 patients with

localized disease had surgical removal of their tumor only, 86 patients were operated after

neoadjuvant chemotherapy, and 27 patients were treated with chemotherapy without further

surgery (either no local treatment or radiation therapy in case of high-risk tumors, i.e. INSS-

stage 4 or INSS-stage 2–4 MNA tumors). Two patients had only clinical and radiological fol-

low-up without any treatment.

Imaging data analyses

Imaging data was extracted from the Picture Archiving and Communicating System (PACS)

of our institution (V 11.3, Carestream Health, Vaughan, Canada) and centrally reviewed in

consensus by one senior pediatric radiologist (HJB, 20 years’ experience), two senior (SS, PPC,
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20 and 15 years’ experience) and one fellow (TB, 3 years’ experience) pediatric surgeons who

were blinded to any other data. Data included 207 CT scans and 62 MRI (24 patients had both

examinations). Due to the retrospective nature of the study, images used for assessing tumor

location and size were either enhanced-CT images, T1-weighted images (WI), T2-WI or

contrast-enhanced T1-WI. Each tumor was classified as originating from one of the four ana-

tomical compartments (i.e., neck, chest, abdomen or pelvis) and from one of the following

sympathetic structure groups (according to the international Terminologia Anatomica): (1)

cervical sympathetic chains (i.e., superior, middle and inferior cervical and cervicothoracic

ganglia), (2) paravertebral sympathetic chains (i.e., thoracic, lumbar and sacral ganglia), (3)

periarterial sympathetic pathways (i.e., thoracic aortic, abdominal aortic and celiac plexus, aor-

ticorenal ganglia, superior and inferior mesenteric, superior hypogastric and iliac plexus), and

(4) adrenal glands (Fig 1). NBs originating from lumbar ganglia and iliac plexus were classified

as originating from the abdomen, and tumors originating from the superior hypogastric plexus

(i.e., in the division angle of the aorta at L5 level) were classified in the pelvis. Tumor origin

according to sympathetic anatomy was first assessed on imaging at diagnosis only and then

compared to imaging after chemo-reduction and surgical and pathological data. The primary

site was finally allocated by consensus on the basis of all available data.

Tumor volume at diagnosis was calculated from measurements in three perpendicular

dimensions based on an elliptical estimate (volume = length x width x thickness x ᴨ/6). When

preoperative chemo-reduction was used, preoperative tumor volumes and tumor volume

decrease were calculated (Tumor volume decrease (%) = 100 x [1—Residual Volume / Initial

Volume]). Tumor shape was classified as “single mass” or “multiple confluent masses”. Image-

Fig 1. Radiogenomics classification of neuroblastomas according to anatomical origin. Neuro-

blastomas may be classified based on the anatomical compartment (i.e., neck, chest, abdomen or pelvis) or

according to the sympathetic structure the tumors arise from, i.e., (1) the cervical sympathetic chains (i.e.,

including the superior, middle and inferior cervical and the cervicothoracic ganglia (g.)); (2) the paravertebral

(PV) sympathetic chains (i.e., including all thoracic, lumbar and sacral ganglia); (3) the periarterial (PA)

sympathetic pathways (i.e., including the thoracic aortic, abdominal aortic and celiac plexus (pl.)), the

aorticorenal ganglia, and the superior and inferior mesenteric, superior hypogastric and iliac plexus); and (4)

the adrenal glands. For each compartment or sympathetic group, the pie charts show the distribution of the

genomic profile of the tumors, i.e., numerical-only chromosome alterations (NCA), segmental chromosome

alterations (SCA) or MYCN amplification (MNA).

https://doi.org/10.1371/journal.pone.0185190.g001
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defined surgical risk factors (IDRFs) were assessed according to the published list and defini-

tion[29].

Genetic analyses

The following genetic analyses were included: (1) the MYCN status assessed using fluorescence

in situ hybridization (FISH) and an MYCN probe (Zymed Laboratories, San Francisco, CA,

USA) on frozen sections for tumor fragments or cytogenetic preparations of fine-needle aspi-

rates according to recommendations of the INRG Biology Committee[30], and (2) aCGH

performed on BAC/PAC or NimbleGen arrays, as previously described[11, 14]. DNA was

extracted from tumor specimens that were obtained at diagnosis and exhibited a tumor cellu-

larity higher than 50%. The results were analyzed on the VAMP site using the GLAD algorithm

and submitted to visual inspection[31, 32]. Three genomic types were defined: “numerical-

only chromosomal alterations” (NCA) type, which only included numerical changes in whole

chromosomes without any detectable structural rearrangement; “segmental chromosomal

alterations” (SCA) type, which was characterized by any partial chromosome imbalances,

excluding MYCN amplification, with or without associated numerical aberrations; and

“MYCN-amplified” type (MNA), which exhibited MYCN amplification, with or without seg-

mental or numerical aberrations[11].

Statistical analysis

Comparisons between genomic profiles and continuous variables were performed using the

non-parametric Kruskal–Wallis test. Comparisons between genomic profiles and discrete vari-

ables were performed using the Chi2 test or Fisher’s exact test, if necessary. Event-free survival

(EFS) was defined as the time from diagnosis to first event (local or metastatic failure, or

death). Patients with no events were censored at the time of last follow-up. Overall survival

(OS) was defined as the time from diagnosis to death from any cause or last follow-up. Survival

curves were analyzed using the Kaplan-Meier method and results were compared using the

log-rank test. The 5-year rates were expressed together with their standard error (SE). For each

variable, relative risks were estimated using a univariate Cox model and expressed with their

95% confidence interval. Relationships between anatomical origin and imaging pattern of neu-

roblastomas and survival were assessed by a multivariate analysis using a Cox model with a

forward procedure. Multivariate analysis was performed among variables demonstrating sig-

nificance by univariate analysis. Hence, the relationship between survival and the two anatom-

ical classifications (compartmental and sympathetic) and tumor volume was assessed on OS

only. P-values less than .05 were considered statistically significant. The anonymized data set

necessary to replicate our study findings are at the European Genome-phenome Archive

(study accession number: EGAS00001002651).

Results

Study cohort characteristics and relationships between patient age,

INPC, stage and genomic profile

A total of 133 patients (73 males, 60 females) treated between 1998 and 2012 were included.

Median age at diagnosis was 15 months (range, 0–151) (Table 1). Fifty-nine percent of the chil-

dren were younger than 18 months at diagnosis. Fifty-one percent of the children had meta-

static disease (63 children stage 4, 5 children stage 4S). Univariate analyses demonstrated that

patient age, INPC and stage significantly correlated with the genomic profile, i.e., a NCA
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profile being observed more frequently in younger children, in NBs with favorable INPC and

in lower stage disease (Table 1).

Relationships between tumor origin, genomic profile and outcome

Both anatomical classifications, i.e., the compartmental one and the sympathetic one, signifi-

cantly correlated with the genomic profile (Table 2, Fig 1).

According to the compartmental anatomical classification, all tumors arising from the neck

or pelvis were NCA NBs. In the chest, 62% were NCA, 33% SCA and only 5% MNA. Abdomi-

nal tumors were more widely distributed with 21% NCA, 42% SCA and 37% MNA. Eighty-

five percent of SCA and 97% of MNA NBs were observed in the abdomen.

With regards to their sympathetic structure origin, all tumors arising from the cervical sym-

pathetic chains were NCA. Among paravertebral tumors, 75% were NCA, 25% SCA and none

MNA. Among periarterial tumors, 56% were SCA, 33% NCA and 11% were MNA. The distri-

bution of genomic profiles was wider among adrenal tumors: 16% were NCA, 36% SCA and

48% MNA. Ninety-two percent of MNA NBs originated from the adrenal gland.

Within a single anatomic compartment, the sympathetic chain or structure from which

NBs originated allowed differentiation of tumors with distinct biological features. Ninety per-

cent (19/21) of chest tumors arose from the paravertebral chains (Table 2, Fig 2A and 2B) and

these tumors were mostly NCA (68%) or SCA (32%), whereas the two tumors that originated

from the mediastinal periarterial sympathetic pathways were SCA and MNA, respectively (Fig

2D and 2E). Within the abdomen, 73% (69/95) of NBs were of adrenal origin (Fig 3A), 23%

(22/95) were periarterial (27% NCA, 64% SCA and 9% NMA) (Fig 3B) and 4% (4/95) were

lumbar paravertebral (3 NCA and 1 SCA) (Fig 3C). Among pelvic tumors, 62.5% (5/8) were

presacral paravertebral NBs and 37.5% (3/8) periarterial (superior hypogastric plexus) and all

were NCA NBs.

The anatomical origin of NBs also significantly related to outcome (Table 3, Fig 4). The

compartmental classification revealed that abdominal NBs exhibited a significantly lower

Table 1. Study cohort characteristics and relationships between patient age, INPC, stage and genomic profile.

Genomic profile(1) NCA SCA MNA Total P-value

N = 50 47 36 133

Age at diagnosis (months) � 18 m 41 26 12 79 < .0001

> 18 m 9 21 24 54

Median age (range) 6 (0–151) 16 (0–81) 25 (8–148) .0023

INPC(2) Favorable 24 13 1 38 < .0001

Unfavorable 6 17 13 36

INSS Stage 1 11 3 0 14 < .0001

2 11 6 1 18

3 18 9 6 33

4 8 26 29 63

4S 2 3 0 5

INRG SS Stage L1 5 2 0 7 < .0001

L2 35 16 7 58

M 8 26 29 63

MS 2 3 0 5

(1) NCA: numerical-only chromosome alterations; SCA: segmental chromosome alterations; MNA: MYCN-amplification.

(2) Available data for only 74 of the 133 patients.

https://doi.org/10.1371/journal.pone.0185190.t001
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5-year OS and a trend of lower 5-year EFS than extra-abdominal primaries. Survival was not

significantly different between neck, chest and pelvic tumors. The sympathetic classification

demonstrated that adrenal NBs had a significantly lower 5-year OS (and a trend of lower

5-year EFS) compared to extra-adrenal primary tumors. EFS was not significantly different

among the four sympathetic origin groups (P = .113). No significant EFS difference was

observed between cervical and paravertebral NBs (P > .87) on one hand, neither between

adrenal and periarterial NBs (P > .90) on the other hand. However, pooled NBs originating

from adrenal gland or periarterial sympathetic chains had significantly lower EFS that pooled

NBs originating from cervical or paravertebral chains (P< .0015). Multivariate analysis dem-

onstrated that the sympathetic anatomic classification was significantly more relevant than the

compartmental one for the prediction of OS (P< .0003).

Contribution of initial imaging to the classification of tumor origin

according to sympathetic system anatomy

Initial imaging was judged relevant to allocate the sympathetic origin of the primary in 77%

(102/133) of cases. Review of imaging after chemotherapy (Fig 2C) modified the interpretation

of tumor origin in 14% of cases. Surgical and pathological reports provided additional relevant

anatomical details that were not depicted by imaging at diagnosis in 11% and 12% of cases,

respectively. The mean tumor volume of patients for whom post-chemotherapy imaging, sur-

gical or pathological reports provided additional information was significantly higher than

that of patients with anatomical location that was correctly judged on initial imaging (362 mL

Table 2. Relationship between anatomical primary tumor location (compartment and sympathetic origin) of neuroblastomas and their genomic

profile.

Genomic profile(1) NCA SCA MNA Total P-value

N = 50 47 36 133

Anatomic compartment Neck 9 0 0 9 < .0001

Chest 13 7 1 21

Abdomen 20 40 35 95

Pelvis 8 0 0 8

Sympathetic origin Cervical 9 0 0 9 < .0001

upper cervical 4 0 0 4

stellate ganglion 5 0 0 5

Paravertebral 21 7 0 28

upper chest 8 5 0 13

lower chest 5 1 0 6

lumbar 3 1 0 4

presacral 5 0 0 5

Periarterial 9 15 3 27

mediastinal 0 1 1 2

celiac 0 4 0 4

pre-renal 4 6 1 11

median subrenal 1 2 1 4

Zuckerkandl organ 0 1 0 1

sup.hypog. plexus 3 0 0 3

iliac 1 1 0 2

Adrenal gland 11 25 33 69

(1) NCA: numerical-only chromosome alterations; SCA: segmental chromosome alterations; MNA: MYCN amplification.

https://doi.org/10.1371/journal.pone.0185190.t002
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Fig 2. Imaging phenotypes of chest neuroblastomas. (a, b, c) Newborn with L2-stage left posterior

mediastinal NCA neuroblastoma. MRI at diagnosis (a, b: sagittal and axial T2-weighted sequences). The

primary tumor is a unique well-delineated mass (*) with focal contact with the thoracic aorta (arrowhead) and

intra-spinal extension (arrow). Follow-up MRI 3 months later (c) after neoadjuvant chemotherapy (2 courses

of cyclophosphamide-vincristine and 2 courses of etoposide-carboplatin) shows the tumor residue precisely

located at the costo-vertebral junction, i.e., a paravertebral sympathetic chain location. (d, e) 9-year-old girl

Radiogenomics of neuroblastomas
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versus 223 mL, P = .0087). The anatomical compartment in the former group was mainly the

abdomen (25/31), and the sympathetic origin was primarily the adrenal gland (14/31) or peri-

arterial pathways (10/31).

Relationships between tumor imaging pattern (IDRFs, shape, volume,

tumor volume decrease), genomic profiles and outcome

The occurrence of any IDRF was not significantly related to the genomic profile. However, the

median number of IDRFs among the 122 IDRF-positive tumors was significantly higher in

MNA NBs (Table 4). The 5-year OS and EFS rates of IDRF-negative patients were higher than

IDRF-positive patients but these differences were not significant (Table 3).

The “single mass” pattern was significantly more frequent than the “multiple confluent

masses” pattern in NCA (84%) compared to SCA and MNA NBs (55% and 44%, respectively).

Mean tumor largest diameter and volume at diagnosis were 8.5 cm and 255 mL, respec-

tively. A tumor volume of 160 mL (median volume) or less at diagnosis was significantly asso-

ciated with better OS, but not significantly better EFS. Initial tumor volume of MNA NBs was

significantly higher than NCA and SCA NBs. The tumor volume decrease after neoadjuvant

chemotherapy was significantly higher in MNA tumors but was not significantly associated

with survival.

Discussion

NBs in a single anatomical compartment may derive from distinct sympathetic structures

which are associated with distinct genomic profiles. Therefore, the precise anatomical origin

of the primary tumor is of special interest. We described statistically significant relationships

between the sympathetic origin of tumors and their genomic profile and outcome. Our data

also confirmed that initial imaging efficiently depicted the sympathetic origin of the tumor

compared to surgical and pathological findings, except for very large abdominal masses for

which post-chemotherapy imaging was more accurate, i.e., when the tumor shrinks on its orig-

inal sympathetic structure.

It has long been suggested that tumor behavior may differ based on the primary tumor loca-

tion and adrenal NBs are known to be associated with poorer prognosis[33]. Other studies

enhanced this concept by comparing the primary tumor site with patient survival rates or

other prognostic factors, such as tumor stage, histology and serum markers[17, 27]. Chest NBs

are associated with better outcome among the extra-abdominal sites[16, 23]. However, multi-

variate analysis in a large retrospective study[20] did not identify the chest location as an inde-

pendent prognostic factor. Cervical and pelvic NBs are also associated with better prognosis,

although these results were based on smaller series[15, 18, 19, 22, 24, 25]. The INRG recently

confirmed that adrenal tumors were more likely than non-adrenal tumors to have MNA, and

thoracic tumors were less likely than non-thoracic tumors to have MNA[28]. Our whole-

genome DNA copy number analysis allowed the identification of significant relationships

between cervical and pelvic locations and NCA profile, and between chest location and non-

MNA NBs. It also confirmed the strong association between abdominal location and MNA

profile and poorer outcome.

with M-stage mediastinal SCA neuroblastoma. Enhanced CT scan at diagnosis (axial and coronal views).

The primary tumor (*) is ill-defined and diffusely infiltrates the posterior mediastinum, pleura and chest wall

(arrows), crosses the midline and encases the thoracic aorta (arrowhead). The presumed origins are the

mediastinal sympathetic fibers surrounding the descending aorta.

https://doi.org/10.1371/journal.pone.0185190.g002
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Fig 3. Imaging phenotypes of abdominal neuroblastomas. (a) 18-month-old girl with M-stage right

adrenal MNA neuroblastoma. Enhanced CT scan at diagnosis. The primary tumor (*) is centered on the

right adrenal gland between the right kidney and the inferior vena cava (arrow) and extends medially in

contact with the aorta (arrowhead). (b) 12-month-old girl with M-stage retroperitoneal periarterial SCA

neuroblastoma. Enhanced CT scan at diagnosis. The primary tumor (*) is centered in the median

retroperitoneum around the aorta (arrowhead) and behind the inferior vena cava (arrow). (c) Newborn with

L2-stage lumbar dumbbell paravertebral NCA neuroblastoma. Axial T2-weighted MRI at diagnosis. The

primary tumor (*) is centered on the right paravertebral chain and invades the psoas and spinal muscles and

fills the spinal canal, compressing the spinal cord (dotted arrow). The tumor is totally separated from the

inferior vena cava (arrow) and the aorta (arrowhead).

https://doi.org/10.1371/journal.pone.0185190.g003
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By using a sympathetic anatomical classification for the first time instead of the classical

compartmental one, our study provided a better differentiation of outcome. This result is

explained by the occurrence of distinct genomic profiles within each compartment. The recog-

nition of a paravertebral sympathetic origin is notable because these tumors are not associated

with MNA type and mostly associated to the favorable NCA profile (75% in this series). Imag-

ing identifies paravertebral tumors as arising in the chest (“costo-vertebral” NB), abdomen

(“lumbar” tumors) or pelvis (“presacral” tumors), possibly associated with intra-spinal exten-

sion (“dumbbell” tumors). Imaging also identifies periarterial tumors, which are observed in

various compartments, primarily the abdomen around the aorta or its branches, and occasion-

ally in the pelvis (superior hypogastric plexus). In the chest, the use of the sympathetic classifi-

cation allows differentiation between periarterial mediastinal and paravertebral tumors.

Although more widely distributed, genomic profiles of periarterial NBs were less favorable

than those of paravertebral NBs, including 56% SCA and 11% MNA types. Finally, the adrenal

gland was the origin of most MNA NBs (92% in this series).

Together our data supports the hypothesis that genomic profiles and the aggressiveness of

NBs may be associated with distinct neural crest cell-derived elements. During embryogenesis,

neural crest cells emerge early in development and a defined region gives rise to precursor cells

that differentiate into the adrenal medulla and sympathetic ganglia[2]. The exact mechanisms

that lead to tumorigenesis are not fully determined. According to our data, it is remarkable that

the most distally (i.e., cervical and presacral) and dorsally (i.e., paravertebral) migrating cells are

mostly associated with the favorable NCA genomic profile, whereas adrenal and periarterial

tumors are more associated with the less favorable SCA and MNA profiles.

Table 3. Relationships between imaging phenotypes of neuroblastomas and outcome (univariate analysis).

N 5Y-EFS(1) ± SE RR(2)
95%CI P-value 5Y-OS(1) ± SE RR(3)

95%CI P-value

Anatomical compartment Neck 9 77.8 ± 13.9 2.22 [1.08–4.53](4) .17 88.9 ± 10.5 4.79 [1.47–15.64] (4) .037

Chest 21 74.7 ± 9.8 95 ± 4.9

Abdomen 95 52.1 ± 5.2 66.9 ± 4.9

Pelvis 8 75 ± 15.3 100

Sympathetic system origin Cervical 9 77.8 ± 13.9 1 .11 88.9 ± 10.5 1 .0016

Paravertebral 28 77.6 ± 8.1 0.90 [0.18–4.44] 100 0.31 [0.02–5.02]

Periarterial 27 51.9 ± 9.6 2.19 [0.49–9.72] 81.5 ± 7.5 1.75 [0.2–15.01]

Adrenal 69 51.4 ± 6.1 2.29 [0.55–9.57] 60.2 ± 6 4.29 [0.58–31.52]

IDRF No 11 72.7 ± 13.4 1 .37 90.9 ± 8.7 1 .21

Yes 122 57.3 ± 4.6 1.69 [0.53–5.41] 73.1 ± 4.1 3.35 [0.46–24.48]

Tumor Volume(5) � 160 mL 66 64 ± 6 1 .23 83.8 ± 4.7 1 .0088

> 160 mL 66 53.8 ± 6.2 1.39 [0.8–2.39] 64.9 ± 5.9 2.52 [1.23–5.14]

Tumor volume decrease � 50% 16 50 ± 12.5 1 [0.44–2.28] .58 87.5 ± 8.3 0.39 [0.00–1.32] .11

50–89% 53 59.6 ± 6.9 0.74 [0.4–1.37] 76.7 ± 5.9 0.53 [0.26–1.09]

� 90% 42 52.3 ± 7.7 1 59.3 ± 7.6 1

(1) EFS: event-free survival; OS: overall survival; SE: standard error. The mean follow-up of the cohort was 83 months (range, 1–175 mo). The 5-year EFS

and OS of the entire cohort were 58.6% (+/- 4.3%) and 74.6% (+/- 3.8%), respectively.

(2) RR: relative risk of events; CI: confidence interval.

(3) RR: relative risk of death.

(4) Relative risk has been estimated in abdominal tumours compared to cervical, thoracic or pelvic tumours, as no death occurred in patients with pelvic

tumours (RR could not be estimated by the Cox model for this subgroup of patients). For homogeneity of results, the same cluster has been done for

estimating EFS’ hazard ratio. However, Logrank tests compare survival and EFS of the 4 anatomical compartments.

(5) (1 missing data).

https://doi.org/10.1371/journal.pone.0185190.t003
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Our study also demonstrated links between tumor volume, shape, tumor volume decrease

and genomic profile and outcome. A small tumor volume was significantly associated with

non-MNA NBs and better survival. A single mass was more frequently associated with favor-

able NCA NBs than multiple confluent masses. The link between IDRFs and outcome remains

controversial in the literature[34, 35]. We did not identify a significant link with genomic pro-

file or outcome among localized tumors, but this result may be related to insufficient statistical

power. However, a high number of IDRFs was significantly related to the MNA type. Tumor

volume reduction during the early phase of induction chemotherapy in high-risk NBs was

reported as associated with a better outcome[36]. The tumor volume decrease in this study,

which included any risk-group NBs, was not associated with survival, and MNA NBs were

associated with a higher tumor volume decrease compared to SCA and NCA tumors.

We acknowledge that our study includes limitations. As the primary sympathetic structure

is usually distorted by the tumor, the exact origin of the tumor may be difficult to assess. The

Fig 4. Kaplan-Meier survival analysis according to anatomical classifications of primary tumors. Event-free

survival (EFS) and overall survival (OS) according to the anatomical compartment (a, b) and sympathetic system

origin (c, d) of the primary tumor.

https://doi.org/10.1371/journal.pone.0185190.g004
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reference anatomical location used in this study was based on imaging data obtained before

and after neoadjuvant chemotherapy, as well as on the macroscopic and microscopic descrip-

tions from the surgeons and pathologists. For adrenal tumors, the residual gland invaded by

tumor cells and surrounding the tumor was helpful in defining the tumor origin. For other

locations, we were only able to define the most probable sympathetic chain involved. Other

limitations of our work are the relatively small size of our cohort and the non-inclusion of

highly differentiated NBs, such as intermixed ganglioneuroblastomas and ganglioneuromas,

for which aCGH profiles are not contributive. Actually, the quality of aCGH interpretation is

directly correlated to tumor cells content and the assessment of the exact balance between

immature neuroblastic cells, ganglion cells, Schwann cells and stroma is challenging in mature

tumors. Very few samples reach the minimum threshold of tumor cells content required (i.e.,

50%). Actually, normal cells and subclonal populations tend to lessen the dynamic of genomic

profiles which can be totally flat. When aCGH fits all quality controls but shows a flat profile,

the result is tagged as “not contributive”. However, prognostic information is less useful for

those tumors that share a comparable good prognosis[37]. Functional imaging was not

addressed because of the retrospective nature of the study. Early results using diffusion-

weighted MRI suggested that neuroblastoma and ganglioneuroma / ganglioneuroblastoma

might be differentiated using this method[38]. Among metastatic NBs, 123-I-MIBG scan was

recently used to differentiate MNA from non-MNA NBs[39]. Functional imaging may actually

provide additional diagnostic and prognostic information in the future.

Conclusion

Imaging phenotypes of neuroblastomas correlate with tumor genomic profile and patient out-

come. If confirmed in a larger study cohort, the combination of anatomical data (sympathetic

structure origin) and morphological pattern (volume, shape, number of IDRFs) may represent

relevant prognostic criteria. In addition, our data potentially suggest distinct tumor genesis

pathways according to the neural crest cells origin that could contribute to a better under-

standing of the observed genomic profiles.
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Table 4. Relationships between IDRFs, tumor shape, initial volume, tumor volume decrease and genomic profile.

Genomic profile(1) NCA SCA MNA Total P-value

N = 50 47 36 133

IDRF 0 7 3 1 11 .19

+ 43 44 35 122

IDRF number(2) (median, range) 2 (1–8) 3 (1–13) 5 (1–14) < .0001

Tumor shape single mass 42 26 16 84 .0003

multiple confluent masses 8 21 20 49

Tumor volume at diagnosis median (range) in mL 69 (3–553) 151 (1–1040) 524 (14–1626) < .0001

Tumor volume decrease median (range) 79% (0%, 100%) 81% (39%, 99%) 96% (38%, 99%) < .0001

Number of patients treated with neoadjuvant chemotherapy 37 41 35

(1) NCA: numerical-only chromosome alterations; SCA: segmental chromosome alterations; MNA: MYCN-amplification.

(2) IDRF number among the 122 IDRF-positive NBs.

https://doi.org/10.1371/journal.pone.0185190.t004
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Conceptualization: Hervé J. Brisse, Thomas Blanc, Gudrun Schleiermacher, Véronique Mos-
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Supervision: Hervé J. Brisse, Isabelle Janoueix-Lerosey, Michel Peuchmaur, Jean Michon,

Olivier Delattre, Sabine Sarnacki.
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