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Abstract

There has been an increasing trend towards the use of complexity analysis in

quantifying neural activity measured by electroencephalography (EEG) sig-

nals. On top of revealing complex neuronal processes of the brain that may

not be possible with linear approaches, EEG complexity measures have also

demonstrated their potential as biomarkers of psychopathology such as depres-

sion and schizophrenia. Unfortunately, the opacity of algorithms and descrip-

tions originating from mathematical concepts have made it difficult to

understand what complexity is and how to draw consistent conclusions when

applied within psychology and neuropsychiatry research. In this review, we

provide an overview and entry-level explanation of existing EEG complexity

measures, which can be broadly categorized as measures of predictability and

regularity. We then synthesize complexity findings across different areas of

psychological science, namely, in consciousness research, mood and anxiety

disorders, schizophrenia, neurodevelopmental and neurodegenerative disor-

ders, as well as changes across the lifespan, while addressing some theoretical

and methodological issues underlying the discrepancies in the data. Finally,
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we present important considerations when choosing and interpreting these

metrics.
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1 | INTRODUCTION

Complexity science is an umbrella term encompassing
the study and characterization of ‘complex’ systems—
systems consisting of multiple interdependent compo-
nents that operate and interact at different levels
(Fernandez et al., 2013). Such complex systems typically
exhibit ‘chaotic’ behaviour. Rather than referring to a
state of disorder or confusion, a chaotic system is charac-
terized by unpredictability and irregularities, often the
result of a multitude of nonlinear interactions (Faure &
Korn, 2001). As such, small changes in the system can
lead to exponential changes (a property popularized as
the ‘butterfly effect’). For instance, the Earth’s atmo-
sphere at any point in time and space is the result of a
(virtually infinite) number of variables (e.g., temperature,
particle composition and cloud density) interacting
together, rendering any long-term projections challeng-
ing. Nevertheless, the overarching idea of complexity sci-
ence is not necessarily to establish methods for making
exact predictions, but rather to provide some insights into
the characterization of the long-term trajectory of a given
complex system (Faure & Korn, 2001). These principles
have its roots in a branch of mathematics called chaos
theory (see Thietart & Forgues, 1995 for an overview),
which has led several disciplines (e.g., environmental sci-
ence, meteorology and biology) to adopt the framework
of complex dynamical systems (Burggren &
Monticino, 2005; Kiel & Elliott, 1996).

The application of complexity science to nonlinear
systems, referred to as ‘nonlinear dynamics’, is an emerg-
ing approach gaining traction in the study of human
physiology and pathology (Ehlers, 1995). The theoretical
conceptualization of the human physiological system as
complex is warranted given that it is made up of multiple
constituent subsystems (be it anatomical components or
physiological processes) that are constantly interacting
between themselves at different levels (i.e., from mole-
cules to organs), as well as with the external environment
to maintain homeostasis (Faure & Korn, 2001). The
underlying assumptions are that physiological systems
are inherently complex (Golbeter, 1996) and that patho-
logical states (or ‘dynamical diseases’, see Mackey &
Glass, 1977) can be characterized by disrupted or abnor-
mal dynamic processes. One of the seminal works that

contributed to this perspective was Lipsitz and
Goldberger (1992), who demonstrated that aging and
disease are associated with a generalized loss of physio-
logical complexity due to functional and/or structural
alteration in the underlying organization of the physio-
logical system (see Vaillancourt & Newell, 2002 for a
schematic illustration of this idea).

2 | PHYSIOLOGICAL
COMPLEXITY

The applications of complexity science have been largely
centred on electrophysiological signals (Goldberger
et al., 1985), as they confer sufficiently high temporal res-
olution for sensitive characterization of the chaotic
nature of biological activity (Bornas, 2017; Fernandez
et al., 2013). These research efforts initially focused on
quantifying physical diseases, such as using the complex-
ity of heart rate variability (HRV, Pham et al., 2021) to
predict cardiovascular complications (Acharya
et al., 2015; Khandoker et al., 2009; Song et al., 2014;
Tang et al., 2015). Adherents of complexity science subse-
quently argued for its utility in the context of neuropsy-
chiatric diseases and mental states characterization
(An der Heiden, 2006; Tretter et al., 2011). While there
are mixed results regarding the direction of change in
neural complexity in diseased states, diminished com-
plexity has been typically observed in the physiological
states of individuals with psychopathological illnesses
(e.g., lower HRV complexity observed in depression,
Leistedt et al., 2011; Schulz et al., 2010; schizophrenia,
Bar et al., 2007; and bipolar disorders, Henry et al., 2010),
as well as in their associated symptoms (e.g., greater pre-
dictability in cognitive tasks, Paulus et al., 1996; mood
fluctuations, Gottschalk et al., 1995; and psychotic symp-
toms, Paulus & Braff, 2003).

Propelled by mathematical innovations facilitating
complexity analyses for multichannel signals
(i.e., magneto/electroencephalography [M/EEG]), the
evidence of ‘chaotic’ patterns has been since demon-
strated beyond the behavioural and peripheral levels to
include the neurophysiological level. In particular, the
use of EEG for understanding the brain’s complex
dynamics has been growing in popularity. Indeed, there
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has been an acceleration in the number of studies
attempting to delineate maladaptive psychopathological
mechanisms by investigating EEG complexity in various
experimental conditions, from sleeping (e.g., Chouvarda
et al., 2010) and anaesthetic states (e.g., Zhang
et al., 2001), to tasks that involve responding to
emotional stimuli (e.g., Aftanas, Lotova, Koshkarov,
Popov, & Makhnev, 1997) and mental arithmetic
(e.g., Mohammadi et al., 2016). Complexity measures of
EEG signals may supplement, if not provide greater
utility and sensitivity than conventional EEG analysis
techniques (such as event-related potentials or
time/frequency analysis) in detecting changes in psycho-
pathological states (Sohn et al., 2010) and potentially
expediting diagnosis of diseases (Czigler et al., 2008).
However, there is currently a mismatch between the
rapid growth of such applications and the presence of
comprehensive reviews needed to guide psychological
researchers in the use of EEG complexity measures.

Despite the potential of neurophysiological complex-
ity analysis in studying normal and abnormal psychologi-
cal states and mechanisms, several limitations hinder its
development. First, the strong mathematical nature of
the field often makes methodologies and findings opaque
to most psychology and neuroscience researchers
(Yang & Tsai, 2013). Second, although most findings in
physical diseases support the idea that a loss of complex-
ity signifies deficient (or unhealthy) states and/or systems
(Mackey & Glass, 1977), this notion does not fully concur
with the existing literature. Based on existing reviews of
complexity findings in several neuropsychiatric condi-
tions (de Aguiar Neto & Rosa, 2019; Fernandez
et al., 2013; Sun et al., 2020), researchers have not unani-
mously found a decrease in brain complexity across dif-
ferent psychiatric populations (Yang & Tsai, 2013).
Hence, the aim of this paper is twofold: (1) to provide an
entry-level explanation of the complexity measures and
(2) to synthesize findings on EEG complexity across dif-
ferent areas of psychology and neuropsychiatry,
highlighting methodological issues that may contribute
to the existing discrepancies in the literature. Rather than
providing an exhaustive list of complexity metrics
(an endless endeavour given that new indices are devel-
oped on a regular basis), the focus of this paper is to sum-
marize and provide a framework for understanding the
main concepts and findings of EEG complexity to foster
future advancements in this area.

3 | QUANTIFYING COMPLEXITY

Complexity metrics can be conceptualized as reflecting
two aspects of the dynamics of a system, namely,

(1) predictability and (2) regularity. Though these two
terms have often been used interchangeably in the litera-
ture, predictability and regularity are, at the coarse-grain
level, two distinct characteristics of a chaotic system. Pre-
dictability of a dynamical system describes the temporal
evolution of the system states whereas regularity
describes the general amount of repetitions of patterns in
the system’s trajectory. Predictability can be thought of
focusing on the process underlying the chaotic system
while regularity corresponds to the product of that pro-
cess. While we discuss the complexity metrics according
to these two categories to facilitate conceptual under-
standing, readers should keep in mind that the two con-
cepts remain strongly related in practice.

3.1 | Predictability

Methods that primarily capture the predictability of a
dynamical system focus on evaluating the correlation
present in the temporal evolution of its associated time
series. Based on their algorithms, these methods can be
further categorized into two subgroups (see Figure 1):
(A) Spatial dimensionality requires a reconstruction of
the ‘state space’ (see below) of the time series before esti-
mating its predictability, and (B) temporal dimensionality
characterizes the predictability of a dynamical system
directly from the signal time series. In the context of EEG
signals, these methods allow for the extraction of infor-
mation underlying their cortical dynamics, where lower
complexity of these dynamics (i.e., more predictable) may
be driven by factors like a loss of neural connectivity and
less activations of neural networks in diseased states like
neurodegeneration (Jeong, 2002).

3.2 | Spatial dimensionality

Complex systems can be mathematically modelled by a
set of differential equations, referred to as dynamic vari-
ables. These variables can be represented in a coordinate
system called the state space where each isolated point in
the space (a state vector) represents a system state. As it
is beyond the scope of this paper to describe the recon-
struction of the state space from the time series, readers
can find these details in Deyle and Sugihara (2011).
Extending from the concept of state space, the phase
space is another coordinate system that captures the evo-
lution of the states over time. Each point of the phase
space represents a system state at a given time instant. If
the dynamical system being modelled is a real-world sig-
nal (e.g., biological signal), after a long enough time, the
evolution of the dynamic variables will reach an
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equilibrium where the dynamical system is bounded by a
subset of the states with physical significance called the
attractor (see Figure 2). The geometry of the attractor

constructed from a biological signal captures the unique
information about the dynamic nature of the underlying
physiological system, beyond what traditional signal

F I GURE 1 Complexity measures can be structured broadly into indices of predictability and regularity. Measures of predictability

capture either spatial or temporal dimensionality of the dynamical system, and measures of regularity reflect the complexity of the system’s
output either on single scales or multiscales.

F I GURE 2 Time-delay embedding method to reconstruct an attractor in the phase space with delay (τ) = 2 and number of dimensions

(m) = 3. The top left panel shows an example of a simulated signal. The middle left panel is the time series but delayed by 1 τ of 2 s. the

bottom left panel is the time series delayed by 2 τ. the three time series are projected to a 3D space where each state vector (solid point) is

plotted with the coordinates provided by the respective time series, forming an attractor (see plot on the right).
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analysis in time and frequency domains can describe. As
such, most of the spatial dimensionality indices described
below actually refer to characterizations of the geometric
shape of the reconstructed attractor (hence the ‘spatial
dimensionality’ denomination).

One of the important geometric features of an
attractor is its dimensionality (referred to as fractal
dimensionality), which is different and more informa-
tive than the usual concept of (topological) dimension-
ality. Mathematically, fractal dimensions (FDs) define
the minimum number of coordinates needed to locate
any point within the phase space and can be inter-
preted as a measure of the structural complexity of a
dynamical system. Correlation dimension (CD, also
referred to as D2) is one such FD index (Grebogi
et al., 1986). By estimating the probability of any two
pairs of points on the attractor separated by a distance
smaller than a predefined value, CD sets the lower
bound to the actual number of dimensions of the
attractor, which in turn indicates the number of
independent variables needed to model the system
(Ding et al., 1993; Grebogi et al., 1986). Generally,
the larger the CD of a biological signal, the more com-
plex the dynamics of the underlying physiological
system.

The complexity of a system can also be measured by a
set of Lyapunov exponents (LEs) which describe the sys-
tem’s predictability and stability. Mathematically, LE is
quantified as the rate of exponential separation with time
of two initially neighbouring points on the attractor
(Wolf et al., 1985). Positive and negative values of LE
correspond to whether the trajectories of the states
exponentially diverge or converge over time. Visually, it
characterizes the stretching and shrinking of the phase
space respectively. While a system can have multiple LEs,
the predictability of the system is mainly determined by
the largest LE value (L1). Similar to CD, a larger L1 is
suggestive of a more complex signal.

Another important measure also derived from the
quantification of the reconstructed attractor is the
Kolmogorov–Sinai entropy (KSE, Sinai, 1959). Although
originating from information theory (which will be dis-
cussed later), KSE can be defined, with respect to the spa-
tial dimensionality perspective, as the rate at which two
points that were initially close in the phase space move
apart. This definition strongly aligns with that of LE since
both measures seek to quantify the changes in volume
(stretching/shrinking) of the phase space over time
(Kamizawa et al., 2014). In fact, KSE is related to the sum
of all positive LEs, which intuitively translates to the total
amount of divergence of the temporal trajectories of the
states (Pesin, 1977). Generally, a more positive KSE
reflects a less predictable system.

3.3 | Temporal dimensionality

While the methods under the spatial dimensionality
group estimate the complexity of the signals by quantify-
ing the characteristics of the attractor, the methods under
the temporal dimensionality group directly treat the time
series itself as a geometric figure.

For instance, the Higuchi’s fractal dimension (HFD)
is another common FD index. However, unlike CD,
which approximates the FD of a physiological system
indirectly from the phase-space reconstruction, HFD cal-
culates the FD directly from the time series
(Higuchi, 1988) and is therefore faster and more efficient.
Additionally, contrary to other indices such as CD, that
assumes signal stationarity (a condition usually not ful-
filled by neurophysiological signals), HFD, which does
not share this assumption, provides in this context a
more accurate estimation of FD (Accardo et al., 1997;
Spasic et al., 2011).

Similar to HFD, Katz’s fractal dimension (KFD) also
estimates FD directly from the time series. In various
comparisons of their performances, HFD generally has a
higher accuracy, while KFD tends to underestimate the
true value of the FD of a system (Castiglioni, 2010;
Esteller et al., 2001; Shi, 2018). While both methods are
equally efficient for short recording lengths, HFD
becomes increasingly more efficient than KFD as the
length increases (Esteller et al., 2001). Nevertheless, KFD
is shown to be less sensitive to noise and more consistent
at discriminating different states of brain function or
different fractal features (Esteller et al., 2001; Shi, 2018).
In other words, for short recording lengths, and/or when
estimating changes in FD is more important than its
exact quantification, KFD is considered as a more desir-
able method as compared with HFD.

A phenomenon that is closely related to FD is the
Hurst exponent (HE, Hurst, 1951; Mandelbrot &
Wallis, 1969). Both FD and HE seek to approximate the
temporal correlation properties of a system. However,
while FD represents the structural complexity of the
dynamical structure over shorter periods, HE is a mea-
sure of the complexity over longer periods (Gneiting &
Schlather, 2004). The two most popular estimators of HE
are the rescaled range (R/S) analysis (Bassingthwaighte &
Raymond, 1994; Hurst, 1951) and the Detrended Fluctua-
tion Analysis (DFA, Peng et al., 1995). As DFA measures
the fluctuations of the trends rather than of the signal
ranges, it is naturally more sensitive to non-stationarity
(i.e., local trends) than the R/S analysis and thus more
suitable and commonly used for the analysis of biological
signals (Grech & Mazur, 2004; Krivstoufek, 2010). In
essence, DFA derives a single scaling exponent, α, that
describes how signal fluctuations in short windows of
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time are related to the fluctuations observed in larger
windows of time. The details about its computational
steps can be found in Peng et al. (1995) and Hardstone
et al. (2012). In general, for a biological signal and for
:5< α<1, the closer the value of DFA exponent to 1, the
more complex the dynamical system. For α>1, the
higher the DFA exponent value, the less complex the
dynamical system.

DFA was originally formulated as a monofractal index
where a single scaling exponent is computed to charac-
terize a time series and which assumes that the DFA
exponent is homogeneous over the entire time series.
However, mounting evidence has suggested that our bio-
logical dynamics are, in fact, multifractal (Racz
et al., 2018; Sassi et al., 2009; Suckling et al., 2008; Xue &
Bogdan, 2017), rendering a single scaling exponent inade-
quate to capture their true dynamical nature (Ihlen &
Vereijken, 2010). Therefore, DFA has been extended
under the term multifractal DFA (MF-DFA), in which
multiple exponents (i.e., multifractal exponents) are com-
puted (Ihlen, 2012; Ihlen & Vereijken, 2010; Kantelhardt
et al., 2002). The degree of multifractality of a time series
can be quantified with statistical metrics such as the
mean or range of the exponent value (mean or max–min
α) (Vergotte et al., 2018; Zorick & Mandelkern, 2013).
A higher degree of multifractality is often associated
with a greater number of interacting underlying net-
works or mechanisms (Torre et al., 2019; Vergotte
et al., 2018).

3.4 | Regularity

Methods that capture the regularity of a dynamical sys-
tem focus on evaluating the presence of repetitive pat-
terns in the time series. Most of the common metrics
categorized under this group belong to a family of statis-
tics called entropy, which corresponds to the amount of
uncertainty present in a system (Cover & Thomas, 2006).
As such, the regularity indices describe the regularity of a
dynamical system by approximating the amount of (un)
certainty present in the inference about the trajectory of
an entire system, such as that of chaotic neuronal firing.
For instance, greater magnitudes of these indices assessed
from EEG signals of schizophrenia patients have been
taken to imply a higher level of uncertainty (and hence,
lower regularity), or in more technical terms, an increase
in the probability that new time series patterns are gener-
ated in the brain (Xiang et al., 2019). One of the first
application of entropy into the study of complexity
resulted in the formulation of KSE (Sinai, 1959),
described above. Nevertheless, unlike other entropy indi-
ces, KSE is not categorized as a regularity index since its

theoretical foundation is more akin to that of the afore-
mentioned indices in the predictability group.

While KSE or other spatial dimensionality measures
such as CD and LE require a full reconstruction of the
attractor, approximate entropy (ApEn) can work with a
lower resolution of phase space, trading off details for
robustness; the sacrifice of resolution allows ApEn to be
applicable to time series that are noisier, or of smaller
sizes—those for which KSE could not be reliably com-
puted (Delgado-Bonal & Marshak, 2019; Pincus, 1995;
Pincus & Goldberger, 1994). Generally, higher ApEn
values indicate more independence between the data
points, that is, a lower number of repetitive patterns
(lower regularity), and thus a higher level of complexity.
However, regardless of its robustness, ApEn’s tendency to
overestimate the level of regularity in the signal (Al-
Angari & Sahakian, 2007; Delgado-Bonal &
Marshak, 2019; Xie et al., 2008) has led to the proposal of
another regularity index, sample entropy (SampEn,
Richman & Moorman, 2000). SampEn can be interpreted
in a similar fashion as ApEn, but is formulated differently
so that not only does it address the root cause of ApEn’s
bias, it is also less affected by the length of the time series
(Henriques et al., 2020).

However, as both ApEn and SampEn rely on a single
constant parameter to evaluate the repetitiveness of the
patterns present in the signals, both indices have been
shown to be significantly sensitive to the value of the
chosen parameters used to compute them (Castiglioni &
Di Rienzo, 2008; Liu et al., 2010). An alternative way of
measuring repetitiveness was proposed where an expo-
nential function (i.e., fuzzy function, Zadeh, 1996) was
used instead of a fixed constant, leading to the formula-
tion of another entropy-based measure named Fuzzy
entropy (FuzzyEn, W. Chen et al., 2009). Generally, Fuz-
zyEn has been shown to outperform SampEn in its stabil-
ity and ability to discriminate physiological systems with
hypothesized differences in complexity (Simons
et al., 2018; Tibdewal et al., 2017).

A common characteristic of ApEn, SampEn and Fuz-
zyEn is that they infer the level of complexity from the
regularity of the signal at the original time scale (single-
scale based). Though relatively efficient, critics believe
that this single-scale approach might prevent them from
thoroughly capturing the complex nature of biological
systems, as their signals hold different meanings at vari-
ous spatial and temporal scales (Busa & van
Emmerik, 2016; Costa et al., 2002, 2005; Yakovleva
et al., 2020). Thus, to accurately estimate the multiscale
spatiotemporal complexity of physiological signals, Costa
et al. (2002) introduced a new entropy-based measure
called multiscale entropy (MSE). This index is obtained
from computing SampEn on multiple scales that are
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derived from the original signal through the means of
coarse graining (i.e., downsampling). Recognizing the
appropriateness of the multiple-scale approach in the
study of physiological signals, newer MSE-based indices
have also been proposed. Some examples include the
multiscale permutation entropy (MPE) where permuta-
tion entropy is used instead of SampEn (Aziz &
Arif, 2005; Davalos et al., 2019), multiscale fuzzy entropy
(MFE, Zheng et al., 2014), refined MSE where time
scales are defined more rigorously (Valencia
et al., 2009), multivariate MSE which is more appropri-
ate for multichannel signals such as EEG (Ahmed &
Mandic, 2011; Azami et al., 2017) and modified MSE
(MMSE) where the variance, instead of the mean, is
used in the coarse graining process (Costa &

Goldberger, 2015). This multiscale approach has also
been incorporated into the MF-DFA algorithm
(Gieraltowski et al., 2012) to improve its validity. Even
though new multiscale-based indices are continually
introduced, each attempting to address limitations of
previous indices, their relative performance has not yet
been formally investigated.

Another regularity index that is popular in the exami-
nation of biological dynamical systems is the Lempel–Ziv
complexity (LZC, Lempel & Ziv, 1976). Unlike the other
indices under this category, LZC is not based on entropy
but originates from a family of techniques that maps time
series into sequences of symbolic representations. Simply
put, the regularity of the signal is determined through
scanning the symbolic sequences for new patterns,

F I GURE 3 Illustrations of the difference between complexity, order and randomness, using various examples, namely, text, signal and

pictorial examples. In the text example, words are arranged in alphabetical order in the ordered output, indiscriminately arranged in the

random output and structured according to semantic and syntactic rules in the complex output. In the signal example, the ordered signal

contains data points sorted according to amplitude, the random signal consists of data points sampled at random and the complex signal is a

mixture of signals of multiple frequencies. In the pictorial example, pixels are vertically ordered by luminance in the ordered output,

scrambled in the random output, and the complex arrangement of pixels creates a meaningful picture. The aim is to show that complex is

not synonymous with random, an important conceptual distinction in complexity science.

LAU ET AL. 5053



increasing the complexity count every time a new
sequence is detected. As compared with other complexity
measures, LZC is relatively less computationally expen-
sive, easy to implement and can be applied directly on
biological signals without any preprocessing steps
(Aiordachioaie & Popescu, 2020; Zhang et al., 2001).
Therefore, even though the performance of LZC relative
to other indices remains indeterminate (Aiordachioaie &
Popescu, 2020; Fathillah et al., 2017; Ibanez-Molina
et al., 2015), it has been applied extensively in various
fields. The next section summarizes and discusses the
quantification of brain dynamical complexity in the fields
of psychology and neuroscience.

4 | BRAIN COMPLEXITY IN
PSYCHOLOGY AND NEUROSCIENCE

One important distinction when it comes to the applica-
tion of complexity analysis to biological systems is the
distinction between complexity and randomness (see
Figure 3). While both complex and random systems can
generate ‘seemingly’ unpredictable and irregular outputs
(indexed by different complexity measures), Grassberger
(2012) and other researchers emphasized the importance
of the meaningfulness that underlies a complex system,
which is absent from a random system (Goldberger
et al., 2002; Yang & Tsai, 2013). However, given our cur-
rent understanding of the physical meaning of different
complexity measures, the distinction between pure mea-
sures of randomness and meaningful measures of com-
plexity remains fuzzy at best, especially in the context of
physiological systems. This may partly explain the

contradictory findings in the literature, as higher values
of complexity indices could indicate either a more com-
plex system, or a more random system (de la Torre-Luque
et al., 2016).

4.1 | Schizophrenia

Of all psychopathological disorders, schizophrenia has
been the most widely studied in terms of brain complex-
ity (Yang & Tsai, 2013)—unsurprisingly—as the wide
range of positive and negative symptoms resulting in
multifaceted manifestations makes schizophrenia an
ideal candidate for complexity investigations (Yang &
Tsai, 2013). Researchers have expected altered brain
dynamics in schizophrenia as a consequence of abnormal
fluctuations in dopamine levels (An der Heiden, 2006).
Interestingly, both increases and decreases in neural
complexity have been frequently reported in schizophre-
nia populations. Diminished EEG complexity has been
observed with several measures (see Table 1). This
decrease in complexity, especially in the frontal areas of
the brain (Akar, Kara, Latifoglu, & Bilgic, 2015a, 2015b;
Jeong, Kim, Chae, et al., 1998; Kim et al., 2000;
Raghavendra et al., 2009) may be interpreted as a reduc-
tion in information processing and inflexible neural net-
works (Kim et al., 2000). This is consistent with previous
neuroimaging findings regarding hypofrontality
(i.e., abnormal underactivation of frontal regions, Gattaz
et al., 1992) in schizophrenia patients, which has been
linked to the severity of negative symptoms, such as
blunted affect, abulia and asociality (Wolkin et al., 1992).
On the other hand, there is also an equally large number

TAB L E 1 List of EEG complexity measures used in schizophrenia research

Psychological state/
condition EEG complexity Measures

Schizophrenia Healthy controls > schizophrenia L1 (Akar, Kara, Latifoglu, & Bilgic, 2015a; Kim et al., 2000; Kutepov
et al., 2020; Rockstroh et al., 1997)

HFD (Raghavendra et al., 2009; Sabeti et al., 2009)
KFD (Akar, Kara, Latifoglu, & Bilgic, 2015b)
LZC (Sabeti et al., 2009)
CD (Jeong, Kim, Chae, et al., 1998; Jin et al., 2003)
ApEn (Akar et al., 2016; Sabeti et al., 2009)

Schizophrenia > healthy controls L1 (Roschke et al., 1995)
MSE (Takahashi et al., 2010)
LZC (Y. Li et al., 2008, Ibanez-Molina et al., 2018)
ApEn (Thilakvathi et al., 2017)
HFD (Raghavendra et al., 2009; Thilakvathi et al., 2017)

Severe and acute > mild
schizophrenia

CD (Koukkou et al., 1993)
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of studies indicating increased EEG complexity in schizo-
phrenia, demonstrated through L1 during REM sleep
(Roschke et al., 1995), MSE during resting state
(Takahashi et al., 2010) and various other measures dur-
ing different mental tasks (see Table 1).

One hypothesis to explain these contradictory
results was put forth by S.-H. Lee et al. (2008), who
observed that increased complexity was more typically
reported in patients with a more recent onset of schizo-
phrenia, that were also younger, pre-medicated and
with more positive symptoms. This was corroborated
by Raghavendra et al. (2009) who underscored symp-
tomatology as an important factor, demonstrating that
individuals with positive symptoms exhibited similar or
greater HFD values than healthy controls, whereas
those with negative symptoms had lower complexity
scores. At first glance, this finding may seem contrary
to the idea that healthy physiological systems are
always indexed by greater complexity (Lipsitz &
Goldberger, 1992). However, as mentioned above, this
unidirectional view of physiology cannot be accommo-
dated by existing measures of complexity, which can
generate equally high indices from both random and
complex systems (such as LZC, discussed in later sec-
tions). In the case of schizophrenia, extremely high
values of complexity could be indicative of greater poly-
rhythmic, disorganized brain activity, particularly in
patients with active psychosis (Fingelkurts et al., 2006),
which can be interpreted as greater randomness (de la
Torre-Luque et al., 2016). This thus suggests a break-
down in the functional integration of schizophrenia
brains (see disconnection syndrome hypothesis,
Friston, 2002) with cortical desynchronization manifest-
ing as positive symptoms (e.g., hallucinations and delu-
sions). Consistent with this, Koukkou et al. (1993)
reported that schizophrenia patients who were in
remission and were free from antipsychotic medication
had lower CD values than first-episode, pre-medication
acute patients. Another important aspect of schizophre-
nia research is investigating task-related changes in
neural complexity. A few studies have made progress
in this, showing that schizophrenia patients exhibit less
complexity change than healthy controls in response to
stimulus presentation, indicating lower reactivity during
information processing in patients (FuzzyEn, Bachiller
et al., 2015; LZC, Ibanez-Molina et al., 2018; Spectral
Entropy, Xiang et al., 2019). Further research using
event-related paradigms may provide further insight on
the mechanisms underlying abnormal cognition in
schizophrenia and their relationship with neural
complexity.

Overall, while it is certain that neural complexity
levels in schizophrenia differ from healthy controls, the

direction of change is modulated by several factors, such
as positive symptoms that increase complexity and anti-
psychotic agents that attenuate complexity level.

4.2 | Mood and anxiety disorders

Relatedly, several researchers have long underscored the
association between enhanced cortical dynamics, healthy
cognitive functioning and emotional regulation (Aftanas,
Lotova, Koshkarov, Pokrovskaja, et al., 1997; Aftanas,
Lotova, Koshkarov, Popov, & Makhnev, 1997; Carlino
et al., 2012; Gregson et al., 1993; Lamberts et al., 2000;
Martinez-Rodrigo et al., 2019; McIntosh et al., 2008). As
cognitive and emotional dysregulation are transdiagnos-
tic markers of mood and anxiety disorders
(Holtzheimer & Mayberg, 2011), one might expect lower
neural complexity in these patient populations as com-
pared with their healthy counterparts. However, as with
the literature on schizophrenia, conflicting trends in
mood and anxiety disorders also appear to challenge the
unidirectional notion of complexity as being adaptive.

Depression is a disorder characterized by dysthymia
and anhedonia, reinforced by inflexible cognitive patterns
manifesting primarily as negative ruminations
(Holtzheimer & Mayberg, 2011). Studies have reported
overall lower values of complexity in the EEG signals of
individuals with depression as compared with healthy
controls (see Table 2). This may be explained by mal-
adaptive emotion regulation (ER) styles (e.g., self-
blaming and rumination, Bornas et al., 2013) and a ten-
dency to fixate on negative emotional states
(Holtzheimer & Mayberg, 2011), both of which have been
associated with lower EEG complexity.

However, several other studies report an opposite
trend (see Table 2) across different paradigms such as
resting state (Bachmann et al., 2015), mental arithmetic
tasks (Li et al., 2008) and emotional stimuli tasks (Akar,
Kara, Agambayev, & Bilgic, 2015). Positive relationships
between the severity of depressive symptoms and various
EEG complexity indices have also been reported (see
Table 2), with treatment associated with greater complex-
ity reductions (Thomasson et al., 2000). Moreover, Men-
dez et al. (2012) demonstrated that antidepressant
treatment reduced LZC (MEG signals) in unmedicated
depressed patients (who had higher pre-treatment LZC
scores than healthy controls) and that these complexity
reductions were correlated with the extent of symptom
remissions. With regard to this, Mohammadi and Moradi
(2021) hypothesized that more severe depressive symp-
toms are associated with lower connectivity across differ-
ent brain regions, in turn giving rise to greater
randomness in brain activity. Nevertheless, the attempts
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to explain conflicting findings in the complexity literature
do not sufficiently account for factors like symptomatol-
ogy and severity, which may be critical in understanding
the discrepancies.

These contradictory findings have also been observed
in other mood and anxiety disorders which have
received significantly less attention in the field of EEG
complexity. For instance, under resting state, generalized
anxiety disorder (GAD) was found to be associated with
higher CD values (Wang et al., 2016), but post-traumatic
stress disorder (PTSD) was conversely associated with
globally diminished CD (Chae et al., 2004). A mechanis-
tic interpretation based on different modes of informa-
tion processing may help to clarify this inconsistency
(Molle et al., 1999). Indeed, the dominant mode of cog-
nitive processing in GAD patients may be more akin to
mind wandering and divergent thinking
(e.g., catastrophizing, Schoenberg, 2020) whereas in
PTSD, where individuals are under a state of hyperarou-
sal, and excessively focused on traumatic memories,
information processing may be more rigid (Chae
et al., 2004). However, it is important to note that these
interpretations may be specific to the neural complexity
during resting state, which entails spontaneous informa-
tion processing (Bob & Svetlak, 2011), as some evidence
indicates that being under active states of anxiety, such
as during the processing of stressful memories, results in
greater neural complexity than at rest (L1 in panic disor-
der patients, Bob et al., 2006).

Given the prevalence of comorbidities and heteroge-
neity of mood and anxiety disorders, inconsistency in
the literature may be partially due to the classification of
disorders as specific diagnostic entities. One starting
point may be to distinguish between episodes of the dis-
order (e.g., Cukic et al., 2020). For example, some pre-
liminary evidence shows that in bipolar mood disorder,
manic episodes are higher in EEG complexity than
depressive episodes (Bahrami et al., 2005; Thomasson
et al., 2002). Alternatively, a transdiagnostic approach
may be more useful in understanding how EEG com-
plexity relates to different psychopathological symptoms
(Dalgleish et al., 2020). As a complex interplay of biopsy-
chosocial processes underlie these disorders, investigat-
ing neural complexity based on their common factors
and processes (whether psychological, environmental or
biological), rather than traditional diagnostic boundaries,
may help us better understand the relationship between
complexity and mental health difficulties. Currently,
there is no existing study relating EEG complexity to
transdiagnostic markers of mood and anxiety disorders.
The EEG complexity literature insofar has largely
focused on depression more than any other affective/
anxiety disorder. The scarce results from these other dis-
orders, on top of the different interpretations put forth
by authors for conflicting findings, means that it is still
premature to conclude what this means about the
brain’s adaptation to environmental changes in mood
and anxiety disorders.

TAB L E 2 List of EEG complexity measures used in mood and anxiety disorders research

Psychological state/
condition EEG complexity Measures

Post-traumatic stress
disorder (PTSD)

Healthy controls > PTSD CD (Chae et al., 2004)

Depression Healthy controls > depression LZC (Kalev et al., 2015)
DFA (values close to .5, Bachmann et al., 2017)

Depression > healthy controls KFD (Akar, Kara, Agambayev, & Bilgic, 2015)
HFD (Akar, Kara, Agambayev, & Bilgic, 2015; Bachmann et al., 2018;

Cukic et al., 2020; Mahato & Paul, 2019)
DFA (values close to 1, Lee et al., 2007)
SampEn (Cukic et al., 2020)
LZC (Akar, Kara, Agambayev, & Bilgic, 2015; Bachmann et al., 2015;

Li et al., 2008)

Severe > mild depression DFA (values close to 1, Lee et al., 2007)
LZC (Mohammadi & Moradi, 2021)
FuzzyEn (Mohammadi & Moradi, 2021)
KSE (Thomasson et al., 2000)

Bipolar mood
disorders

BMD > healthy controls HFD (Bahrami et al., 2005)

Anxiety disorders Anxiety disorders > healthy controls CD (Wang et al., 2016)
L1 (Bob et al., 2006)
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4.3 | Neurodevelopmental and
neurodegenerative disorders

There are also reasons to suspect a reduction in EEG
complexity in autistic spectrum disorder (ASD), a disor-
der characterized by a repertoire of unvaried behaviours,
stereotyped thoughts and interests. Initial evidence for
this comes from investigations using MMSE, which was
found to be reduced in adults with ASD during a mental
task (Catarino et al., 2011), and in infants at high risk of
developing ASD during resting-state EEG (Bosl
et al., 2011) as compared with control subjects. MSE was
also able to discriminate mild from severe ASD, with the
latter displaying lower entropy levels (Hadoush
et al., 2019). Recently, Kang et al. (2019) demonstrated
diminished patterns of several entropy measures (see
Table 3) in frontal, temporal and central regions in ASD
children, pointing to possible neural underconnectivity
and dysfunctional integration in these areas, which have
been reported by other studies using EEG power spec-
trum and coherence analyses (Coben et al., 2008; Murias
et al., 2007).

As for attention deficit hyperactivity disorder
(ADHD), the few studies that employed complexity mea-
sures show that children with ADHD exhibit lower EEG
entropy during resting relative to healthy controls (see
Table 3), with some disagreements regarding which
regions of the brain elicit the greatest differences (ApEn
in frontal regions, Fernandez et al., 2009; Khoshnoud
et al., 2018; Sohn et al., 2010; vs. ApEn and SampEn in
occipital regions, Chen et al., 2019). Other indices like
LZC (Fernandez et al., 2009) and FuzzyEn (Monge
et al., 2015) are also reportedly lower in ADHD when

applied to resting-state MEG signals, but no similar
results have been found with EEG yet. In light of this,
proponents have suggested that a deficit in the allocation
of attentional resources (i.e., poor sustained attention,
Robertson et al., 1997) leads to insufficient levels of corti-
cal activation, subsequently resulting in diminished neu-
ral complexity (Clarke et al., 2001; Sohn et al., 2010).
However, findings are less clear when ADHD children
are placed under conditions of various cognitive tasks. It
has been reported that during auditory attentional tasks,
ADHD children display lower neural complexity than
healthy controls in right frontal regions, while other stud-
ies show an opposite trend of greater complexity in
ADHD groups across different brain regions during
visual and arithmetic processing (see Table 3). These dis-
crepancies may be attributed to specific task require-
ments and the brain region of interest (such as those
responsible for higher order planning vs. pure attentional
deficits). Given the heterogeneity of ADHD dysfunctions,
it may be important to delineate between ADHD sub-
types and their common co-occurring neurodevelopmen-
tal conditions. The first attempt to do so came from a
recent study by Tor et al. (2021), who found several
entropy measures (including MMSE) to be higher in chil-
dren with conduct disorder (i.e., rule breaking, violent
and antisocial behaviour), though there seemed to be lit-
tle differences between the ADHD-only group and the
group with ADHD and conduct disorder comorbidities, a
pattern that makes it difficult to draw any clear interpre-
tations. That being said, distinguishing between different
neurodevelopmental disorders (many of which have
shared behavioural symptoms) with complexity measures
is still in its beginning stages, and the mechanisms

TAB L E 3 List of EEG complexity measures used in neurodevelopmental and neurodegenerative disorders research

Psychological state/condition EEG complexity Measures

Autistic spectrum disorder (ASD) Healthy controls > ASD MMSE (Bosl et al., 2011; Catarino et al., 2011)
SampEn, FuzzyEn (Kang et al., 2019)

Mild > severe ASD MSE (Hadoush et al., 2019)

Attention deficit hyperactivity
disorder (ADHD)

Healthy controls > ADHD ApEn (Chen et al., 2019; Khoshnoud et al., 2018; Sohn et al., 2010)
SampEn (Chen et al., 2019)

ADHD > healthy controls ApEn (Mohammadi et al., 2016)
HFD (Mohammadi et al., 2016)
LZC (Zarafshan et al., 2016)

Alzheimer’s disease (AD) Healthy controls > AD L1 (Jeong et al., 2001; Jeong, Kim, & Han, 1998; Stam et al., 1995)
CD (Besthorn et al., 1995; Jeong, Kim, & Han, 1998; Pritchard

et al., 1991; Stam et al., 1995)
LZC (Abasolo et al., 2006)
HFD (Nobukawa et al., 2019; Smits et al., 2016)
MSE (Ando et al., 2021; Mizuno et al., 2010; Park et al., 2007)

Mild > moderate > severe
AD

MSE (Fan et al., 2018; Yang et al., 2013)
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underlying any potential differences in neural complexity
remain unclear (H. Chen et al., 2019). In sum, although
resting-state EEG complexity is commonly attenuated in
ADHD children relative to healthy controls, task-based
paradigms have generated mixed results and the sources
of these conflicts are still unclear.

To our knowledge, comprehensive reviews on EEG
complexity in dementia have not been conducted since
nearly two decades ago (Jeong, 2002). Nevertheless, the
literature on Alzheimer’s disease (AD) is significantly less
equivocal than that of depression or schizophrenia, with
most studies showing that AD is typically associated with
a loss of EEG complexity (see Table 3). In particular,
MSE has been shown to be sensitive to the severity of AD
symptoms (Fan et al., 2018; Yang et al., 2013), with
entropy significantly declining from moderate to severe
AD stages, and early-stage AD being nearly indistinguish-
able from healthy controls (Fan et al., 2018). These com-
plexity decrements may suggest information processing
deficits and/or diminished brain dynamics in response to
external stimuli (Pritchard et al., 1991). Some possible
candidate explanations also include neuronal death and a
loss of functional connectivity (Abasolo et al., 2006).
Although the precise mechanism underlying complexity
reductions remains contentious, more insights may be
obtained through comparisons with other dementia
pathologies such as Parkinson’s disease (associated with
lower CD, Stam et al., 1995) and vascular dementia (asso-
ciated with lower L1, Jeong et al., 2001). Overall, the
studies reviewed here agree on the finding that AD is
associated with lower levels of complexity. To corroborate
this, future research could expand beyond the conven-
tional use of CD and MSE to include other newer mea-
sures of entropy for investigating complexity in AD.

4.4 | Changes across lifespan

Interestingly, EEG complexity in healthy populations
appears to follow an inverse U-shaped pattern, increasing
during early years of life (MSE during auditory and visual
tasks, Lippe et al., 2009), early and late adolescence (MSE
in resting state, van Noordt & Willoughby, 2021; and cog-
nitive tasks, McIntosh et al., 2014; McIntosh et al., 2008),
adulthood (HFD in resting-state EEG,Smits et al., 2016;
Zappasodi et al., 2015) and declining in old age (HFD in
resting-state EEG, Smits et al., 2016; Zappasodi
et al., 2015; MSE in cognitive tasks, A. McIntosh
et al., 2014). Results from other brain measures also echo
this inverted U-shaped trajectory, such as in the connec-
tivity of neural circuitry responsible for cognitive and
motor functioning (Bo et al., 2014). Moreover, van
Noordt and Willoughby (2021) recently revealed that the

largest increases in neural complexity are between late
childhood and adolescence in fronto-central regions,
reflecting maturational changes towards more sophisti-
cated cognitive-behavioural processes. The subsequent
decrease in neural complexity with normal ageing could
be due to a multitude of deficiencies across different
levels, such as neurotransmission (Backman et al., 2006),
and/or structural and functional connectivity (Grady
et al., 2010). This is also in agreement with Goldberger
et al.’s (2002) seminal findings demonstrating reduced
fractal dynamics of HRV and gait in older adults.
Although most of the evidence supports the idea of an
age-related complexity loss, there are a few contradictory
findings (see Table 4, inverse relationship between age
and SampEn, Hogan et al., 2012; and CD, Anokhin
et al., 1996) yet to be resolved. Similar to the state of the
literature in patient populations, this may potentially be
due to the choice of algorithm that inherently presents
some interpretational ambiguity (since CD and SampEn
can hardly differentiate between randomness and com-
plexity). Additionally, some evidence indicates that com-
plexity reductions in old age occur in regions underlying
cognitive abilities rather than those responsible for ER
(i.e., insula and temporal lobe); while this has been found
using resting-state fMRI signals (Dong et al., 2018), this
dissociation has not yet been thoroughly investigated
using EEG complexity measures that could provide more
refined temporal information.

TABL E 4 List of EEG complexity measures used in

developmental and aging research

Psychological
state/
condition

EEG
complexity Measures

Early years of
life

Increase with
adolescence
and
adulthood

MSE (Lippe et al., 2009;
McIntosh
et al., 2014;
McIntosh
et al., 2008; van
Noordt &
Willoughby, 2021)

HFD (Smits et al., 2016;
Zappasodi
et al., 2015)

Old age Decrease with
normal aging

MSE (McIntosh
et al., 2014)

HFD (Smits et al., 2016;
Zappasodi
et al., 2015)

Increase with
normal aging

SampEn (Hogan
et al., 2012)

CD (Anokhin
et al., 1996)
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In general, EEG complexity research conducted in
healthy populations demonstrates a largely consistent
trend of increasing complexity from young age to adult-
hood and decreasing complexity with healthy aging, sug-
gestive of neurodevelopmental and network changes
across the lifespan.

4.5 | Consciousness

Finally, one of the most popular applications of complex-
ity science is in quantifying human awareness and con-
sciousness levels, and in particular, on how normal
waking consciousness differs from states of reduced con-
sciousness (Carhart-Harris et al., 2014; Seth et al., 2011),
with a general consensus that the latter displays lower
neural complexity. Several consciousness theories con-
verge on the idea that complex neuronal interactions
occur when receiving multiple rich sensory signals in
alert states (Miller, 2015) and that these brain activities
become less complex and more periodic at reduced con-
sciousness (e.g., greater sleep depth) due to the lower
need for information processing (Hou et al., 2021). For
instance, several studies that used EEG complexity agree
that levels of complexity are higher during wake and
REM (rapid eye movement) sleep, but lower during deep
sleep (i.e., slow wave sleep) using various complexity
measures (see Table 5). The particular exception of REM
sleep has been attributed to its association with dream-
ing, which tends to be characterized by vivid phenome-
nological experiences (Mateos et al., 2018). Apart from
sleep stages (for a comprehensive review, see Ma
et al., 2018), there is also convincing evidence showing
reduced EEG complexity in other states of relative ‘loss’
of consciousness (see Table 5), including anaesthetized

states (Schartner et al., 2015; Zhang et al., 2001), seizures
(Kannathal et al., 2005; Krystal et al., 1996) and disorders
of consciousness (i.e., vegetative and minimally conscious
states, see Perturbational Complexity Index [PCI], Casali
et al., 2013).

More recently, researchers have attempted to under-
stand the other end of the consciousness spectrum—
‘expanded consciousness’—states that include REM
sleep, psychedelic states and onset phases for psychosis
(based on a modern perspective of neuroscience and
pharmacology, see Carhart-Harris et al., 2014; Carhart-
Harris, 2018), which are said to be more complex than
normal waking consciousness. Some preliminary evi-
dence demonstrates that subjects under psychedelic-
induced states have elevated levels of neural complexity
and report increasingly intense subjective experiences,
suggesting that these states are characterized by rich con-
scious experiences, although these findings have mostly
been derived from MRI (Atasoy et al., 2017) and MEG
signals (Schartner, Carhart-Harris, et al., 2017).

As compared with findings from other areas of com-
plexity research (e.g., schizophrenia and depression), con-
sciousness research has been the most robust in
demonstrating a consistent link, that is, that higher levels
of neural complexity are associated with enhanced con-
sciousness. This area of research has also gained signifi-
cant attention in the last decade, in part because of its
potential for generating insights for treating mental
health disorders (Carhart-Harris, 2018).

4.6 | Clinical interventions

Apart from being studied as potential biomarkers for dif-
ferent pathological conditions, complexity measures may

TAB L E 5 List of EEG complexity measures used in consciousness research

Psychological state/
condition EEG complexity Measures

Sleep stages REM and wake states > shallow sleep
stages > deep sleep

LZC (Li & Wang, 2010; Aamodt et al., 2021; M. M. Schartner,
Pigorini, et al., 2017)

HFD (Chouvarda et al., 2010)
SampEn (Chouvarda et al., 2010)
ApEn (Acharya et al., 2005; Burioka et al., 2005; He

et al., 2006; Lee et al., 2013)
MSE (Mariani et al., 2016; Shi et al., 2017)
CD (Achermann et al., 1994; Fell et al., 1996; Kobayashi

et al., 2000, 2001)

Anaesthetized states Wake states > anaesthetized states LZC (M. Schartner et al., 2015; Zhang et al., 2001)

Seizures Wake states > seizures L1 (Krystal et al., 1996)
ApEn (Kannathal et al., 2005)
KSE (Kannathal et al., 2005)

LAU ET AL. 5059



be important in the context of promising clinical inter-
ventions. In particular, the use of psychedelics (which
has recently faced a resurgence of interest in mental
health) has been posited to expand consciousness, with
potential benefits for the treatment of pathological condi-
tions (based on the ‘entropic brain hypothesis’, Carhart-
Harris, 2018). In the case of psychopathological disorders
such as depression, more complex states are thought to
facilitate psychological insight in terms of ideas, emotions
and behaviours. This is in line with research indicating
that neural complexity is positively correlated with the
ability to adapt to changes in environmental demands
(Kloosterman et al., 2020). Increasing brain entropy
would thus be expected to lead to meaningful and long-
lasting changes in perspective and behaviours
(Carbonaro et al., 2018; Carhart-Harris, 2018). In addi-
tion, the treatment of consciousness disorders may also
be possible by enhancing levels of consciousness with
psychedelics (Carhart-Harris, 2018). In light of this litera-
ture, complexity science could provide a framework to
shape and validate experimental paradigms and clinical
interventions for a wide range of conditions.

5 | DISCUSSION

Taken together, researchers need to exercise caution in
interpreting the direction of change in these metrics
and what it means in terms of the health status of a
physiological system. Given that an ideal biological sys-
tem is assumed to convey a rich amount of information,
both extremely ordered outputs (i.e., repetitive, stereo-
typed behaviours and perseveration) and random-like
variability (i.e., impulsivity, irrational behaviours and
confabulation) are undesirable (de la Torre-Luque
et al., 2016; Yang & Tsai, 2013). With regard to the lat-
ter, increases in complexity values may be wrongly mis-
understood as enhanced complexity in the system when
in fact the nature of the system is random. For distin-
guishing true dynamical complexity from randomness,
MSE and DFA exponents, which can account for the
scale-invariant nature of physiological signals
(i.e., similar properties at different time scales), may be
more sensitive relative to other measures (Bornas,
2017). For instance, with MSE, randomness can be iden-
tified when high entropy at short time scales decreases
at larger time scales (Ma et al., 2018). de la Torre-Luque
et al. (2016) elegantly proposed that rather than consid-
ering the absolute increase or decrease in complexity,
deviations from optimum variability (Bornas & de la
Torre-Luque, 2016; Guastello, 2015; Schuldberg, 2015)
may provide greater insights for clinical applications.
However, the notion of an ‘optimally variable’ system is

still relatively unexplored in existing literature. Moving
forward, the utility of complexity metrics as biomarkers
of disease may be reinforced through identifying
ranges of normal and abnormal complexity values
(i.e., normative data) unique to each pathological
condition.

Many of these complexity indices can be computed
using free open-source software such as NeuroKit2
(Makowski et al., 2021) and antropy (Vallat, 2021). To
further aid researchers in selecting a suitable EEG com-
plexity measure, studies have also employed machine
learning algorithms to assess the predictive power of each
measure at classifying different psychopathological disor-
ders or states. These studies have been conducted in
schizophrenia (Akar et al., 2016; Sabeti et al., 2009),
depression (Bachmann et al., 2017; Bornas, 2017; Cai
et al., 2016; de Aguiar Neto & Rosa, 2019; Hosseinifard
et al., 2013), ASD (Bosl et al., 2011), AD (Fan
et al., 2018), ADHD (Boroujeni et al., 2019; Ghassemi
et al., 2012) and in healthy and pathological ageing
(Smits et al., 2016). However, the generalizability of the
findings beyond the scope of their comparison is hard to
assess, and inferences about the general utility of any
given index should be avoided.

5.1 | Practical considerations

Other crucial considerations when choosing a complexity
metric include the length of the time series and the
signal-to-noise ratio (Bravi et al., 2011). For instance, it
may be difficult to achieve reliable complexity estimates
with CD and L1 due to their underlying assumptions of
noise-free and lengthy data (for reconstructing the phase
space), as these assumptions are not realistic in clinical
applications. On the other hand, LZC may be more
robust for short and noisy data (Fernandez et al., 2013).
As for HFD, while it has been said to be more accurate
for measuring FD as compared with other algorithms
and is computationally simpler and faster, its values may
be positively skewed by the amount of noise in data
(Fernandez et al., 2013). In fact, LZC and HFD have been
frequently used as measures of anaesthesia and sedation
depth due to their reliability in assessing short data seg-
ments, thus making it appropriate for real-time monitor-
ing of patient outcomes (Ferenets et al., 2006; Zhang
et al., 2001). In general, it is recommended that
researchers report the length of the recordings, as well as
the sampling rate (both of which determine the number
of data points) to facilitate reproducibility and compari-
sons of complexity analyses.

Regarding entropy measures, it is important to note
that ApEn and SampEn (which are essentially
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irregularity statistics) have been criticized to be unreflec-
tive of a system’s complexity. Although MSE was pro-
posed to address this specific limitation (Costa
et al., 2002), it requires a substantially longer time series
to be accurate. Instead, other versions of MSE
(e.g., MMSE) have been proposed to work better with
short-term signals (Karmakar et al., 2020), but their per-
formances have not yet been established with physiologi-
cal signals. Additionally, while entropy-based indices
such as ApEn and SampEn are among the most common
indices, their sensitivity to the selection of computational
parameters have prompted development of more robust
approaches, such as FuzzyEn, which uses a fuzzy func-
tion instead of a single value of parameter, as well as
entropy profiling where variations of parameter values
are used to capture the complete profile of entropy
(Karmakar et al., 2020; Udhayakumar et al., 2017). Note,
however, that entropy profiling has not yet been investi-
gated in the context of EEG signals.

5.2 | Conclusions

With the constant introduction of new complexity esti-
mators (Tripathy et al., 2017) and modified versions of
existing ones (Bai et al., 2015), it has become increasingly
difficult for researchers to choose an optimal measure
specific to the psychological state of interest. It may seem
convenient to use a wide range of them, but this is a prac-
tice fraught with issues such as results fishing, cherry-
picking and biased interpretations. By enhancing the ease
for researchers in navigating the plethora of complexity
measures and clarifying their underlying theoretical
meanings and their differences, we hope to facilitate new
developments in the field. Apart from the inexplicit
boundaries between measures of randomness and mean-
ingful complexity, rigorous investigations that consider
key factors such as experimental task demands and
symptom trajectories are important for well-grounded
conclusions to be made about neural complexity. Future
meta-analyses of EEG complexity data could be useful in
understanding the source of the discrepancies in existing
literature and determine the reliability of change in neu-
ral complexity with pathology, healthy aging or con-
sciousness states. We may also gain some clarity by
investigating complexity-based approaches in relation-
ship with other EEG analysis approaches, such as time/
frequency or connectivity analysis. In summary, as wit-
nessed by the recent rise in related publications, the com-
plexity analysis of EEG signals offers encouraging
prospects for both research and clinical endeavours to
further our understanding of normal and abnormal neu-
rophysiological functioning.
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