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4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a significant enzyme in the biosynthesis

of plastoquinone and tocopherol. Moreover, it is also a potential target to develop new

herbicide. The technology of computer-aided drug design (CADD) is a useful tool in the

efficient discovery of new HPPD inhibitors. Forty-three compounds with known activities

were used to generate comparative molecular field analysis (CoMFA) and comparative

molecular similarity indices analysis (CoMSIA) models based on common framework and

molecular docking. The structural contribution to the activity was determined, which

provided further information for the design of novel inhibitors. Molecular docking was

used to explain the changes in activity caused by the binding mode between ligand and

protein. The molecular dynamics (MD) results indicated that the electrostatic energy was

the major driving force for ligand–protein interaction and the Phe403 made the greatest

contribution to the binding. The present work has provided useful information for the

rational design of novel HPPD inhibitors with improved activity.

Keywords: 4-hydroxyphenylpyruvate dioxygenase inhibitors, three-dimensional quantitative structure activity

relationship, molecular docking, molecular dynamics, molecular mechanics Poisson–Boltzmann surface area

INTRODUCTION

4-Hydroxyphenylpyruvate dioxygenase (HPPD), a Fe(II)-dependent non-heme oxygenase, belongs
to the α-ketoacid family and plays different roles in organism and plant cells (Rocaboy-Faquet
et al., 2014; Huang et al., 2016). It catalyzes the conversion of 4-hydroxyphenylpyruvate (HPPA)
into homogentisate (HGA), which is the first committed metabolism of the tyrosine catabolism
pathway in humans (Raspail et al., 2011; Moran, 2014; Silva et al., 2015). In plants, HPPD is an
essential element in the biosynthesis of plastoquinone and tocopherol; both of them are significant
cofactors in the photosynthesis. Inhibition of HPPDwill lead to a deficiency of the isoprenoid redox
cofactors, followed by the presence of bleaching in plants, eventually bringing necrosis and death
(Zou et al., 2007; Wang et al., 2015a).
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HPPD has been the subject as an important target for
development of new herbicides andmultiple series of compounds
have been designed and synthesized (Wang et al., 2014, 2015b;
Ndikuryayo et al., 2019). When applied pre- or post-emergence,
HPPD inhibitors provide control to the important broad leaf
weeds in maize and a certain amount of annual weeds (López-
Ramos and Perruccio, 2010). HPPD inhibitor herbicidesmanifest
many advantages, for instance, good activity, broad-spectrum
weed control, low mammalian toxicity, low residual rate, desired
selectivity, and environment friendly (Beaudegnies et al., 2009;
Cho et al., 2013; Schultz et al., 2015). However, the first case of
HPPD inhibitor herbicide resistance was confirmed in Iowa and
Illinois simultaneously in 2010 (Hausman et al., 2011; Kohlhase
et al., 2018). Monoculture production systems and multiple uses
of herbicides with similar mechanism of action contributed to the
generation of weeds resistance to the existing HPPD herbicides
(Duke, 2012; Larran et al., 2017; Ye et al., 2018). In response to
the evolution of herbicide resistance in weeds, discovering novel
inhibitors with high efficiency is urgent. Triketone compounds
represent one of the HPPD herbicides, and its substructure is
typically based on the 2-benzoyl or 2-heteroaroyl cyclohexane-
1,3-dione (Matringe et al., 2005; Roy and Paul, 2010). The activity
of triketone HPPD inhibitor was better than any other categories,
and they can directly exert effects in the weeds, causing plants to
die (Ndikuryayo et al., 2017; Lin et al., 2019).

In this research, a series of 2-(aryloxyacetyl)cyclohexane-1,3-
diones derivatives were selected to establish three-dimensional
quantitative structure activity relationship (3D-QSAR), applying
comparative molecular field analysis (CoMFA) and comparative
molecular similarity indices analysis (CoMSIA). Subsequently,
molecular docking and molecular dynamics (MD) study was
applied to analyze the robustness of the ligands inside the
receptor cavity and to learn more about the binding interactions.
The analysis strategy is shown in Figure 1. The obtained
information will contribute to the rational design of novel HPPD
inhibitors with powerful activity in the future.

MATERIALS AND METHODS

Data Collection and Preparation
A total of 43 2-(aryloxyacetyl)cyclohexane-1,3-diones derivatives
as effective inhibitors were collected to build 3D-QSAR models
based on the published literature (Wang D.W. et al., 2016).
The activity range of the inhibitors was 0.029–5.571µM.
The structures of these compounds were built and optimized
by SYBYL 6.9 to generate 3D structures with appropriate
conformation (SYBYL, 2006; Arvind et al., 2014). Simulations
were carried out by employing Tripos force field with energy
termination of 0.005 kcal/mol, and a maximum of 1,000
iterations. Gasteiger-Hückel charges were used to calculate the
partial atomic charges (Zhang et al., 2010).

Molecular Docking
Molecular docking study was applied to obtain corresponding
active conformations and analyze receptor–ligand interaction.
During the docking operation, 43 HPPD inhibitors were docked
into the active pocket of Arabidopsis thaliana HPPD (AtHPPD)

using the Accelrys Discovery Studio v3.5 (Catalyst, 2005). The
x-ray crystal structure of the AtHPPD (PDB code: 1TFZ) was
obtained from the RCSB Protein Data Bank (Yang et al.,
2004). All the redundant water molecules and co-crystallized
ligand were deleted from the complex before docking study;
hydrogen was added to the protein (Yang et al., 2013; Wang
D.W. et al., 2016). CHARMm force field was added to the
receptor and ligands, and the binding site was defined from
the known ligand pose (Fu et al., 2019a,b). Docking operation
was performed by CDOCKER protocol with the default docking
setting, in which 10 conformations were saved about each
ligand based on docking score values (Wu et al., 2003). The
postures of the ligands were checked manually, comparing with
the co-crystallized ligand (DAS869) in the 1TFZ and other
reported inhibitor-enzyme complex crystals (Lin et al., 2019).
The chemical structure of the DAS869 is shown in Figure 2.
Molecules removed the unreasonable conformations and were
used to build the QSAR models. The ligands with the best
CDOCKER_ENERGY were employed for the analysis of the
binding mode.

Alignment of Compounds
Alignment step was extremely important in the process of the
development of 3D-QSAR models. The whole data set was
divided into training set and test set to develop and validate the
model. Random selection is a popular utilized method to build
the QSAR models, and the diversity of chemical structures and
activities was also considered. Nine compounds were selected as
test set, and their structures were abundant, while their pK i values
were uniformly distributed in terms of the value range of the
whole set.

To develop an ideal model, two different alignment measures
were employed. The first alignment rule was a common
framework approach, which appointed the molecule 12 with the
best activity as the framework template (Wang J.H. et al., 2016).
In this strategy, a multi-search method was applied to search
aligning postures with the lowest energy, followed by using the
“align database” tool in SYBYL 6.9; all the other compounds
were superimposed to the template with the form of common
scaffold. Differing from the previous protocol, the second strategy
was a receptor-based approach, which states that all molecular
conformations were obtained from docking simulation rather
than the previous one on the basis of atoms. The best active
molecule 12 with docking conformation was chosen as the
template molecule.

3D-QSAR Model Generation and Validation
A standard development of CoMFA or CoMSIA model was
performed by the partial least squares (PLS) regression analysis
to select interrelated components and set up the optimal 3D-
QSAR model (Dong et al., 2017). A sp3 carbon atom, as
the steric probe, was used with a charge of +1.0 in the
process of steric and electrostatic field in CoMFA generation.
For CoMSIA analysis, five descriptor fields, namely steric,
electrostatic, hydrophobic, H-bond donor, and H-bond acceptor
field, were selected to simulate models (Kothandan et al., 2011).
pK i values, which were negative logarithm converted from
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FIGURE 1 | The computational workflow was applied.

FIGURE 2 | The chemical structure of DAS869, mesotrione, and compounds 01 and 02.

AtHPPD inhibition K i values, were carried out as the dependent
variable for model development. To establish a model with
excellent prediction ability, the leave-one-out (LOO) strategy was
used to carry out the cross-validation analysis. The optimum

number of components (ONC) was calculated and the cross-
validated coefficient (Q2) was obtained to evaluate the model.
The model was followed by the non-cross-validation analysis
and the coefficient of determination (R2), the standard error of
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estimate (SEE), and the F value were calculated based on the
ONC originated from LOO (Arvind et al., 2014). The predicted
correlation coefficient for the test set (R2

pred
) was used to examine

the predictive power of the model. In addition, the reliability and
effectiveness of the model were measured through comparing
the experimental pK i values with the predicted pK i values of the
data set.

Molecular Dynamics
A portion of docking complex adopted for MD was designed to
explore the major driving force for ligand–receptor interactions
and analyze the related amino acid residues. Two representative
inhibitors, compound 01 and 02, and commercial herbicide,
mesotrione, were selected to perform simulation in the best pose
of docking. The chemical structure of these three compounds
is shown in Figure 2. Compound 01 represented the backbone
of this class of compounds, and the change in the activity of
compound 02 was attributed to the introduction of methyl
groups at the 5-position of R1. Mesotrione, a widely used
herbicide, was used as a control compound in this study.

The ligand, receptor, and complex information of the two
docking structures were introduced in Amber 16 (Case et al.,
2016). Initially, the ligands were formatted in Antechamber
program and AM1-BCC protocol was employed to calculate the
partial atomic charges of molecules. The metal ion, Fe(II), in
the protein needed to be specially treated, which was critical
to build non-bonding model with simple form and excellent
transferability implemented. The metal center parameter builder
(MCPB) module of Amber was used to modify Fe(II)-amino
acids interaction including His205, His287, and Glu373 (Peters
et al., 2010; Li, 2014). The side chain connecting Fe(II) was
treated by the restrained electrostatic potential (RESP) tool
of Gaussian03. Meanwhile, the atomic partial charges and the
geometry optimization were calculated (Frisch et al., 2004).
Angle, bond, torsion, improper torsion, van derWaals, and other
information parameters were performed through the MCPB.
The charge neutralized and solvated progress were generated
in the “LEaP” module. In order to produce the appropriate
topologic and coordinate files required for the MD simulations,
the generalized Amber force field gaff and ff14SB force field were
used for ligand and receptor, respectively (Hornak et al., 2006). A
rectangular box of TIP3P water was added to the system with a
boundary of 10 Å from the edge of the box to the complex atom,
and sodium ions that assisted tomaintain the electrical properties
reflected the neutral state (Gadd et al., 2017). The optimization
process was divided into three parts with different constraints.
Each section included the steepest descent method of 2,500 steps
and the conjugate gradient method of 2,500 steps as well. Heating
of the system was a gentle rise in temperature from 0 to 298K in
the canonical (NVT) ensemble with 20 kcal mol−1 Å−2. A density
balance achieved in 500 ps with fixed protein backbone atoms
to allow relaxation of the solvent and overall equilibrium lasting
1 ns was performed to ensure the equilibrium state of the MD
simulation conditions. Subsequently, the whole simulation was
over the course of 10 ns with a 2-fs step.

The procedure of combining free energy calculation was
applied to the molecular mechanics method based on all atoms

and Poisson-Boltzmann solvation area (MM-PBSA) measure
(Hao et al., 2011). The average over the extracted snapshots from
the MD stable trajectories was used to compute the free energy.
Based on the following equations, the correlative binding free
energies were obtained:

1Gbind = Gcpx − Grec − Glig (1)

1Gbind = 1EMM + 1Gsol − T1S (2)

1EMM = 1Eint + Eele + Evdw (3)

1Gsol = 1GPB + 1GSA (4)

where 1EMM is determined by the internal energy (1Eint)
contributed from bonds, angles, and torsions, the van der Waals
energy (1Evdw), and electrostatic force (1Eele). 1Gsol denotes
the solvation free energy, which consists of the polar solvation
contribution (1GPB) and non-polar solvation contribution
(1GSA). As the contribution of entropy is insignificant for a series
of similar systems, T1S items are excluded in our study (Fu et al.,
2017, 2018).

To obtain the detailed interactions between the HPPD
and inhibitors, the binding free energy was decomposed onto
each individual residue using the MMPBSA.py module. In the
decomposition process, the van der Waals contribution (1Evdw),
the electrostatic contribution (1Eele), and the free energy of
solvation (1Gsol) in the binding process of enzyme and ligands
were calculated and the contribution of entropy was omitted.

1Ginhibitor _ residue = 1Evdw + 1Eele + 1Gsol (5)

RESULTS AND DISCUSSION

3D-QSAR Models
The framework of molecules, each molecular structure, and the
activity values are shown in Table 1. Six statistical parameters
including the Q2, ONC, R2, SEE, F, and R2

pred
value are obtained

to assess the creditability of each 3D-QSAR model. As far as Q2

and R2 are concerned, they are considered as two vital standards
to evaluate the quality and predictive capability of the QSAR
models. In addition, a low SEE value and good F and R2

pred
values

are also crucial for a reliable model.
The parameters of the obtained models are listed in Table 2.

The best CoMFA model based on common framework was
established with a best cross-validated correlation coefficient
value (Q2 = 0.872) and a high conventional correlation
coefficient (R2 = 0.999). The optimum number of components
(ONC) was 10 and the contributions of steric and electrostatic
fields were 52.3 and 47.7%, respectively. The standard error
of estimate (SEE) was 0.024, the F value was 1776.949, and
the predicted correlation coefficient (R2

pred
) was 0.863, which

proved that the model possessed great predictable capability.
The CoMFA model based on molecular docking was built with
Q2 = 0.693 and R2 = 0.998, and at this time, the ONC value
was 10; the SEE value of 0.034, the F value of 898.323, and the
R2
pred

value of 0.828 were also obtained. The contribution rate of

the steric field was 83.4% and that of the electrostatic field was
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TABLE 1 | The structure of 2-(aryloxyacetyl)cyclohexane-1,3-diones derivatives and corresponding experimental and predicted activity.

Comp. R1 R2 pKi

Exp. Common framework Docking conformation

CoMFA CoMSIA CoMFA CoMSIA

01 H H 5.906 5.923 5.954 5.962 6.007

02 5,5-diCH3 H 5.254 5.257 5.218 5.243 5.218

03 H 2-CH3 6.049 6.067 6.052 6.061 5.996

04 5,5-diCH3 2-CH3 5.797 5.806 5.810 5.774 5.774

05* H 3-CH3 6.206 6.266 6.236 6.443 6.643

06 H 4-CH3 6.005 5.979 5.992 5.969 6.005

07 H 4-OCH3 6.521 6.496 6.534 6.532 6.557

08 H 2-SCH3 6.223 6.218 6.242 6.237 6.216

09* H 2-Cl 5.942 6.102 6.115 5.634 5.561

10 5,5-diCH3 2-Cl 5.669 5.685 5.614 5.683 5.677

11 H 3-Cl 7.125 7.105 7.078 7.042 7.142

12 H 4-Cl 7.538 7.549 7.403 7.568 7.426

13 H 2-CF3 6.873 6.899 6.826 6.862 6.894

14* H 3-CF3 6.251 6.383 6.185 6.412 6.187

15 H 4-CF3 5.978 5.978 6.049 5.981 6.019

16 H 2-NO2 7.347 7.338 7.316 7.344 7.328

17 H 4-SO2CH3 6.451 6.448 6.404 6.481 6.419

18* 5-CH3 4-SO2CH3 6.264 6.126 6.226 6.171 6.202

19 H 2,3-diCl 6.947 6.939 7.006 6.959 6.949

20 H 2,4-diCl 7.367 7.419 7.204 7.351 7.314

21 H 2,5-diCl 6.917 6.895 6.976 6.954 6.884

22* H 2,6-diCl 7.347 7.298 7.302 7.252 7.194

23 H 3,4-diCl 6.573 6.562 6.553 6.576 6.624

24 H 3,5-diCl 6.020 6.021 6.018 6.047 5.987

25 5-CH3 2,4-diCl 6.706 6.687 6.708 6.728 6.723

26* 5,5-diCH3 2,4-diCl 5.318 5.154 5.254 5.123 5.788

27 4,4-diCH3 2,4-diCl 6.616 6.599 6.576 6.629 6.628

28 H 2,4-diBr 7.180 7.180 7.209 7.158 7.204

29 5,5-diCH3 2,4-diBr 7.056 7.059 7.057 7.062 7.022

30 H 2-CH3-4-F 6.682 6.693 6.773 6.701 6.64

31 H 2-CH3-4-Cl 7.509 7.487 7.387 6.933 6.468

32 5-CH3 2-CH3-4-Cl 7.432 7.386 7.476 7.451 7.493

33 5,5-diCH3 2-CH3-4-Cl 6.959 6.965 6.935 6.932 6.932

34* 4,4-diCH3 2-CH3-4-Cl 5.699 5.612 5.715 5.375 5.364

35 H 2-CH3-4-Br 7.108 7.154 7.229 7.081 7.164

36 H 2-CH3-4-NO2 7.114 7.130 7.145 7.093 7.113

37 H 2-Cl-4-F 6.262 6.278 6.237 6.212 6.28

38* H 2-Cl-4-NO2 7.469 7.580 7.536 7.074 7.478

39 H 2-F-4-Cl 6.455 6.439 6.516 6.428 6.438

40 H 2-NO2-3-CH3 7.161 7.149 7.166 7.197 7.185

41 H 3,5-diF-4-CN 7.086 7.076 7.116 7.096 7.091

42 H 2,4,6-tri-Cl 6.735 6.736 6.725 6.722 6.765

43* H 2,3,4,5,6-5F 7.260 7.163 7.189 7.155 7.411

Mesotrione 7.886

*Indicates the test set of compounds.
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TABLE 2 | Results of CoMFA and CoMSIA models.

Common framework Docking conformation

Parameter CoMFA CoMSIA CoMFA CoMSIA

Q2 0.872 0.864 0.693 0.823

ONC 10 10 10 10

R2 0.999 0.990 0.998 0.995

SEE 0.024 0.069 0.034 0.050

F 1776.949 215.356 898.323 425.569

R2
pred

* 0.863 0.850 0.828 0.801

Contribution (%)

Steric 52.3 9.4 83.4 9.7

Electrostatic 47.7 24.2 16.6 16.4

Hydrophobic – 28.5 – 31.4

Donor – 26.5 – 30.6

Acceptor – 11.3 – 11.9

*Indicates the statistical characteristics for the test set.

16.6%, which suggested that the steric field had more influence
on the inhibition than the electrostatic field. The statistical values
of the CoMFA model from molecular docking were found to
be inferior to those from the common framework, especially
on the cross-validated correlation coefficient value (0.693 and
0.872, respectively).

The CoMSIA model, based on common framework, gave a
good Q2 value of 0.864 and an ideal R2 value of 0.990 with
10 components. All the parameters of the model, containing
the SEE value of 0.069, the F value of 215.356, and the
R2
pred

value of 0.850, are shown in Table 2. The model was

generated through a combined use of five fields, steric field,
electrostatic field, hydrophobic field, hydrogen bond donor,
and hydrogen bond acceptor. The contributions were 9.4, 24.2,
28.5, 26.5, and 11.3%, respectively. Electrostatic, hydrophobic,
and hydrogen bond donor field had a greater impact on the
CoMSIA results, and by modifying these characteristics, the
activity would be promoted. The CoMSIA model provided
more comprehensive information than CoMFA. The CoMSIA
model based on molecular docking led to a satisfactory Q2

value of 0.823 using 10 components and an R2 value of 0.995
with SEE = 0.050, F = 425.569, and R2

pred
= 0.801. The

contributions of steric field, electrostatic field, hydrophobic
field, hydrogen bond donor, and hydrogen bond acceptor
were 9.7, 16.4, 31.4, 30.6, and 11.9%, respectively, which was
roughly similar as the proportion of the CoMSIA model from
the common framework. The parameters indicated that the
CoMSIA models generated by two strategies had both satisfying
conventional statistical correlation and good predictive ability
of bioactivity.

The plots of the experimental vs. the predicted activity
values for all of the compounds are shown in Figure 3. The
linear relation between the experimental and predicted pK i was
excellent for either the CoMFA or CoMSIA model from the
common framework or molecular docking, indicating closeness
of the experimental and predicted biological activity values, and

the strong predictive power of the model could be verified.
The alignments of the molecules are shown in Figure 4. The
molecules used for the common framework alignment were
derived frommultiple search, which resulted in the conformation
of the molecule exhibiting a low energy fold (Figure 4A).
The alignment from molecular docking was not the same.
During the interaction of the protein and the inhibitors, the
conformations of the molecules were in a stretched state
(Figure 4B). The conformation of the oxygen atoms used for
chelation was highly similar, resulting in a high degree of
overlap in this portion. The remaining molecular groups exhibit
different postures under the influence of proteins due to their
different properties.

CoMFA Results
In order to analyze the general feature of the steric and
electrostatic field contribution, the structure–activity relationship
calculation results of the CoMFA were demonstrated using the
contour maps. The steric field result from common framework
is shown in Figure 5A; the green color represented that the
bulky group was favorable to the bioactivity of the HPPD
inhibitors. On the contrary, the less bulky substituent, which was
a benefit to the bioactivity, was marked in yellow. Comparing
compound 01 with compound 06, it was found that the activity
was increased with the change in pK i values from 5.906 to
6.005 when the hydrogen atom at 4-position of the benzene
ring was replaced by methyl. A small yellow area was in the
near 5-position of the benzene ring, which suggested that bulky
substituents at this site exerted an adverse impact on inhibition.
For example, compounds containing a hydrogen atom always
displayed better activity than the derivatives (comp. 02, 04, 10,
18, 25, 26, 29, 32, and 33) bearing one or two methyl groups
as side chain. The contour map of the electrostatic descriptor
based on the common framework is presented in Figure 5B,
where the blue region indicated that the electropositive groupwas
favorable to enhance the efficiency of the compounds; in contrast,
the red region represented that the electronegative substituents
would be conducive to the activity of the compounds. This
map meant that the substituents at 2- and 3-position of R2

would have an electropositive effect, and it was better to
have an optimum electronegative action at 4- and 6-position
of R1.

The CoMFAStDev∗Coeff contour maps, based on molecular
docking, are shown in Figure 6 and provided some additional
guidance. The steric effects of the substituents need to be
increased at the 4- and 5-position of R2, while the introduction of
bulky groups should be avoided. The supplement offered by the
electrostatic field was that the 4- and 6-position of R2 were more
suitable for negative groups. For example, compound 42 (R2 =

2,4,6-tri-Cl, pK i = 6.735) showed better activity than compounds
01 (R2 =H, pK i = 5.906) and 09 (R2 = Cl, pK i = 5.942).

CoMSIA Results
To visualize the generated results, contour maps of CoMSIA
based on the common framework is presented in Figure 7.
The steric field and electrostatic field of the CoMSIA model
based on the common framework (Figures 7A,B) provided the
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FIGURE 3 | The alignment of the molecules using (A) the common framework and (B) the docking simulation. Molecules are displayed in white for common C, red for

O, blue for N, yellow for S, and green for F and Cl atoms, respectively. For a clear observation, hydrogen atoms are hidden.

FIGURE 4 | The plot of experimental and predicted activity based on the common framework (A,B) and molecular docking (C,D).

spatial and electrical impact of the substituents on the inhibitor,
which were basically similar to the information obtained by
the CoMFA contours. Figure 7C depicted the hydrophobic field
of CoMSIA, in which white and yellow regions reflected the
preference of hydrophilic substitutions and hydrophobic groups.
Two white regions at the 3- and 5-position of R2 symbolized
that the addition of the hydrophilic group would enhance the

activity; however, introducing a hydrophobic group in the 4-
position of R2 wrapped in yellow would also increase the
inhibition, which was supported by compound 41 (R2 = 3,5-
diF-4-CN, pK i = 7.086) being more active than compound 24
(R2 = 3,5-diCl, pK i = 6.020). The hydrogen bond donor is
displayed in Figure 7D. In this plot, the cyan displayed positions
where a H-bond donor group would be favorable for higher
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FIGURE 5 | CoMFAStDev*Coeff contour maps based on the common framework. (A) Steric contour map. Green and yellow contours show regions where steric bulk

has favorable and unfavorable effects on the inhibition ability, respectively. (B) Electrostatic contour map. Blue contours indicate regions where electro-positive groups

increase the activity, while white contours indicate regions that were electro-negative.

FIGURE 6 | (A) Steric and (B) electrostatic contours of the CoMFA from molecular docking.

FIGURE 7 | CoMSIAStDev*Coeff contour maps based on the common framework. (A) Steric contour map. (B) Electrostatic contour map. (C) Hydrophobic contour

map. Yellow and white regions suggest the preference of hydrophobic groups and hydrophilic substitutions, respectively. (D) H-bond donor contour map. Cyan

illustrates regions in which the introduction of a H-bond donor group is favored. Purple illustrates regions where the introduction of a H-bond donor group is

disfavored. (E) H-bond acceptor contour map. Purple areas are the regions where H-bond acceptor is conducive to the activity; red areas are unfavorable.
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FIGURE 8 | (A) Steric, (B) electrostatic, (C) hydrophobic, (D) H-bond donor, and (E) H-bond acceptor contours of the CoMSIA from molecular docking.

activity. In contrast, purple indicated positions where the H-
bond donor of the target molecules is unfavored. There was a
cyan contour near the 5-position of the six-membered ring and
a small purple contour a little further from the 4-position. The
content of Figure 7E showed the effect of the H-bond acceptor
on the activity of the molecule, where the magenta and red
contours stand for the promotion and suppression of inhibition
effect, respectively. The characteristic contours were not at the
substituent site, so we could infer that the influence of the
H-bond acceptor was minimal to the activity of these series
of compounds.

The CoMSIA results of molecular docking are shown
in Figure 8, and the following discussion focused on the
parts that were not obtained previously. The hydrophobic
field of CoMSIA gave us a new perspective of a yellow
contour with small size surrounding the 5-position of R1. It
suggested that a hydrophobic substituent at this position
would increase the inhibitory efficiency. The favorable results
of hydrogen bond donors were formed around the hydroxyl
group on the six-membered ring, while there were also
favorable regions for hydrogen bond acceptors covering the
ketone carbonyl of the triketone structure. These results
were in line with the actual active data and could prove
the accuracy and credibility of our CoMSIA model based
on docking.

Molecular Docking Analysis
The structure of compounds 01 (pK i = 5.906) and 02 (pK i

= 5.254) only differed from two methyl groups, but their
activities were slightly different. Both were not as active as
mesotrione (pK i = 7.886), which aroused our interest. The
overall orientation of these three molecules within the active
site pocket of AtHPPD is shown in Figure 9, and it was found
that all molecules were fit well into the active cavity. In the
process of complexing enzymes and inhibitors, the binding
mode of the compound being studied was similar to that of
the co-crystallized ligand (DAS869). The three amino acids
(His205, His287, and Glu373) involved in chelation with the
metal ion remain the same as the co-crystal complex (Yang et al.,
2004). The two coordinating water molecules were displaced
by different inhibitors. The distances from the 1,3-diketone

moiety of the DAS869 inhibitor to the Fe(II) were measured
to be 2.3 and 2.4 Å. The chelation distance of compounds
01 and 02 and mesotrione was refined to a range of 2.3–2.4
Å. It is worth noting that Phe360 and Phe403 formed π-π
stacking interaction with the benzoyl moiety of DAS869, and
similar effects occurred in the benzene of compounds 01 and 02
and mesotrione.

The conformations of the same part in compounds 01 and
02 were similar. Due to the presence of methyl, the activity
of compound 02 was significantly weakened because the two
methyls occupied a large pocket space. This inference was
consistent with the QSAR results that on the 5-position of R1,
the smaller group was beneficial to increase the inhibitor activity.
The docking result of mesotrione showed that the conformation
of the six-membered ring was different from that of compounds
01 and 02, and it fitted more closely to the active pocket.
The activity of the compounds in this study was lower than
that of mesotrione, probably because the oxygen atom in the
framework structure affected the conformation of the molecule.
The presence of an oxygen atom reversed the six-membered
ring of compounds 01 and 02, which, although not affecting
its coordination with the iron atom, reduced the activity of the
inhibitor. At the same time, the carbon chain was elongated,
causing the benzene ring to move back, and π-π interaction
was weaker than that of mesotrione. To further explore the
factors influencing activity, MD simulations were applied to these
three compounds.

MD Analysis
In order to verify whether the systems reached equilibrium
during the dynamics simulation, the root-mean-square deviation
(RMSD) was calculated, which reflected the dynamic change
of the entire structure in the simulation process. RMSD values
included the backbone Cα atoms of the protein, active pocket
with residues of 5 Å around ligand, and the heavy atoms
of ligand (Figure 10). All systems were dynamically changing
throughout the kinetics. The RMSD values of the backbone of
the compound 02 and mesotrione systems were small, showing
higher stability throughout the simulation, and the skeleton
structure of compound 01 was more unstable. It is worth
noting that mesotrione in the protein complex was not as
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FIGURE 9 | Binding model of (A) compound 01, (B) compound 02, and (C) mesotrione.

stable as ligands 01 and 02 during the simulation. Mesotrione
entered an unstable phase at 5 ns and eventually restabilized
at 9–10 ns. All the RMSDs were steady in the last 1-ns
simulation process maintained within the 0.5-Å range. The
equilibrium stage of the MD simulation was taken for the
binding free energy and free energy decomposition analysis of
each compound.

The calculated results are given in Table 3 including the
van der Waals interaction energy (1Evdw), the electrostatic
energy (1Eele), the polar solvation free energy (1GPB), the

non-polar solvation free energy (1GSA), the interaction energy
(1EMM), the solvation contribution (1Gsol), and the overall
binding free energy (1Gbind). It could be seen that the total
binding free energies of compounds 01 and 02 and mesotrione
were −19.81, −3.65, and −28.34 kcal mol−1, respectively.
The calculated binding energy was in good agreement with
the experimental activity order. As shown in Table 3, the
electrostatic terms occupied the principal driving forces for the
three complexes, which made a supreme contribution to the
binding free energy. The 1Evdw, 1Eele, and 1GSA calculated
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FIGURE 10 | RMSD of (A) compound 01, (B) compound 02, and (C) mesotrione.

TABLE 3 | Binding free energy (kcal mol−1) of compounds 01 and 02 and mesotrionea.

System 1Evdw 1Eele 1GPB 1GSA 1EMM 1Gsol 1Gbind

Compound 01 −26.48 (±2.49) −92.50 (±6.88) 102.45 (±3.64) −3.28 (±0.06) −118.98 (±6.03) 99.17 (±3.63) −19.81 (±4.72)

Compound 02 −31.30 (±3.13) −76.36 (±5.52) 107.68 (±5.01) −3.69 (±0.07) −107.65 (±4.62) 104.00 (±4.95) −3.65 (±4.57)

Mesotrione −41.97 (±1.89) −74.11 (±3.13) 91.38 (±3.01) −3.64 (±0.05) −116.08 (±3.72) 87.74 (±2.99) −28.34 (±3.18)

a
1Evdw , van der Waals energy; 1Eele, electrostatic energy; 1GPB, polar solvation energy with the PB model; 1GSA, non-polar solvation energy with the PB model; 1EMM = 1Evdw +

1Eele, the interaction free energy; 1Gsol = 1GPB + 1GSA, the solvation free energy; 1Gbind = 1Evdw + 1Eele + 1GPB + 1GSA, the binding free energy. The number in the bracket

indicates the standard error of the mean value.

by the MM-PBSA approach were the favorable contributions
to 1Gbind; in contrast, 1GPB had a certain passive effect. By
comparing with systems 01 and 02, the addition of methyl
groups at the 5-position of R1 led to significant distinction
in each term and thus its herbicidal activity is poor. It was
found that 1Eele of compound 02 (−76.36 kcal mol−1) was
lower than that of compound 01 (−92.50 kcal mol−1). The
unfavorable contribution, 1GPB, of compound 02, which was
107.68 kcal mol−1, was stronger than that of compound
01, which was 102.45 kcal mol−1. Interestingly, the change
in 1Evdw tended to increase the activity of compound 02,
and 1GSA slightly increased, which had no impact on the
overall trend. The 1Evdw contribution of mesotrione was
significantly greater than 01 and 02, while the inhibition of
1GPB was also small; the contribution of 1Eele was similar

to 02. The binding free energies (1Gexp = −RT lnKi) for
the compounds were also calculated using the K i values. The
1Gexp of compounds 01 and 02 and mesotrione were −8.05,
−7.16, and −10.74 kcal mol−1, respectively. We noted that
MM-PBSA calculations systematically overvalued the binding
free energies between ligand and protein for compound 01
and mesotrione systems. However, the value of 1Gcal was
qualitatively consistent with 1Gexp, confirming the reliability
of MD simulation.

The amino residue contributions of HPPD binding with the
ligand at the active site cavity are given in Figure 11. It was
generated to understand the binding mechanism of protein–
ligand. As listed in the plot, the residue groups including Val207,
Leu244, His287, Ala289, Phe371, Glu373, Lys400, and Phe403
participated in the binding with molecule 01. Interestingly, the
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FIGURE 11 | Inhibitor–residue interaction spectrum of complexes.

FIGURE 12 | The summary of structure–activity relationship.

His205 and Glu373 produced a positive number combination
of free energy, which was an unfavorable element even if they
were involved in chelation with Fe(II). The candidates promoting
contributions to the binding free energy in compound 02 were
Val207, Leu244, Pro259, Asn261, His287, Phe360, and Phe403.
The residue His205 played the same role as it did in system 01.
Residues Val207, Leu244, Leu347, Phe398, Gly399, Phe403, and
Phe407 made the greatest contribution to the binding energy for
mesotrione, andGlu373 had a negative effect. The contribution of
residue Phe403 to the binding of the three compounds obviously
increased, which indicated the importance of π-π interaction
between Phe403 and candidate ligands. Gly Leu llePhe Pro
and Val, which belonged to the nonpolar amino acid family
that contributed to nonpolar interactions, act as positive drivers
of receptor–ligand binding. ArgAsnGln Glu His and Lys were
polar amino acids, which was consistent with the conclusions of
binding free energy and electrostatic played a major role in the
interaction of molecules with protein.

CONCLUSION

In the current work, 3D-QSAR models including CoMFA
and CoMSIA with ideal cross-validated correlation coefficient
values and best correlation coefficient values were established to
analyze the 2-(aryloxyacetyl)cyclohexane-1,3-diones derivatives
as valid HPPD inhibitors. The structural features conducive to
enhance the activity are summarized in Figure 12. The methyl
at the 5-position posed an adverse effect on the inhibitor by
forming a steric hindrance as well as an effect of oxygen
atom in the backbone on the molecular conformation, which
was demonstrated by the result of molecular docking. The
MD simulation and MM-PBSA energy calculation revealed
that the electrostatic energy was the major driving force for
ligand binding. It also illuminated the amino acid residues
involved in inhibitor–HPPD interaction, in which the Phe403
was prominent in the systems. This study not only is helpful
in clarifying the binding mechanism of the HPPD inhibitor
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but also provides useful information to the discovery of novel
HPPD inhibitors.
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