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Abstract. Conversational interfaces (also called chatbots) are being
increasingly adopted in various domains such as e-commerce or customer
service, as a direct communication channel between companies and end-
users. Their advantage is that they can be embedded within social net-
works, and provide a natural language (NL) interface that enables their
use by non-technical users. While there are many emerging platforms for
building chatbots, their construction remains a highly technical, chal-
lenging task.

In this paper, we propose the use of chatbots to facilitate querying
domain-specific models. This way, instead of relying on technical query
languages (e.g., OCL), models are queried using NL as this can be more
suitable for non-technical users. To avoid manual programming, our solu-
tion is based on the automatic synthesis of the model query chatbots from
a domain meta-model. These chatbots communicate with an EMF-based
modelling backend using the Xatkit framework.

Keywords: Model-driven engineering + Model query - Automatic
chatbot synthesis

1 Introduction

Instant messaging platforms have been widely adopted as one of the main tech-
nologies to communicate and exchange information. Most of them provide built-
in support for integrating chatbot applications, which are automated conver-
sational agents capable of interacting with users of the platform [10]. Chat-
bots have proven useful in various contexts to automate tasks and improve the
user experience, such as automated customer services [23], education [9] and
e-commerce [21]. However, despite many platforms have recently emerged for
creating chatbots (e.g., DialogFlow [6], IBM Watson [7], Amazon Lex [1]), their
construction and deployment remains a highly technical task.
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Chatbots are also increasingly used to facilitate software engineering activi-
ties [5,12] like automating deployment tasks, assigning software bugs and issues,
repairing build failures, scheduling tasks like sending reminders, integrating com-
munication channels, or for customer support. In this context, we explored the
use of chatbots for domain modelling in previous work [16,17]. Modelling chat-
bots can be embedded within social networks to support collaboration between
different stakeholders in a natural way, and enable the active participation of
non-technical stakeholders in model creation.

In the present work, we extend the previous ideas to support natural lan-
guage (NL) conversational queries over the models. This is a more accessible
and user-friendly way to query models than the use of technical languages like
OCL (Object Constraint Language [15]). Moreover, we avoid the manual pro-
gramming of the model query chatbots by their automatic synthesis. For this
purpose, our solution is based on (i) the availability of a meta-model describing
the structure of the models, (ii) its configuration with NL information (class
name synonyms, names for reverse associations, etc.), and (iii) the automatic
generation of a chatbot supporting queries over instances of the given meta-
model. This approach is implemented on top of the Xatkit model-based chatbot
development platform [4], which interprets the generated chatbot model and
interacts with an EMF (Eclipse Modeling Framework) backend.

The rest of the paper is structured as follows. First, Sect. 2 provides motiva-
tion using a running example, and introduces background about chatbot design.
Then, Sect.3 explains our approach, and Sect.4 describes the prototype tool
support. Finally, Sect.5 compares with related works, and Sect. 6 concludes.

2 DMotivation and Background

In this section, we first provide a motivating example, and then introduce the
main concepts behind chatbots.

2.1 Motivation

As a motivating example, assume a city hall would like to provide open access
to its real-time traffic information system. Given the growth of the open data
movement, this is a common scenario in many cities, like Barcelona! or Madrid?.

We assume that the data provided includes a static part made of the different
districts and their streets, with information on the speed limits. In addition, a
dynamic part updated in real-time decorates the streets and their segments
with traffic intensity values and incidents (road works, street closings, accidents
or bottlenecks). Figurel shows a meta-model capturing the structure of the
provided information.

In this scenario, citizens would benefit from user-friendly ways to query those
traffic models. However, instead of relying on the construction of dedicated front-
ends with fixed queries, or on the use of complex model query languages like

! https://opendata-ajuntament.barcelona.cat /.
2 https://datos.madrid.es.
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Fig. 1. A meta-model for real-time traffic information.

OCL, our proposal is the use of conversational queries based on NL via chat-
bots. Chatbots can be used from widely used social networks, like Telegram or
Twitter, facilitating their use by citizens. Hence, citizens would be able to issue
simple queries like “give me all accidents with more than one injury”; and also
conversational queries like “what are the incidents in Castellana Street now?”,
and upon the chatbot reply, focus on a subset of the results with “select those
that are accidents”. Finally, for the case of dynamic models, reactive queries like
“ping me when Castellana Street closes” would be possible.

Our proposal consists in the generation of a dedicated query chatbot given the
domain meta-model. But, before introducing our approach, the next subsection
explains the main concepts involved in chatbot design.

2.2 Designing a Chatbot

The widespread interest and demand for chatbot applications has emphasized
the need to quickly build complex chatbots supporting NL processing (NLP) [8],
custom knowledge base definition [18], and complex action responses including
external service composition. However, the development of chatbots is challeng-
ing as it requires expertise in several technical domains, ranging from NLP to
a deep understanding of the API of the targeted instant messaging platforms
and third-party services to be integrated. To alleviate this situation, many chat-
bot creation frameworks have emerged, like DialogFlow [6], IBM Watson [7] or
Amazon Lex [1].
Figure 2 shows a simplification of the

typical working scheme of chatbots. Chat- Chatbot
bots are often designed on the basis of @&8@4 st i

intents, where each intent represents some User
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(label 3) for intent recognition or addi- Fig. 2. Chatbot working scheme.
tional data collection; finally, it produces

a response, which is often a NL sentence among a predefined set (label 4).
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Intents are defined via training phrases. These phrases may include parame-
ters of a certain type (e.g., numbers, days of the week, countries). The parameter
types are called entities. Most platforms come with predefined sets of entities
and permit defining new ones. Some platforms permit structuring the conversa-
tion as an expected flow of intents. For this purpose, a common mechanism is
providing intents with a contexrt that stores information gathered from phrase
parameters, and whose values are required to trigger the intent. In addition,
there is normally the possibility to have a fallback intent, to be used when the
bot does not understand the user input.

3 Approach

Figure 3 shows the scheme «conforms to»

of our approach. First, the domain
meta-model
chatbot chatbot
£ X s o |

chatbot designer needs to

provide a domain meta-
model (like the one in
Fig.1) defining the struc-
ture of the models to
be queried, and comple-
mented with NL hints on
how to refer to its classes
and features (synonyms). From this information, an executable chatbot model
that can be used to query model instances is generated. The next subsections
explain these two steps.

chatbot
execution -
platform

instant

E--"E messaging

platforms
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Fig. 3. Scheme of our approach.

3.1 Chatbot Generation: Intents and Entities Model

The chatbot designer has to provide a domain meta-model and optionally, a NL
configuration model. The latter is used to optionally annotate classes, attributes
and features with synonyms, and the source of references with a name to refer to
its backward navigation. From this information, we generate the chatbot intents
and entities.

Table(a) of Fig. 4 captures the generation of intents. We create an intent per
query type, plus an additional intent called loadModel to select the model to be
queried. The second row of the table shows the intent alllnstances, which returns
all objects of a given class. The intent is populated with training phrases that
contain the class name as parameter. The possible class names are defined via
an entity Class (see Table(b)). This intent would be selected on user utterances
such as “give me all cities” or “show every incident”. The intent requires having
a loaded model, which the table indicates as the intent requiring a model as
context.

In the same table, intent filteredAlllnstances returns all instances that satisfy
a given condition. The intent is populated with training phrases that combine
a class name and a condition made of one or more filters joined via logical
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a) Intents
name description training phrases provided context required context
loadModel | loads working model from the load the model {MODEL} MODEL type text
backend open model {MODEL}...
allinstances | returns all instances of a given class | give me all the {CLASSNAME} CLASSNAME type Class MODEL
show me the {CLASSNAME}...
filtered returns all instances of a given class | select the {CLASSNAME} with {FILTER1} CLASSNAME type Class
Allinstances | and satisfying a condition display the {CLASSNAME} with {FILTER1} | FILTER1 and FILTER2 type Condition MODEL
{CONJ} {FILTER2}... CONJ type Conjunction
b) Class entity ¢) StringAttribute entity d) NumericAttribute entity e) NumericOperator entity
entries entries synonyms entries synonyms entries synonyms
city metropolis, town name title, designation from number from, starts greater than | bigger, more than
description summary to number to, ends smaller than less than
bottleneck | - traffic jam, congestion max velocity velocity limit equals is same as
e . . value amount of traffic
1) € entity — h) StringOperator entity
5 injuries harm —
type entries entries ynony
StringAttribute + StringOperator + text g) Conjunction entity starts with begins with
StringCondition - - - - - -
StringAttribute + StringOperator + StringAttribute entries ends with | finishes with, end is
NumericAttribute + NumericOperator + number and equals is same as
NumericCondition -
NumericAttribute + NumericOperator + NumericAttribute or contains has

Fig. 4. Intents and entities generated for the running example chatbot.

connectives. We provide an entity Condition for the filters, explained below. This
intent would be selected upon receiving phrases like “give me all accidents with
more than one injury” (please note the singular variation w.r.t. the attribute
name injuries).

In addition to intents, we create several entities based on the domain meta-
model and the NL configuration. Specifically, we create an entity named Class
(Table(b)) with an entry for each meta-model class name. These entries may
have synonyms, as provided by the NL configuration, to refer to the classes
in a more flexible way. Likewise, we create an entity for each attribute name
attending to their type: String (Table(c)), Numeric (Table(d)), Boolean and Date
(omitted for space constraints). For example, the StringAttribute entity (Table(c))
has an entry for all String attributes called name. Just like classes, these entries
may have synonyms if provided in the NL configuration.

The Condition entity (Table(f)) is a composite one, i.e., its entries are made
of one or more entities. This entity permits defining filter conditions in queries,
such as “name starts with Ma” or “injuries greater than one”.

Regarding the complexity of the chatbot, the number of intents is fixed,
and it depends on the primitives of the underlying query language that the
chatbot exposes. Figure4 exposes two primitives of OCL: alllnstances, and
alllnstances()—select(cond). Other query types can be added similarly, which would
require defining further intents. The number of generated entities is also fixed,
while the number of entries in each entity depends on the meta-model size and
the synonyms defined in the NL configuration.

3.2 Chatbot Generation: Execution Model

The generated chatbot also contains actions, required to perform the query on
a modelling backend, which we call the ezecution model. This execution model
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contains a set of execution rules that bind user intentions to response actions as
part of the chatbot behaviour definition (cf. label 4 in Fig. 2). For each intent in
the Intent model, we generate the corresponding execution rule in the execution
model using an event-based language that receives as input the recognized intent
together with the set of parameter values matched by the NL engine during the
analysis and classification of the user utterance.

All the execution rules follow the same process: the matched intent and the
parameters are used to build an OCL-like query to collect the set of objects
the user wants to retrieve. The intent determines the type of query to perform
(e.g., alllnstances, select, etc.), while the parameters identify the query parame-
ters, predicates, and their composition. The query computation is delegated to
the underlying modelling platform (see next section), and the returned model
elements are processed to build a human-readable message that is finally posted
to the user by the bot engine.

As an example, Listing 1 shows the execution rule that handles an alllnstances
operation. The class to obtain the instances of is retrieved from the context
variable (available in every execution rule) and passed to our EMF Platform, which
performs the query. Next, the instances variable holding the results is processed
to produce a readable string (in this case a list of names), and the Chat Platform
is called to reply to the user.

1| on intent GetAlllnstances do

2| val Map<String, Object> collectionContext = context.get(” collection™ )

3| val instances = EMFPlatform.GetAlllnstances( collectionContext.get("class”) as String )
4| val resultString = instances.map[name].join(", ")

5| ChatPlatform.Reply("| found the following results” + resultString)

Listing 1. Execution rule example

4 Proof of Concept

As a proof of concept, we have created a prototype that produces Xatkit-based
chatbots [4], following the two phases depicted in Fig.3. Xatkit is a model-
driven solution to define and execute chatbots, which offers DSLs to define the
bot intents, entities and actions. The execution of such chatbots relies on the
Xatkit runtime engine. At its core, the engine is a Java library that implements
all the execution logic available in the chatbot DSLs. Besides, a connector with
Google’s DialogFlow engine [6] takes care of matching the user utterances, and a
number of platform components enable the communication between Xatkit and
other external services.

In the context of this paper, we have developed a new EMF Platform that
allows Xatkit to query EMF models in response to matched intents. The first
version of our prototype platform® provides actions to retrieve all the instances
of a given class, and filter them based on a composition of boolean predi-
cates on the object’s attributes or references. These predicates are retrieved
from the context parameter defined in the intents (see Sect.3.1), and mapped

3 https://github.com /xatkit-bot-platform /xatkit-emf-platform.
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to Java operations (e.g., the StringComparison “contains” is translated into
((String)value).contains(otherValue). The query result is returned as a list of EObjects,
which is processed using the bot expression language to produce the response mes-
sage. Listing 1 showed an example of the use of this EMF Platform.

We have also developed a web application, where domain meta-models (in
.ecore format) can be uploaded, and then (optionally) configured with synonyms.
Once the configuration is finished, the application synthesizes a Xatkit chatbot
model, which then can be executed using the Xatkit runtime engine.

Figure 5(a) shows the web application on the left, where the running example
meta-model (cf. Fig.2) is being configured. Figure 5(b) shows a moment in the
execution of the generated Xatkit chatbot, and the result returned by the bot
when processing the example utterance “show all accidents with more than one
njury”.

(a) (b)

. ciy City Xatkit Chat
o [0 districts: District Test your Xatkit bot here!
opulation where a group of people who
° ain an,
merci has a name ar
ivided in

1,1] name: EString mai
Description

®  District Load model City.xmi

©  [07] streets: Street

ity , metropolis
tow

. , i Model City.xmi loaded
©  [1.1] name: Estring Synonyms (separated with commas) y.

®  Street: Transitable Give me all the accidents with

more than 2 injuries

©  [07] sections: Section
©  [1,1] hasCydlistPath: EBoolean
©  [1,1] name: EString

*  Transitable

o [01] intensity: Trafficintensity
Save Generate
o [07] incidents: Incident

Description Injuries|
crash of two
cars in Gran

Via caused
by a cyclist
Accident un
ceident piza street

©  [0.1] intensity: Trafficintensity

© [0, incidents: Incident Type am

©  [1,1] hasCyclistPath: EBoolean

Fig. 5. (a) Web application to configure the chatbot. (b) A query in the generated
chatbot.

5 Related Work

Next, we review approaches to the synthesis of chatbots for modelling or data
query.

Our work relies on NL as a kind of concrete syntax for DSLs [17]. NLP has
been used within Software Engineering to derive UML diagrams/domain models
from text [2,11]. However, the opposite direction (i.e., generating chatbots from
domain models) is largely unexplored. Almost no chatbot platform supports
automatic chatbot generation from external data sources. A relevant exception
is Microsoft QnA Maker [14], which generates bots for the Azure platform from
FAQs and other well-structured textual information.
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Closest approaches to ours are tools like ModelByVoice [13] and VoiceTo-
Model [20], which offer some predefined commands to create model elements
for specific types of models. In contrast, our framework targets model queries
and not model creation, which was pursued in our previous work [17]. None of
those two approaches support queries. Castaldo and collaborators [3] propose
generating chatbots for data exploration in relational databases, but requiring
an annotated schema as starting point, while in our case providing synonyms is
an optional step. Similarly, [19] integrates chatbots to service systems by anno-
tating and linking the chatbot definition to the service models. In both cases,
annotations and links must be manually created by the chatbot designer to gen-
erate the conversational elements. In contrast, our approach is fully automatic.
In [22], chatbots are generated from OpenAPI specifications but the goal of such
chatbots is helping the user in identifying the right API Endpoint, not answering
user queries.

Altogether, to our knowledge there are no automatic approaches to the gener-
ation of flexible chatbots with model query capabilities. We believe that applying
classical concepts from CRUD-like generators to the chatbot domain is a highly
novel solution to add a conversational interface to any modelling language.

6 Conclusion

Conversational interfaces are becoming increasingly popular to access all kind
of services, but their construction is challenging. To remedy this situation, we
have proposed the automatic synthesis of chatbots able to query the instances
of a domain meta-model.

In the future, we aim to support more complex queries, including the conver-
sational and reactive ones mentioned in Sect. 2.1. Our approach could be used to
query other types of data sources (e.g., databases or APIs) via an initial reverse
engineering step to build their internal data model and translate the NL query
into the query language of the platform. Finally, we would like to add access
control on top of the bot definition to ensure users cannot explore parts of the
model/system unless they have permission.
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