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Abstract

Temporal integration of input is essential to the accumulation of information in various cognitive and behavioral processes,
and gradually increasing neuronal activity, typically occurring within a range of seconds, is considered to reflect such
computation by the brain. Some psychological evidence suggests that temporal integration by the brain is nearly perfect, that
is, the integration is non-leaky, and the output of a neural integrator is accurately proportional to the strength of input. Neural
mechanisms of perfect temporal integration, however, remain largely unknown. Here, we propose a recurrent network model
of cortical neurons that perfectly integrates partially correlated, irregular input spike trains. We demonstrate that the rate of
this temporal integration changes proportionately to the probability of spike coincidences in synaptic inputs. We analytically
prove that this highly accurate integration of synaptic inputs emerges from integration of the variance of the fluctuating
synaptic inputs, when their mean component is kept constant. Highly irregular neuronal firing and spike coincidences are the
major features of cortical activity, but they have been separately addressed so far. Our results suggest that the efficient
protocol of information integration by cortical networks essentially requires both features and hence is heterotic.
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Introduction

The integration of information over time underlies a variety of

cognitive and behavioural functions, such as decision making,

prediction of upcoming events, or interval timing. For instance,

psychology models of decision making hypothesize that temporal

integration of a sensory input or an internal signal represents the

subjective belief or the likelihood signal for a particular decision

[1,2]. The subsequent action is executed after this signal reaches a

certain criterion. Some task-related neuronal activities show

gradually increasing firing rates [3–8], suggesting that these

activities engage in temporal integration [9–13].

Results of psychological experiments suggest that the above

input is integrated with an equal weight at any time point. For

example, animal’s decision behavior does not depend on the

temporal order of presenting the same set of stimuli, each of which

represents a different piece of evidence for decision [14,15]. This

uniformity of temporal integration naturally appears if temporal

integration of a constant stimulus has the following properties: (i)

the likelihood signal grows linearly with time and (ii) the rate of the

linear growth is proportional to the stimulus intensity (i.e.,

temporal integration by neurons is a linear operation). The

temporal integration that fulfills these two properties is termed

‘‘non-leaky’’ or ‘‘perfect’’ temporal integration, which well

explains some quantitative aspects of behavior, such as the

statistics of saccadic eye-movement and visual short-term memory

[14–17]. The two properties are obviously satisfied if the likelihood

signal L tð Þ expresses L tð Þ~
Ð t

0
S t’ð Þdt’ in the mathematical sense,

with S tð Þ being the stimulus intensity at time t (in particular,

L~St if S tð Þ is constant). Although climbing activity has been

modeled with network [18–23] or single-cell mechanisms [24–27],

these models did not seriously address the two properties of perfect

temporal integration. In fact, it is not trivially easy to construct

neural integrator models that satisfy the two properties.

Here, we present a recurrent network model of spiking neurons

that performs perfect temporal integration of excitatory and

inhibitory synaptic inputs. We show that the two properties (i) and

(ii) can be obtained if irregular input spike trains are partially

correlated and the correlation component of synaptic inputs

represents the quantity integrated by the network. We then

analytically prove the perfect integration property of the network

model, noting that the partially correlated input spikes modulate

the variance, but not the mean, of the synaptic current. The

present model is an extensively improved version of our previous

model that accounts for the bistable property of climbing and

descending activities of anterior cingulate neurons [28]. The

previous model, and many other models, integrated the amplitude

of a constant or slowly changing external current, and the

fluctuations around the mean were merely noise or played only a

secondary role [29,30]. In contrast, the present model suggests that

information may be better represented by the fluctuations induced

by spike correlations in synaptic input in some neural computa-

tions.

Results

We consider a recurrent network of N ~500ð Þ excitatory, leaky

integrate-and-fire neurons. The membrane potential of neuron
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i i~1, . . . , Nð Þ follows the equation:

Cm dVi=dtð Þ~{ILzIADPzIR, izIE{I , i, ð1Þ

where Cm is the membrane capacitance and IL is the leak current.

The model neuron displays a long-lasting depolarization current IADP

after it discharges a spike [28]. The depolarization leads to further

spike discharges, which in turn refresh this current. Consequently, a

neuron, once it fires, may remain in the regenerative firing state

[31,32]. In vitro cortical pyramidal cells display spike-triggered,

prolonged depolarization induced by the activation of Ca2+-

dependent cation currents [33–35]. In addition, climbing/descending

activity displayed bimodal distributions of firing rate in the monkey

anterior cingulate cortex [28], suggesting that the response of

cingulate neurons may be bistable. Even if single cortical neurons are

not bistable, a local neuronal circuit can show a bistable response

[19]. Although the bistability of cortical neurons in vivo remains to be

clarified, here we employed bistable single neurons for the simplicity

of modeling. The excitatory leaky integrate-and-fire neurons are

randomly connected by recurrent synapses with a uniform weight, as

represented by IR,i in Equation 1. In addition to the recurrent inputs,

each neuron receives partially correlated excitatory and inhibitory

synaptic inputs IE{I ,i from outside of the network. We did not

include inhibitory neurons for the simplicity of mathematical

analyses. In numerical simulations, the inclusion of inhibitory

neurons reduced the slope of climbing activity without changing

the essential property of temporal integration. The details of our

model are described in Methods.

All the neurons were initially set in the resting state in each trial

of temporal integration. If the external synaptic inputs do not

fluctuate, the membrane potentials are frozen at a subthreshold

value and the neurons do not fire. In the presence of fluctuations,

the membrane potential of each neuron randomly shifts around

this value and may eventually reach the threshold to generate a

spike, which in turn sets the neuron in the active state. In reality, a

single spike may not be sufficient to set a cortical neuron in the

active state. For the time being, however, we will employ the

oversimplified model to focus on the essential mechanism of

temporal integration. Simulations with a more realistic neuron

model will be shown later. As time advances, the individual

neurons undergo asynchronous transitions from the resting to the

active state. Below, we investigate how the number of active-state

neurons grows in time.

Perfect temporal integration of partially correlated
synaptic inputs

We numerically investigated how the number of active-state

neurons grows in time and how the slope of climbing activity is

modulated by the correlated spikes introduced into IE{I ,i. Consider

the situation that m input spikes are coincident with probability c at

arbitrary excitatory and inhibitory synapses (Figure 1A); namely,

among the fE input spikes arriving at any excitatory synapse in

1 second, an average of cfE spikes are coincident with spikes at some

other m{1 excitatory synapses. A similar condition is fulfilled by

the inhibitory synaptic inputs. The combination of m excitatory or

inhibitory synapses can vary from coincident event to event. We

note that changing the probability of spike coincidences c does not

change the average rate of input spikes. Correlated spikes are indeed

ubiquitous in the brain [36–41].

The fraction n tð Þ=N increased at an almost constant rate

(Figure 1B and 1C), where n tð Þ denotes the instantaneous number

of neurons in the active state in the neuronal population. More

interestingly, the rate of this linear growth was approximately

proportional to c (Figure 1D). Here, the growth rate was defined as

0:75{0:25ð Þ= t 0:75Nð Þ{t 0:25Nð Þð Þ in terms of the time t nð Þ of

transition n{1?n in the network. These results imply that the

number of active-state neurons represents the moment-to-moment

result of temporal integration of correlated spike inputs, where the

linear relationship between c and the slope of activity increase is a

signature of perfect temporal integration. We confirmed that

essentially the same results can be obtained in a similar recurrent

network model with realistic calcium dynamics (Text S1). This

model could also generate spontaneous activity in the resting state

of neurons.

Gaussian white-noise approximation of external input
To see the underlying mechanism of perfect temporal

integration, we introduce an approximate treatment of partially

correlated, yet irregular synaptic inputs. In general, the fluctuation

component of excitatory or inhibitory synaptic conductance

comprises temporally correlated noise (i.e., colored noise). Here,

however, we treat the fluctuation component as Gaussian white

noise j tð Þ with mean of 0 and variance of s2, and describe the

total synaptic current as

IE{I~Gtotal V{Esyn

� �
zj tð Þ, ð2Þ

with average total conductance Gtotal and effective reversal

potential Esyn (Material and Methods). Let fE and fI be the rate

of presynaptic spikes at an excitatory or an inhibitory synapse,

respectively. Then, it is immediately understood that changing the

value of c in partially correlated synaptic inputs varies s2, but does

not vary Esyn and Gtotal , since fE and fI are kept unchanged. We

can actually show that s2 is a linear function of c (Equation 9),

whereas Esyn and Gtotal are independent of c (Equation 8).

It is noted that such a separate variation of s2 is not obtained by

a balanced rate change of excitatory and inhibitory synaptic

inputs, which was recently suggested in cortical networks [42,43].

The balanced rate change, i.e., co-varying fE and fI while keeping

the ratio fE=fI constant, does not change Esyn, but does change

Gtotal as well as s2 (see Equations 8 and 10). The different effects

of partially correlated synaptic inputs and balanced synaptic inputs

are schematically illustrated in Figure 2A and 2B, respectively.

Author Summary

Spikes are the words that neurons use for communicating
with one another through their networks. While individual
cortical neurons generate highly irregular spike trains,
coincidently arriving spikes are considered to exert a
strong impact on postsynaptic-cell firing and hence to play
an active role in neural information processing. However,
little is known about whether computations by the brain
benefit from such coincident spikes. Here, we show in a
recurrent network model that coincident spikes embedded
in random spike trains provide a neural code useful for
highly accurate temporal integration of external input. In
fact, the proposed neural integration is almost perfectly
accurate in the mathematical sense. A wide range of
cognitive behavior relies on temporal integration. For
instance, it is a central player in sensory discrimination
tasks and interval timing perception. Our model provides
the neural basis for quantitative understanding of animal’s
decision behavior. In addition, it may account for why
cortical activity shows a heterotic feature with irregular
firing and synchronous spikes.

Recurrent Networks for Perfect Integration
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The Gaussian white-noise approximation of external input

allows us to analytically calculate the average rate of transition,

rk~0 nð Þ, from the resting to the active-state in each neuron

(Equation 12 in Material and Methods). By using this rate, we can

derive a recursive equation for the rate R nð Þ of the state transition

n?nz1,

R nð Þ~ N{nð Þrk~0 nð Þ, n§0ð Þ, ð3Þ

and the mean time t nz1ð Þ at which the above transition occurs,

t nz1ð Þ~t nð ÞzR nð Þ{1
, n§0ð Þ ð4Þ

where n is the instantaneous number of neurons in the active state.

Solving Equation 4 with boundary condition t 0ð Þ~0, we can

obtain the time evolution of n.

In Figure 3A, we calculated the growth rate R nð Þ=N for various

values of n by using Equation 3. For constant growth of n, the

growth rate should remain constant for an arbitrary value of n. For

given values of Gtotal and Esyn, this actually occurs if the strength

of recurrent connections, gR, takes an adequate value g�R
(Figure 3A, asterisk). If gRvg�R, the growth rate decreases

monotonically with n, or if gRwg�R, it increases with n in a highly

nonlinear fashion. Accordingly, the time evolution of n=N showed

clearly different profiles in the above three cases of gR (Figure 3B).

It is noted that if the neurons are mutually disconnected, the state

transitions in the individual neurons are mutually independent and

the growth of n is exponentially decelerated. At gR~g�R, recurrent

excitation induced an accelerating effect that counter balances the

deceleration effect [28]. All known models of neural integrator

require fine tuning of parameter values (in the present case, gR) to

a certain degree. We argued how this fine tuning may be obtained

by our model in a typical behavioral task to generate the presented

time interval (Text S1).

Perfect temporal integration with respect to the variance
As shown above, the slope of climbing activity generated by the

present network model is proportional to the probability of spike

coincidences in partially correlated synaptic input. The Gaussian-

white-noise approximation achieves a further insight into the

mechanism underlying the perfect temporal integration property.

Noting that c in partially correlated synaptic input is proportional

to s2, we solved Equations 3 and 4 while varying the value of s2,

with the values of gR, Gtotal and Esyn kept unchanged.

Surprisingly, the growth rate remains constant in a wide range

Figure 1. The behavior of the network model integrating the partially correlated synaptic inputs. Our network model represents the
moment-to-moment result of perfect temporal integration with the instantaneous number of active-state neurons. (A) Schematic drawing of the
partially synchronized synaptic inputs. Both excitatory and inhibitory synapses receive partially coincident spikes (dashed lines). (B) Linear growth of
the number of active-state neurons is shown with some examples of spike raster for various values of the probability of spike coincidence. Different
colors represent different values of the coincidence probability. The network model was examined by Monte Carlo simulations with explicit treatment
of the synaptic gate equation. (C) The growth rate was plotted as a function of the fraction of active-state neurons in the network. In accordance with
the linear growth of neuronal activation, the rate stays around a constant value (horizontal black lines) for wide range of the fraction. (D) The rate is a
linear function of the probability of spike coincidence. The grey straight line is obtained by the least square method.
doi:10.1371/journal.pcbi.1000404.g001

Recurrent Networks for Perfect Integration
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of n, with the constant value depending monotonically on s2

(Figure 4A). In accordance with this, n grows linearly with time at

the rate determined by s2 (Figure 4B, black lines). A close

inspection of the slope of this linear growth revealed that the

growth rate is proportional to s2 with remarkable accuracy

(Figure 4C). These results clearly demonstrate that the instanta-

neous number of active-state neurons represents the moment-to-

moment state of perfect temporal integration of the variance of

external stochastic synaptic inputs: n tð Þ!
Ð t

0
s2dt’~s2t (a more

rigorous expression is discussed later). We confirmed that the

analytical results qualitatively and quantitatively agree with the

numerical results obtained by Monte-Carlo simulations of

Equation 1 (Figure 4B, colored lines).

While the above results were obtained for fixed values of Esyn

and Gtotal , in reality, these quantities may be rapidly modulated if

the excitatory-inhibitory balance is changed in external synaptic

inputs. In the present model, however, Esyn and Gtotal should

remain constant during temporal integration. Actually, the growth

rate calculated at gR~g�R significantly varied with n, if we varied

Esyn (Figure 5A) or Gtotal (Figure 5B) while keeping s2 unchanged.

Moreover, the value of gR that achieves constant growth rate

changes with the value of Esyn (Figure 5C) or Gtotal (Figure 5D).

Therefore, the present model with fixed gR can produce the

constant-rate activation of neural population, only if Esyn and

Gtotal are clamped at constant values during temporal integration.

Partially correlated synaptic inputs provide a biologically plausible

representation of the fluctuating synaptic inputs that fulfill these

conditions.

Non-leaky property of temporal integration
The constancy of the growth rate shown in Figure 4A enables

our network model to integrate an external fluctuating input with

a high precision. In Figure 6A, the variance of the external input

was modulated by a sinusoidal function of time during temporal

integration. The fraction of active-state neurons in this network

represented the integral of a linear function of the variance as,

n tð Þ=N~A
Ð t

0
s2{s2

c

� �
dt, where A~13:8 and s2

c~

0:163 nA2 ms. This result demonstrates that the network can

perfectly integrate inputs if s2
§s2

c (otherwise, the integration is

Figure 2. Relationship between partially correlated synaptic
inputs and stochastic process. (A) Changes in the average effective
reversal potential, average total conductance and the variance of the
external inputs are shown schematically as functions of the probability
of spike coincidence in partially synchronized synaptic inputs. (B) Similar
changes in the same quantities are shown as functions of the rate of
balanced excitatory and inhibitory synaptic inputs, when the presyn-
aptic spikes are mutually uncorrelated.
doi:10.1371/journal.pcbi.1000404.g002

Figure 3. Effect of recurrent excitation on temporal integration
of the network model. (A) The growth rate of the number of neurons
in the active states is plotted for various values of the maximum
conductance of recurrent synapses. The upper the curve is, the larger
the conductance is. At an adequate value of the maximum conductance
(marked by asterisk), the rate is remarkably constant for a wide range of
the number of active-state neurons. (B) Time evolution of active-state
neurons is shown for three cases where the maximum synaptic
conductance is greater than (upper two), equal to (asterisk) or smaller
than (lower two) the adequate value.
doi:10.1371/journal.pcbi.1000404.g003

Recurrent Networks for Perfect Integration
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not really accurate). Consequently, the network model integrates

multiple external inputs presented at different time points with an

equal weight, irrespective of the temporal order of the presenta-

tion. To show this, we applied an identical set of external inputs to

the same network as used in Figure 6A in two different temporal

patterns (Figure 6B). The network integrated the two patterns of

stimuli in different manners, but the final activation of the network

was the same since it integrated the same total amount of input.

Thus, our model with the properties (i) and (ii) can integrate

external inputs in a non-leaky fashion. Note, however, that the

microscopic final states generally differ, that is, different

combinations of neurons are activated in the final state, since

the present temporal integration is essentially stochastic.

Information decoding in firing rate
Can downstream neurons read out the network’s output

represented by the number of active neurons? The number of

activate-state neurons would be proportional to the average firing

rate of the population of excitatory neurons, if each active-state

neuron fired at a constant rate. The firing rate, however, is

modulated by growing recurrent synaptic inputs. In fact, the

population firing rate displayed a highly nonlinear time evolution

(Figure 7A), where the rate was defined as F~ n=Nð Þrk~1 nð Þ in

the analytical treatment and F~ 1=Nð Þ
P

ts
g t{tsð Þ in the

numerical simulations. The causal filter g tð Þ~exp {t=tð Þ=t for

t§0 and g tð Þ~0 for tv0 (t = 20 ms), and ts stands for the times

at which any neuron fires in the network.

Below, we argue a possible mechanism to decode the number

information in firing rate. The decoder neuron is projected to by

sufficiently many neurons in the integrator network, and the

projections are mediated by NMDA synapses (Figure 7B). If the

time course of the NMDA current is sufficiently slow, the

amplitude of excitatory postsynaptic potential (EPSP) induced by

each active-state neuron eventually saturates and becomes less

sensitive to the presynaptic firing rate. Then, the sum of EPSPs

may be proportional to the instantaneous number of active

presynaptic neurons, so is the firing rate of the decoder neuron

(Figure 7C). For successful decoding, we used a relatively slow

NMDA current with the decay constant of 200 ms. Such a slow

NMDA current was recently reported in experiments [44,45].

Thus, the nonlinear rate change of integrator neurons is not

necessarily an obstacle to decoding the result of temporal

integration by downstream neurons. Interestingly, similar nonlin-

ear growth of cortical ensemble activity was recently observed in a

multi-unit recording study of temporal interval representation [8],

and is consistent with the prediction of our model. We also tested

whether the decoding is possible with short-term synaptic

depression [46,47]. Depressing synapses do not transmit informa-

tion on stationary presynaptic firing rates, so the sum of EPSPs

and the firing rate of decoder-neuron might be proportional to the

number of active presynaptic neurons. In our simulations,

however, this was not the case for experimentally observed ranges

of the physical parameters of synaptic depression (results not

shown). Depressing synapses did not reach a stationary state

rapidly enough.

Discussion

Neuronal activity recorded from cortical [3–8] or sub-cortical

[48,49] regions of behaving animals often exhibits a gradual

increase in the firing rate. This so-called climbing activity is

considered to reflect the temporal integration of internally or

externally driven information necessary for organizing behavior.

Previously, we proposed a recurrent network model of stochastic

Figure 4. Perfect temporal integration tested by Gaussian
white-noise approximation. (A) The constancy of the growth rate
found in Figure 3A (asterisk) is held if the variance of the fluctuation
component of external current is varied. The greater the variance is, the
larger the growth rate is. (B) In accordance with constant rates, the
number of active-state neurons grows linearly with time. Black lines
indicate analytical results obtained by solving Equation 4, while colored
lines indicate the numerical results obtained by Monte-Carlo simula-
tions of Equations 1 and 2. The numerical results were averaged across
100 trials. (C) The dependence of the growth rate on the input variance
is linear. The rate was estimated at the time point when the half of
neurons was activated.
doi:10.1371/journal.pcbi.1000404.g004

Recurrent Networks for Perfect Integration
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Figure 5. The dependence of the growth rate on the mean part of synaptic current. (A) The rate versus the number of active-state neurons
for various values of the effective reversal potential and a fixed value of the total synaptic conductance. The upper the curve is, the larger the reversal
potential is. (B) A similar plot for various values of the total synaptic conductance and a fixed value of the effective reversal potential. The upper the
curve is, the larger the conductance is. If the parameters determining the mean part are changed, the growth rate is no longer constant for the
strength of recurrent connections determined in Figure 3A. (C, D) Values of the maximum conductance of recurrent synapses that yields constant
growth rates are shown for different values of the average total conductance or the average effective reversal potential, respectively.
doi:10.1371/journal.pcbi.1000404.g005

Figure 6. Non-leaky property of the present temporal integration. (A) The integrator network was stimulated by an external fluctuating
input with sinusoidal modulations of the variance (upper). The network activity (lower, dashed curve) faithfully integrates a linear function of the
variance (grey curve), as given explicitly in the text. (B) Three external inputs A, B and C were applied to the integrator network in different temporal
patterns (upper traces). While the network responded to these sets of stimuli differently, it finally reached the same activation level (lower).
doi:10.1371/journal.pcbi.1000404.g006

Recurrent Networks for Perfect Integration
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bistable neurons in which a constant external current is integrated

with time [28]. In this model, noisy background inputs induce

asynchronous transitions of individual neurons between the resting

and active states, and the amplitude of the constant external

current modifies the transition rate, or equivalently, the slope of

the climbing activity. The model was suggested from the bistable

neuronal responses observed in climbing activity of anterior

cingulate neurons [28]. In the present study, we significantly

extended the previous model to improve the accuracy of temporal

integration. The novel feature of the present model is that it

perfectly integrates the correlation component of external synaptic

inputs, when the mean rate of inputs is fixed. We demonstrated

that the number of neurons in the active state increases linearly

with time and that the rate of this growth is proportional to the

probability of receiving coincident presynaptic spikes. It is in this

sense that the present temporal integration is perfect.

To obtain perfect temporal integration, the correlations

between input spike trains have to be modulated without changing

the rates of excitatory and inhibitory synaptic inputs (Figure 1A).

The Gaussian-white-noise approximation showed that such an

input protocol modulates the variance of synaptic inputs across

trials without changing the values of the reversal potential and the

total conductance of the synaptic current (Figure 2A). This type of

neural code has been suggested in the sound representations of the

primary auditory cortex [50]. While synchronization is considered

to be important for information coding in the brain [36,51], how

synchronization is utilized by cortical neurons, which typically

exhibit irregular neuronal firing, has not been fully clarified. Our

results suggest that the instantaneous correlations among irregular

synaptic inputs may provide a ‘‘fluctuation code’’ to represent the

quantitative information integrated by recurrent networks. We can

construct a network model to translate the input firing rate into

correlations between the output spike trains. The model will be

reported elsewhere. A limitation of the fluctuation code is that

fluctuations cannot represent negative input (or negative evidence

in decision making) to the integrator network. This limitation,

however, is not so serious since positive evidence and negative

evidence can be integrated by separate neural networks, which

may compete with one another.

It was recently suggested that excitatory and inhibitory synaptic

inputs are balanced in cortical neurons [42,43,52] and the

balanced input has advantage in information representation with

irregular neuronal firing [53]. When the net conductance of

excitatory synapses is increased on a neuron, the conductance of

inhibitory synapses is also increased on the same cell so that their

ratio may be kept unchanged. Such balanced rate changes

maintain the effective reversal potential of synapses at a nearly

constant level, but they change the total synaptic conductance

(Figure 2B). For example, if the inputs are given as mutually

independent Poisson spike trains, doubling fE and fI approxi-

mately doubles the variance in Equation 10 while keeping the

reversal potential unchanged. This manipulation, however, also

doubles the total conductance in Equation 8a, which would

significantly affect the linear growth of the number of active-state

neurons (Figure 5B). Therefore, synaptic inputs with balanced rate

changes in excitation and inhibition (and without correlations) do

not provide the fluctuation code used in the present model.

Our model represents the moment-to-moment result of perfect

temporal integration with the instantaneous number of active-state

Figure 7. Decoding the output of the temporal integrator
network with firing rate. (A) The population firing rate evolves with
time in a highly nonlinear fashion. Black and grey lines indicate
analytical and numerical results, respectively. (B) Neurons in the

integrator network project to a decoder neuron via NMDA excitatory
synapses. (C) The firing rate of the decoder neuron evolved constantly
with time.
doi:10.1371/journal.pcbi.1000404.g007

Recurrent Networks for Perfect Integration
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neurons, n. Since a simple integration process may be effectively

achieved by single neurons [26,35], using a population of neurons

for such computation seems to be non-economic. The population-

based computation, however, makes temporal integration robust

against noise or impair of single cells. Temporal integration in our

model is particularly robust against such obstacles because the

integration is essentially a random process without relying on a

precise temporal order of cell activation.

To our best knowledge, climbing activity appears when the

activity recorded from a single neuron is averaged over trials. Our

model exhibits climbing activity both when activity of a single

neuron is averaged over many trials and when activity in a single

trail is averaged over many neurons. Therefore, our model

supports the hypothesis that population climbing activity plays a

crucial role for decision making or temporal integration in single

trials. This hypothesis, however, should be examined by

simultaneous recording or imaging of climbing activity of

massively many neurons in behaving animals.

Contrary to the linear growth of n, the population firing rate

evolves in a highly nonlinear fashion (Figure 7A). Interestingly,

such accelerating growth of cortical ensemble activity was recently

observed in a multi-unit recording study of the cortical

representation of temporal interval [8]. Since neurons communi-

cate with each other through spike exchange, these findings

question whether perfect integration can be read out from the

population firing rate. In the present study, we demonstrated a

possible neural mechanism of the information decoding, by using

NMDA receptor-mediated synaptic current with a decay constant

(,200 ms) slightly longer than usual (Figure 7B). The decay

constant of NMDA synapses was shown to be two-fold larger in

the prefrontal cortex than in the primary visual cortex [44], and

can be as long as 1 s in striatal medium spiny neurons [45]. These

findings suggest that the prefrontal cortex and the striatum are

possible loci of the information decoding.

In psychologic modeling of decision timing, it is hypothesized

that the response for a particular decision is generated when the

integration of the relevant stimuli reaches a predefined threshold.

Response times show trial-by-trial variability even for a constant

environment, suggesting that the origin of this variability is

internal. Psychologic and neurophysiologic experimental evidence

suggests that the variability originates from trial-by-trial fluctua-

tions of the growth rate, but not the threshold, of temporal

integration [2,4,12,16,17]. A random background of excitatory

and inhibitory synaptic inputs is unlikely to be the source of these

fluctuations, since the effect of such noise is negligible when

sufficiently many synaptic inputs are involved in the background

noise. Our model predicts that a change in the correlations

between input spike trains produces a concomitant change in the

growth rate of the temporal integration (Figure 1D), and hence in

the response time. Indeed, spiking of multiple cortical neurons is

known to be significantly correlated [37–40]. On that hypothesis,

we conducted numerical simulations to see how the coefficients of

variance (i.e., the ratio of the variance to the average) of actual

response time depend on the target time. Weber’s law in

psychology tells that this ratio should remain constant as the

target time is varied in the range of second. Our model could

replicate this law (Text S1).

How advantageous is it for the brain to perform perfect

temporal integration? In the perception of interval timing, perfect

integration of constant or regular stimuli over time allows the

subject to measure time intervals accurately [54–56]. In addition,

perfect temporal integration modified with single-trial or trial-by-

trial fluctuations of the growth rate can account for the statistical

properties of reaction time [2,12,16,17]. In the oculomotor system,

perfect integration of eye velocity enables the brain to compute

accurate eye positions [57,58]. The non-leaky property of perfect

integration may allow the subject to accumulate and maintain

useful information about natural scenes [14,15]. To our

knowledge, the present study is the first to show a neural

mechanism of perfect temporal integration.

Materials and Methods

Model network
In Equation 1, the leak current is given as IL~GL Vi{ELð Þ,

where GL and EL are the conductance and reversal potential,

respectively, The neuron fires when the membrane potential Vi

reaches firing threshold Vh; then Vi is reset on Vreset and evolves

again according to Equation 1.

The afterdepolarizing current is represented as IADP~kiID with

constant current ID. The spike-triggered activation of the

depolarizing current and the associated neuronal state transition

are modeled as follows. All neurons are initially in the resting state,

during which ID is switched ‘off’ (ki~0 for any i). When neuron i
fires, ID is switched ‘on’ (ki~1) and the neuron is set to the active

state. In reality, the afterdepolarizing current may be generated in

cortical neurons by activation of Ca2+-dependent cation current

[33,34]. We employed the above simplified description to perform

an analytic study of the stochastic network dynamics.

The neurons receive K excitatory and L inhibitory external

inputs, and are randomly connected by excitatory synapses of an

equal maximum conductance, gR. The connectivity of recurrent

synapses was set as 20%. In addition, the neuron receives

stochastic external synaptic inputs. The recurrent excitatory

current and the external inputs are given as

IR, i~{gRsR,i tð Þ Vi{EAMPAð Þ, ð5Þ

IE{I~{gEsE, tot tð Þ V{EAMPAð Þ{gI sI ,tot tð Þ V{EGABAð Þ, ð6Þ

where EAMPA and EGABA are the reversal potentials of AMPA and

GABAA receptor/channel-mediated currents, respectively, and gE

and gI are the maximum conductances of excitatory and

inhibitory synapses, respectively. Synaptic activation variables

are sE,tot tð Þ~
PK

k~1 sE, k tð Þ, sI ,tot tð Þ~
PL

l~1 sI , l tð Þ and sR,i tð Þ~PN
j~1,j=i cijsR,j tð Þ, where cij~1 if neuron j projects to neuron i.

Otherwise, cij~0. Each gate variable s tð Þ obeys

ds=dt~{s
�

tgzpg 1{sð Þ
X

tj
d t{tj

� �
, 0ƒpgƒ1
� �

ð7Þ

for all types of synapse, where tg and pg g~AMPA, GABAð Þ are

the decay constant and the release probability of the synapse,

respectively, and tj represents the times at which presynaptic

neuron j fires. The excitatory and inhibitory external inputs are

described as Poisson processes of rates fE and fI , respectively.

Partially correlated synaptic inputs and Gaussian white-
noise approximation

The spike trains arriving at excitatory and inhibitory synapses in

Equation 6 are partially correlated, that is, presynaptic spikes are

synchronized at m excitatory and m inhibitory synapses with

probability c. This implies that the spike coincidences occur on

average KcfE or LcfI times in 1 second at m randomly-chosen

excitatory or inhibitory synapses, respectively. The Gaussian

white-noise approximation of Equation 6 gives a clear insight into
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the role of partially correlated synaptic inputs [37,59] in perfect

temporal integration by this network model.

Defining the total conductance and the effective reversal

potential of synapses as Gtotal tð Þ~gEsE,totzgI sI ,tot and Esyn~
gEsE,totEAMPAzgI sI ,totEGABAð Þ= gEsE,totzgI sI ,totð Þ, respectively,

we can express Equation 6 as IE{I~Gtotal tð Þ V{Esyn tð Þ
� �

, which

can be further decomposed into a constant part and a fluctuation

component, as shown in Equation 2. The time averages of the

total conductance and the effective reversal potential are given as

Gtotal~KgEsEzLgI sI ,

Esyn~
KgEsEEAMPAzLgI sI EGABA

KgEsEzLgI sI

ð8aÞ

sE~pAMPAfEtAMPA, sI~pGABAfI tGABA, ð8bÞ

where Equation 8b was derived from Equation 7 on the

assumption that fE%1=tAMPA and fI%1=tGABA.

We can show that s2 of partially correlated synaptic inputs is

given as the following linear function of c:

s2~ c m{1ð Þz1½ � KfEtAMPA pAMPAgE V{EAMPA

� �� �2
z

n

LfI tGABA pGABAgI V{EGABA

� �� �2o
,

ð9Þ

where V is the time average of the membrane potential. Since

Gtotal and Esyn are given as Equations 8a and 8b, respectively, and

they are independent of c, partially correlated synaptic inputs

selectively modulate s2 by changing c. For comparison, if the

random presynaptic spike trains processed at individual synapses

are mutually uncorrelated, the fluctuation component has mean 0,

and the variance is given as

s2~KfEtAMPA pAMPAgE V{EAMPA

� �� �2
zLfI tGABA pGABAgI V{EGABA

� �� �2
:

ð10Þ

The Fokker-Planck approach to the temporal integration
process

In general, the fluctuation component j tð Þ comprises tempo-

rally correlated noise (i.e., colored noise). In some of the present

analyses, however, we regarded j tð Þ as Gaussian white-noise with

mean of 0 and variance of s2, and employed the following Fokker-

Planck equation [60] for the probability distribution of the

membrane potential, when a neuron is innervated by the external

inputs and the recurrent inputs from the surrounding neurons in

the active state:

LP Vð Þ
Lt

~{
L

LV

1

~tt
~VVk{V
� �

P Vð Þ{ 1

2

L
LV

~ss2P Vð Þ
� �

zrk nð Þd V{Vresetð Þ:
ð11Þ

Here, ~VVk ~ GLEL zgRsR, tot tð ÞEAMPA zkIDzGtotalEsyn

� ��
GLzgRsR,tot tð ÞzGtotal

� �
, ~ss~s=Cm, ~tt~Cm

�
GL, n is the

instantaneous number of neurons in the active state, and rk nð Þ is

the inverse of the mean first-passage time that V takes to travel from

Vreset to Vh in the resting (k~0) or the active (k~1) state.

Therefore, rk~0 nð Þ is the average rate of transitions from the resting

to the active-state in each neuron, and rk~1 nð Þ is the mean firing

rate of an active-state neuron. The boundary condition is

P Vhð Þ~0.

When the number of active-state neurons is n at time t, we may

replace sR, tot tð Þ in ~VVk with the average value, sR,tot nð Þ&
npAMPArk~1 nð ÞtAMPA= 1zpAMPArk~1 nð ÞtAMPAð Þ. This approxi-

mation gives the equilibrium solution to Equation 11 as follows:

rk nð Þ~

s2

2

ðVh

V0

dx exp
1

~tt~ss2
x{ ~VVk nð Þ
� �2

� � ðx

{?

dy exp {
1

~tt~ss2
y{ ~VVk nð Þ
� �2

� �8<
:

9=
;

{1

:
ð12Þ

We can recursively solve rk~1 nð Þ and sR,tot nð Þ for n§1 by

replacing sR,tot nð Þ with sR,tot n{1ð Þ in the r.h.s. of Equation 12

and by using the boundary condition, sR,tot 0ð Þ~0. Then, rk~0 nð Þ
is calculated from sR nð Þ using Equation 12.

Parameter values
Unless otherwise stated, we use the following parameter values

in our simulations: N~500; Cm = 0.5 nF; GL = 20 nS;

ID = 0.12 nA; tAMPA = 2 ms; tNMDA = 200 ms; tGABA = 5 ms;

pAMPA~pGABA~0:8; EL = 270 mV; EAMPA = 0 mV; EGA-

BA = 280 mV; Vh = 252 mV; Vreset = 262 mV in the resting state

and Vreset = 254 mV in the active state; pAMPAgE = pGABAgI = 3 nS;

KfE = 1130 Hz; LfI~KfE
:tAMPA=tGABA; m~2.

Supporting Information

Text S1 This document includes three figures showing temporal

integration in a model with realistic intracellular calcium dynamics

(Figure S1), possible learning procedure for fine parameter tuning

(Figure S2), a numerical proof of Weber’s law (Figure S3) and the

mathematical details of the model with realistic calcium dynamics.

Found at: doi:10.1371/journal.pcbi.1000404.s001 (0.14 MB PDF)
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