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Abstract: Tunable mesoporous silica films were prepared though a sol-gel process directed by the
self-assembly of various triblock copolymers. Positron annihilation γ-ray energy spectroscopy
and positron annihilation lifetime spectroscopy (PALS) based on intense pulsed slow positron
beams as well as ellipsometric porosimetry (EP) combined with heptane adsorption were utilized to
characterize the open porosity/interconnectivity and pore size distribution for the prepared films.
The consistency between the open porosities was examined by the variations of orthopositronium
(o-Ps) 3γ annihilation fractions and the total adsorbed volumes of heptane. The average pore sizes
deduced by PALS from the longest-lived o-Ps lifetimes are in good agreement with those by EP
on the basis of the Barrett–Joyner–Halenda model, as indicated by a well fitted line of slope k = 1.
The results indicate that the EP combined with heptane adsorption is a useful method with high
sensitivity for calibrating the mesopore size in highly interconnected mesoporous films, whereas
PALS is a novel, complementary tool for characterizing both closed and open pores in them.

Keywords: open porosity; mesopore size; orthopositronium lifetime; positron annihilation lifetime
spectroscopy; ellipsometric porosimetry

1. Introduction

Mesoporous silica films have been extensively developed as separations, low-dielectric
interlayers, catalysts, gas sensors and adsorbents. Accurate control of the pore structure of
mesoporous silica is one of the most important issues for realizing its practical application
or expanding its specific application scope. The introduction of nanoscaled pores into silica
films has aroused great interest by using nonionic triblock copolymers [1–4] as structural
templates to tailor the pore size and morphology, benefitting from the self-organizing ability
of amphiphilic copolymers [4]. Meanwhile, accurate characterization of pore structures
is of great significance to improve the performance of functional silica films with specific
pore characteristics.

However, it is difficult for most traditional techniques to characterize nanopores
in submicron thin films fabricated on thick solid substrates. For instance, transmission
electron microscopy (TEM) is a common resort to probe the pore morphology of films [5].
However, the films must be scraped or sliced from the substrates, resulting in fragmentation,
which may not reflect the porosity of the intact films. Positron annihilation γ-ray energy
spectroscopy (PAES) [6,7] and positron annihilation lifetime spectroscopy (PALS) [8–10]
based on an intense pulsed positron beam have been proven as powerful and sensitive
tools to elucidate the nanoporosity of thin films on substrates. Ellipsometric porosimetry
(EP) combined with vapor adsorption has been successfully used to evaluate the open
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porosity of thin films [5,11]. Therefore, the combined application of PAES, PALS and EP is
expected to provide more detailed and reliable characterization for the difference in the
mesostructures of silica films.

In the present work, controllable mesoporous silica films were fabricated with the
assistance of different BASF triblock copolymers via a sol-gel route. The pore structures
of the fabricated films, such as pore interconnectivity/open porosity and pore size, were
examined by means of PAES, PALS and EP. The feasibility of PALS based on a slow positron
beam for accurately characterizing both closed and open pores in thin silica films was
verified by comparative studies on their mesoporosities measured by both PALS and EP
combined with vapor adsorption.

2. Materials and Methods
2.1. Preparation of Mesoporous Silica Films

A sol-gel process in accordance with the reported procedure [12] was applied to synthe-
size mesoporous silica films with adjustable mesopore sizes and morphologies. Tetraethoxysi-
lane (TEOS) was selected as the silica skeleton precursor. Amphiphilic BASF Pluronic
surfactants such as triblock copolymers F127 (EO106PO70EO106, Mw = 12,600 g/mol), F88
(EO100PO39EO100, Mw = 11,400 g/mol), F38 (EO43PO14EO43, Mw = 4700 g/mol) and P103
(EO17PO85EO17, Mw = 4950 g/mol) were introduced as the templating agents, respectively.
A surfactant solution was prepared by dissolving a fixed amount of 3.02 g BASF surfactant
(denoted by EOxPOyEOx, where x and y are determined by the above triblock copolymers)
in 40 mL anhydrous alcohol (EtOH). Typically, a precursor solution containing TEOS, EtOH,
HCl and H2O was developed under stirring at 100 ◦C. The precursor solution was aged at
100 ◦C for 30 min followed by the addition of the above surfactant solution. The mixed
solution was continuously stirred for 1 h. The masses of the respective compositions in the
final sols were 3.02 g EOxPOyEOx, 8.33 g TEOS, 55.28 g EtOH, 5.76 g H2O, and 0.0042 g
HCl. The mass ratio of EOxPOyEOx to TEOS was around 36.25%. The weight ratio of
EOxPOyEOx in all final sols was calculated to be about 4.2 wt%.

The final precursor sol was subsequently deposited on a polished monocrystalline
silicon (100) wafer by dip-coating [13,14] with a speed of 30 cm/min. The as-deposited film
was then cured at 100 ◦C for 3 h and finally calcined at 450 ◦C for 3 h to decompose the
surfactant template. For convenience, the mesoporous silica thin films were represented
by their corresponding surfactant names. Further, an additional set of the same films
were capped by nonporous SiO2 layers (about 20 nm in thickness) through electron-beam
sputtering [15] for PALS experiments.

2.2. PAES and PALS Based on Intense Pulsed Slow Positron Beams

All pore characterization experiments were done at the National Institute of Advanced
Industrial Science and Technology, Tsukuba, Japan. Positron annihilation γ-ray energy
spectra were conducted by a variable-energy pulsed slow positron beam with a Ge detec-
tor [5,7], both for the uncapped silica films and capped ones. The orthopositronium (o-Ps)
3γ annihilation fraction (I3γ) was estimated from the recorded γ-ray energy spectrum as
described elsewhere [16–19]. Positron annihilation lifetime spectra of the capped silica films
were collected using an intense pulsed positron beam [11,12,15,20]. The incident positron
energy (Ein) was fixed at 2 keV, at which the vast majority of positrons were injected into the
inside thin films. The total annihilation event counts for each spectrum was approximately
5 million. The time resolution was around 330 ps. Background subtraction was performed
by using the positron annihilation lifetime spectrum of Kapton film for reference [3]. All
films were heated at 250 ◦C for 30 min in nitrogen (N2) atmosphere to eliminate some
adsorbed water before the positron annihilation measurements. A continuous o-Ps lifetime
distribution was deduced from the measured positron annihilation lifetime spectra by
CONTIN program [21]. On the basis of the rectangular Tao-Eldrup (RTE) model [10,22,23],
the mesopore side length (aPALS) was computed from the longest-lived lifetime of o-Ps.
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2.3. Ellipsometric Porosimetry Combined with Heptane Adsorption

The schematic diagram of the apparatus of heptane adsorption is available in the
supplementary materials. A silica thin film was installed in the sample chamber equipped
with an ellipsometric porosimeter, an ultrahigh vacuum pump, a temperature control
console and a system for dosing heptane. The sample chamber was degassed to 10−5 torr,
and the film was heated at 250 ◦C for 30 min. When the temperature dropped to 30 ◦C,
heptane was introduced into the chamber up to a certain pressure (p), which is in the
range of 0.02~46.88 torr. The partial pressure (p/p0) is defined as the ratio of the heptane
pressure (p) to the saturated vapor pressure of heptane (p0), ranging from 0.003 to 0.803
determined by the dosing heptane. For each p/p0, the ellipsometric spectrum was measured
at 30 ◦C for the film filled by heptane. The characteristic parameters Ψ and ∆ were fitted
over wavelengths from 300 to 800 nm assuming the Cauchy model [24]. The observed
refractive index (no) at 630 nm was computed from the fitted ellipsometric parameters
upon successive heptane adsorption-desorption versus p/p0. The pore volume fractions
filled with heptane (Vfilled) were estimated in accordance with the following deduced
Lorentz–Lorenz formula [25]:

Vfilled =

(
n2

o − 1
n2

o + 2
−

n2
f − 1

n2
f + 2

)
/
(

n2
a − 1

n2
a + 2

)
(1)

In this study, nf refers to the fixed refractive index of the silica film at p/p0 = 0 and na
represents the refractive index of adsorbate (nheptane = 1.386) [25,26]. Hence, the physical
adsorption isotherms of heptane were measured by the changes of Vfilled values with p/p0
according to Equation (1) with the measured no. The open porosities of the films were
associated with the total adsorbed volumes of heptane at the high p/p0 regions.

Starting from the vacuum, as the p/p0 increases, the micropores (pore radius below
1 nm) at first are filled by the heptane. The pore surfaces are occupied layer-by-layer by
adsorption. The thickness of the adsorbed layer (t) increases progressively with p/p0,
which can be expressed as [25]

t = 5tmlg
p
p0

(2)

where tm denotes the thickness of monolayer adsorption of heptane, and 0.38 nm was
applied to the value of tm in Equation (2) [27]. For higher p/p0, the capillary condensation
takes place. The Kelvin radius (rK) is determined by the following Kelvin equation [28,29]:

rK =
2γVL

RT
ln

p
p0

(3)

where γ and VL refer to the surface tension and molar volume of heptane, respectively.
R stands for the ideal gas constant. T is the temperature, T = 303 K for the present work.
Capillary condensation happens in mesopores. Under the assumption of the cylindrical
pores, the pore radius (R) was therefore estimated by the rK and t,

R = rK + t (4)

From the physisorption isotherms, the Vfilled is a function of p/p0, namely Vfilled = f
(p/p0). Thus, R = f (p/p0) is evaluated. The pore size distribution (PSD) is calculated as the
change of dV/dR with R from the desorption data. To the first order approximation, under
assumption of a symmetrical and unimodal PSD, the average pore radius correlates with
the maximum value of the PSD [29].

3. Results and Discussion
3.1. Pore Interconnectivity/Open Porosity of the Mesoporous Silica Films

Figure 1 shows I3γ as functions of Ein both for the uncapped films (open symbols)
and capped ones (solid symbols), where the data for the F38 and F127 templated films
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were described in a previous paper [5]. As shown in a typical I3γ-Ein profile, such as for
the uncapped F38 templated film, I3γ climbs gradually as Ein increases to ~1.0 keV, due to
o-Ps escaping from adjacent film surface and annihilation in vacuum. I3γ almost remains
unchanged with the increase of Ein up to ~2.5 keV, which is attributable to positronium (Ps)
formation and Ps emission from the inside mesoporous film [7]. More and more positrons
are injected into the silicon substrate with the further increase of Ein. It is well known that
there is no Ps formation in silicon so that I3γ drops gradually to zero.
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Figure 1. The I3γ-Ein curves both for the uncapped films prepared with various triblock copolymers (open symbols) and
the corresponding capped ones (solid symbols). (The I3γ-Ein profiles for the films prepared with F38 and F127 are reprinted
with permission from [5]. Copyright 2012 American Physical Society).

The uncapped films prepared with different templates show their own characteristics
in I3γ profiles (Ein < 3.0 keV). For the film with F38, the initial increase and gradual decrease
of I3γ suggests a high pore interconnectivity [7]. The initial increase and plateau of I3γ
disappear for the other three films. For the film prepared with P103, I3γ falls sharply to a
quite low value (~3%) with increasing Ein to ~1.0 keV, indicative of few Ps atoms capable
of emitting out from the inside film with low pore interconnectivity [6]. High Ps diffusion
coefficients through well-connected pores [7] are revealed by the gradual decline of I3γ with
the increase of Ein to ~3.0 keV for the films templated by F88 and F127. It is worth noting
that for the two films, the open porosity/interconnectivity are very high, despite their lower
I3γ values in comparison with that for the film with F38. As was observed by the TEM
images reported previously [5], worm-like pores and cage-like pores are formed in the film
with F38 and F127, respectively. The larger cages are interconnected via smaller channels,
which make thermalized Ps atoms likely confined in the larger cages and hardly able to
pass through the smaller tubular channels between the cages to diffuse out from the films
due to the Ps quantum confinement effect [5,30,31]. The results suggest that Ps diffusion is
strongly affected both by open porosity/interconnectivity and pore morphology [32].

For the film prepared with P103, the I3γ-Ein curves are almost identical with and
without capping a nonporous SiO2 layer on the film surface, which are likewise well
coincided with the I3γ-Ein curve for the SiO2/Si film prepared without copolymer. The
result directly evidences that most pores are closed in the film with P103. It is rational
to observe the similar tendency of I3γ-Ein curves for the capped films with F38, F88 and
F127 because the nonporous SiO2 capping layers inhibit o-Ps escaping from the films [5],
except that the peak/plateau moves to higher Ein due to the increase of the film thickness.
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Therefore, the variations of I3γ show that closed pores are fabricated in P103 templated
film, but pores are well interconnected to the film surfaces in the other three ones.

Figure 2 depicts the heptane adsorption–desorption isotherms at 303 K for the meso-
porous films fabricated with different surfactants as functions of p/p0, where the ones
templated by F38 and F127 were displayed previously [5]. The heptane physisorption
isotherms of the silica films are found to be varied by the selection of different surfactants.
For the three films except the film prepared with P103, the adsorption–desorption processes
show a type IV isotherm, signifying mesostructures [33–35]. For the film templated by F38,
a type pseudo-H1 hysteresis loop [36] is observed, likely indicative of disordered tube-like
pores, confirmed with the worm-like pores by TEM [5]. The H1 loop exists in materials
with narrow ranges of uniform mesopores [37]. However, type H5 hysteresis loops [37] are
seen for the F88 and F127 templated films. The H5 loop exhibits a unique form related to
special pore structures including both open and partly closed mesopores [37], consistent
with the cage-like pores interconnected by the smaller tubular channels [5]. Moreover, the
capillary condensation step at p/p0 moves from around 0.2 for the film template by F88 to
about 0.3 for the one by F127, owing to the formation of larger mesopores in the latter.
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Figure 2. The heptane adsorption–desorption isotherms at 30 ◦C (303 K) of the mesoporous silica films prepared with P103,
F38, F88 and F127, respectively. (The isotherms for the films with F38 and F127 are reprinted with permission from [5].
Copyright 2012 American Physical Society).

Interestingly, for the film prepared with P103, Vfilled increases sharply with increasing
p/p0 from zero to about 0.2, and it keeps at a constant value with increasing p/p0 from ~0.2
to 0.6, corresponding to a reversible type I isotherm, a well-known Langmuir monolayer
adsorption isotherm [38]. Type I isotherms exist in materials with a wider PSD, containing
wider micropores and possibly narrower mesopores (of width < ~2.5 nm) [37]. The heptane
gas is no longer adsorbed even though p/p0 is further increased to higher than 0.6, showing
no larger open pores in the P103 templated film, as indicated by its absent hysteresis loop.
Vfilled reach constant values with increasing p/p0 above 0.2, 0.3, 0.35 and 0.5 for the film with
P103, F38, F88 and F127, respectively, attributed to their open porosity/interconnectivity
for corresponding silica films. The open porosities related to the total adsorbed volumes of
heptane at the high p/p0 regions [11] are calculated to be 16.9, 37.0, 38.6 and 40.3%, for the
films with P103, F38, F88 and F127, respectively. Among the four films, the highest open
porosity/interconnectivity is revealed by EP in the film template by F127, coincident with
the above discussion on the variation of I3γ.
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3.2. Pore Size Distribution of the Mesoporous Silica Films

Positron annihilation lifetime spectra recorded at Ein = 2 keV are demonstrated in
Figure 3 for the capped films with different triblock copolymers, where those except for
the F88 templated film were depicted previously [12]. Obviously, a longest-lived lifetime
component resulted from o-Ps annihilation in mesopores can be seen for all films. The
longest-lived components of the capped silica films change evidently, demonstrating
adjustable pore sizes by the selection of templating agent [12]. The slope of o-Ps component
for the films templated by various surfactants is in the order of F127 < F88 < F38 < P103,
which shows that the average pore size is in the order of F127 > F88 > F38 > P103.
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Figure 3. Positron annihilation lifetime spectra recorded at Ein = 2 keV for the capped mesoporous
silica films prepared with P103, F38, F88 and F127, respectively. (Positron annihilation lifetime
spectra for the films with P103, F38 and F127 are reprinted with permission from [12]. Copyright
2006 Elsevier).

Pore size distributions (PSDs) of the films with various templates are displayed in
Figure 4, calculated (a) by PALS according to the RTE model [10,22,23] from the longest-
lived o-Ps lifetime distributions of Figure 3 and (b) by EP based on the BJH model [39]
from the corresponding desorption isotherms of Figure 2. For the F38 templated film with
worm-like channels, the pore size was calculated by PALS under assumption of rectangular
pores because of its high interconnectivity, while the pore size of cage-like pores was
calculated assuming cubic pores for the other three films. Predominant peaks of PSD can
be seen for all films. The average pore sizes deduced by PALS are very close to those by EP.
The average pore side lengths by PALS are about 2.60, 2.96, 4.37 and 5.63 nm for the films
with P103, F38, F88 and F127, respectively, and the BJH pore diameters are around 2.20,
3.25, 4.18 and 5.46 nm, respectively.

Nevertheless, as demonstrated in Figure 4b, the height of BJH PSD peak for the
film with P103 is very low because of the inaccessibility for gas molecules into closed
pores. However, positrons can be implanted inside the film and Ps atoms are preferentially
localized in closed pores and annihilate therein, showing an obvious PSD peak of P103
templated film in Figure 4a. The full width at half maximum of PSD by PALS is much
higher than that by EP for the film templated by F38, because positrons can be trapped by
micro/mesopores that smaller than the minimum size pores detected by EP, resulting in a
broader PSD. The result indicates that PALS has more advantages in characterizing closed
pores and meso/micropore size distributions in mesoporous thin films.
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Figure 4. Pore size distributions of the films with various templates calculated by (a) PALS and (b) EP.

For the films templated by F88 and F127, both the PSD by PALS and the BJH PSD are
much broader than those for the film with F38. As is revealed by the hysteresis loops as
well as the TEM observations [5], uniform worm-like pores are formed in the film with
F38, and more generous cage-like pores exist in the films with F88 and F127. The cage-like
pores consist of larger cages and relatively smaller connecting channels. For instance, the
mean pore size of the connecting channels between neighboring cages was determined
around 2.5 nm for the film templated by F127 in the same way as previously published [2].
Heterogeneity of coexistence of cages and tubular channels probably results in broader
PSDs in the films templated by F88 and F127.

3.3. Comparison of Open Porosity and Pore Size by PALS and EP

The comparison of the average pore sizes obtained by PALS (aPALS) and EP (DEP)
is plotted in Figure 5. The circle represents the pore size calculated by the two methods.
All the pore sizes fall on a fitted line of slope k = 1 with the fitting variation of R2 = 0.96,
as seen red line in Figure 5. The linear fitting R2 approaches to 1, indicating that both
PALS and EP can precisely measure the mesopore size of porous silica films prepared
with various polymeric templates. Further, the fitting result shows that relatively larger
average pore sizes were obtained by PALS, because Ps atoms were preferentially localized
in larger pores.

The open porosities measured by EP (PEP) (black solid circles) and pore sizes obtained
by PALS (red solid triangles) and EP (blue open triangles), respectively, versus the refractive
index as well as the copolymer templates are exhibited in Figure 6. The black dashed line
is the linear fitting results of the refractive index dependence of the open porosity. The PEP
is evaluated by the simplified Lorentz–Lorenz equation, as formulated in Equation (1) with
the measured no. A linear relationship between the open porosity and the refractive index
appears for the films with various triblock copolymers. Interestingly, this relation offers the
refractive index n = 1.466 for nonporous silica if the line is extrapolated to open porosity
for PEP = 0.
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Figure 5. Pore sizes determined by EP of the films with various surfactants versus pore sizes by PALS.
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Figure 6. Open porosity measured by EP (black solid circles) and pore size by PALS (red solid
triangles) and EP (blue open triangles), respectively, as a function of the refractive index as well as
the copolymer templates.

The red and blue lines in Figure 6 represent the linear fitting results of the refractive
index dependence of “closed” pore sizes by PALS and EP, respectively. Although the
mesopores in the film synthesized by F127 are well interconnected and open to the film
surface, the diffusion length of Ps atoms in it is relatively short, so from the point of view
of Ps diffusion, the pores in both F127 and P103 templated films are so-called “closed”. For
the films with “closed” pores, it seems that the refractive index of nonporous SiO2 can be
obtained for both PALS and EP, when the pore sizes are epitaxial to 0. For the fitted bule
line investigated by EP, the intercept on the horizontal axis, which represents the refractive
index of nonporous SiO2, is 1.463, near to an ideal value of bulk fused quartz (1.460) [40].
Likewise, the red linear correlation between the pore size by PALS and the refractive index
gives a refractive index of nonporous SiO2 of 1.483, comparable to that from EP. The results
indicate that the open porosities/interconnectivities and pore sizes measured by PALS are
in good agreement with those by EP.

4. Conclusions

PAES and PALS based on slow positron beams as well as EP combined with heptane
adsorption were applied to investigate the open mesoporosity/interconnectivity and
mesopore size for the mesoporous silica films templated by different triblock copolymers.
Both the o-Ps 3γ annihilation fractions and heptane adsorption–desorption isotherms show
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more closed pores in the film with P103 and well connected mesopores in the respective
films with F38, F88 and F127. The linear relationship between the pore sizes with the
slope of 1 estimated by PALS and EP displays a good consistency with each other. For
the film fabricated by P103, the PSD peak deduced by the longest-lived o-Ps lifetimes
is more remarkable than BJH peak by EP, which signifies higher sensitivity for PALS in
determining closed pores than EP. The EP combined with heptane adsorption is a useful
method for calibrating the mesopore size in highly interconnected films, while PALS is a
novel, complementary probe for both closed and open pores.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14123371/s1, Figure S1: The schematic diagram of the apparatus of heptane adsorption.
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