
fnint-12-00016 April 25, 2018 Time: 15:28 # 1

ORIGINAL RESEARCH
published: 27 April 2018

doi: 10.3389/fnint.2018.00016

Edited by:
James Danckert,

University of Waterloo, Canada

Reviewed by:
Gennady Knyazev,

State Scientific-Research Institute of
Physiology & Basic Medicine, Russia

Irene Messina,
Università degli Studi di Padova, Italy

*Correspondence:
Amir H. Ghaderi

a_ghaderi@tabrizu.ac.ir;
amirhoseinghaderi@gmail.com

Received: 24 January 2018
Accepted: 10 April 2018
Published: 27 April 2018

Citation:
Ghaderi AH, Andevari MN and

Sowman PF (2018) Evidence
for a Resting State Network

Abnormality in Adults Who Stutter.
Front. Integr. Neurosci. 12:16.

doi: 10.3389/fnint.2018.00016

Evidence for a Resting State Network
Abnormality in Adults Who Stutter
Amir H. Ghaderi1,2* , Masoud N. Andevari2,3 and Paul F. Sowman4,5

1 Cognitive Neuroscience Laboratory, University of Tabriz, Tabriz, Iran, 2 Iranian Neuro-wave Laboratory, Center of Isfahan,
Isfahan, Iran, 3 Department of Physics, School of Basic Science, Babol Noshirvani University of Technology, Babol, Iran,
4 Department of Cognitive Science, Faculty of Human Sciences, Macquarie University, Sydney, NSW, Australia, 5 ARC Centre
of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW, Australia

Neural network-based investigations of stuttering have begun to provide a possible
integrative account for the large number of brain-based anomalies associated with
stuttering. Here we used resting-state EEG to investigate functional brain networks
in adults who stutter (AWS). Participants were 19 AWS and 52 age-, and gender-
matched normally fluent speakers. EEGs were recorded and connectivity matrices were
generated by LORETA in the theta (4–8 Hz), alpha (8–12 Hz), beta1 (12–20 Hz), and
beta2 (20–30 Hz) bands. Small-world propensity (SWP), shortest path, and clustering
coefficients were computed for weighted graphs. Minimum spanning tree analysis was
also performed and measures were compared by non-parametric permutation test. The
results show that small-world topology was evident in the functional networks of all
participants. Three graph indices (diameter, clustering coefficient, and shortest path)
exhibited significant differences between groups in the theta band and one [maximum
betweenness centrality (BC)] measure was significantly different between groups in the
beta2 band. AWS show higher BC than control in right temporal and inferior frontal
areas and lower BC in the right primary motor cortex. Abnormal functional networks
during rest state suggest an anomaly of DMN activity in AWS. Furthermore, functional
segregation/integration deficits in the theta network are evident in AWS. These deficits
reinforce the hypothesis that there is a neural basis for abnormal executive function
in AWS. Increased beta2 BC in the right speech–motor related areas confirms previous
evidence that right audio–speech areas are over-activated in AWS. Decreased beta2 BC
in the right primary motor cortex is discussed in relation to abnormal neural mechanisms
associated with time perception in AWS.

Keywords: stuttering, functional brain networks, minimum spanning tree, executive function, time perception

INTRODUCTION

Stuttering is a developmental disorder of speech fluency that affects 1% of all adults (Craig et al.,
2002). The behavioral manifestations of stuttering include unplanned sound prolongations, blocks
in speech, and syllabic repetitions at the start of words and sentences. Stuttering is also associated
with abnormalities in complex cognitive functions such as language (Weber-Fox and Hampton,
2008), motor preparation (Mersov et al., 2016), time perception (Ezrati-Vinacour and Levin, 2001),
and also attention (Kamhi and McOsker, 1982).
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Over the last two decades, a body of neuroimaging research
has amassed which suggests that stuttering likely emerges
from deficiencies in the brain mechanisms that support fluent
speech production (e.g., Chang et al., 2009, 2017). Structurally,
stuttering is related to several abnormalities in cortical and
subcortical brain areas such as the Broca’s area (BA 44, 45),
the basal ganglia, supplementary motor area, and parasylvian
cortex (Gordon, 2002; Büchel and Sommer, 2004; Chang
et al., 2009; Loucks et al., 2011; Sowman et al., 2017)
which can be linked to mechanistic explanations proposed
to account for stuttering such as auditory–speech dysfunction
(Liotti et al., 2010; Jansson-Verkasalo et al., 2014) and also
a speech–motor impairment (Neilson and Neilson, 1987).
More recently, neural network-based investigations of stuttering
have begun to provide a possible integrative account that
might account for the large number of brain-based anomalies
(for review see: Brown et al., 2005; Budde et al., 2014;
Belyk et al., 2015; Etchell et al., 2017) now associated with
stuttering.

Studies using connectivity analyses and graph theoretical
methods have demonstrated network abnormalities in stuttering
during resting state (Xuan et al., 2012; Ghaderi et al., 2016;
Chang et al., 2017) that may involve anomalies in the default
mode network (DMN) and affect attentional and executive
functions (Chang et al., 2017). Such studies provide an
insight into the neural correlates of psychological dysfunctions,
particularly anxiety, that have long been associated with
stuttering (Craig, 1990; Menzies et al., 1999; Iverach et al.,
2011). Recent studies such as that by Yang and colleagues
provide evidence that some of the hitherto unexplained neural
abnormalities evident in stuttering might be attributable to the
close association between stuttering and anxiety (Yang et al.,
2017). Indeed, their results bear considerable concordance with
other investigations that suggest emotional states and disorders
(e.g., depression and anxiety) are associated with functional
deficits in DMN activity (Coutinho et al., 2016; Messina et al.,
2016).

To date, investigations of brain networks in stuttering
have largely relied on functional magnetic resonance imaging
(fMRI; Luc et al., 2008; Chang et al., 2009; Loucks et al.,
2011). fMRI remains the gold standard for defining the
topographic nature of network dysfunction in stuttering due
to its excellent spatial resolution; however, as it has been
suggested that stuttering depends on abnormal timing of brief
durations and deficits in rapid movement control, planning,
and preparation (e.g., Etchell et al., 2014, 2015; Wieland
et al., 2015), neurophysiological methods that provide higher
temporal resolution than fMRI may provide complementary
information about the nature of neural connectivity in stuttering.
Electroencephalography (EEG) can be used to acquire an ongoing
record of the electrical activity of the brain with excellent
temporal resolution, but since the origin of brain waves is
a combination of post-synaptic potentials in the pyramidal
cortical neurons, the source of EEG waves is not generally
well reflected by the current distribution on the scalp. This
means that inter-electrode connectivity analyses cannot easily
be reconciled with fMRI network measurements (Babiloni

et al., 2005; Mizuhara et al., 2005). Low-resolution brain
electromagnetic tomography (LORETA) is an approach to solve
inverse electromagnetic problem which transforms the EEG
scalp current topography into a gross approximation of the
EEG sources in brain space (Pascual-Marqui et al., 1994, 2011;
Pascual-Marqui, 2002). Using LORETA, one can obtain a highly
temporally-resolved neural signal that is mapped onto brain
space.

Graph theoretical analysis (GTA) has become an important
method for the study of complex systems in the field of
neuroscience as well as in physics, astronomy, genetics, and
engineering (Boccaletti et al., 2006; Bullmore and Sporns, 2009).
GTA has been used to reveal the topological properties of
structural brain networks and functional associations between
brain regions. Important properties of neural information
propagation and processing such as segregation and integration,
and modularity and efficiency have been characterized by GTA.
Graph theoretical indices such as the clustering coefficient, global
efficiency, and small-worldness are meaningful neurobiological
measures that can be calculated quickly (Rubinov and Sporns,
2010).

Small-world topography (Watts and Strogatz, 1998) provides
an optimal balance between segregation and integration
(Rubinov and Sporns, 2010). In 1998, Watts and Strogatz
introduced the concept of small-world graphs based on
Stanley Milgram’s works in the late 1960s (Watts and
Strogatz, 1998; Boccaletti et al., 2006). Small-world graphs
are simultaneously highly integrated and also highly segregated.
Dynamically, these graphs exist in a specific state between
random and regular graphs (Watts and Strogatz, 1998). Studies
indicate that the functional and structural topography of
the human brain, as well as other self-organizing systems,
exhibit small-world properties (Watts and Strogatz, 1998;
Achard et al., 2006; Bassett and Bullmore, 2006; Wang J.
et al., 2009), the conformations of which are affected by
developmental disorders (Wang L. et al., 2009; Barttfeld et al.,
2011).

A more recently developed approach, minimum spanning
tree (MST) analysis, is a powerful technique that can clarify
emergent properties of functional brain networks (Stam, 2014).
In weighted graphs there are many loops, which consist of
sets of edges that connect a node to itself. The presence of
loops in a graph increases the connectivity cost (the number
of routes and edges between nodes). Spanning trees are subsets
of graphs that cover all nodes without any loop (Stam, 2014;
Tewarie et al., 2015). The MST is the tree with the lowest total
cost (Graham and Hell, 1985); the unique, unweighted, binary
graph that is made by the shortest path between all pairs of
nodes without the occurrence of a loop. Therefore, the minimum
connectivity cost involved in spanning all nodes is recovered
by MST analysis (Tewarie et al., 2015). MST has been widely
applied in the investigation of functional brain connectivity
during tasks and rest (Stam et al., 2014; van Lutterveld et al.,
2017).

This study represents the first attempt to use quantitative
EEG (QEEG), LORETA, and graph theory in the field of
language-related disorders. Graph theoretical analysis is applied
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here to investigate the brain’s topological network properties
in adults who stutter (AWS). Further, we investigate possible
relationships between the centrality of candidate brain regions
and stuttering. MST analysis is used as the GTA approach.
Based on previous reports that suggest that oscillatory brain
activity in the beta band is abnormal in stuttering (Salmelin
et al., 2000; Etchell et al., 2016; Mersov et al., 2016),
we hypothesize that networks connected by coherent beta
oscillations in stuttering will be compromised compared to
those in controls. Since abnormal attention and executive
network abnormalities have been observed in AWS (Chang
et al., 2017) we also predict that language network abnormalities
will be evident in AWS alongside abnormalities in the default
mode and executive networks. This hypothesis is in line with
previous findings that suggest stuttering is a disorder related to
impaired working memory (Kaganovich et al., 2010), attention
(Kaganovich et al., 2010), self-control (Eggers et al., 2013),
and linguistic processing speed (Anderson and Wagovich,
2010).

MATERIALS AND METHODS

Participants
Nineteen AWS [74% male, aged between 19 and 31 years, mean
age (SD) 24.02 (3.65) years] and 52 age-, and gender-matched
normally fluent speakers [fluent; 71% male, aged between 19 and
32 years mean age (SD) 24.47 (4.78) years] participated in this
study. AWS participants were recruited from the Aftab Clinic
in the city of Isfahan. Fluent speakers (controls) were recruited
via an online announcement. All participants were native Persian
speakers with no reported history of psychiatric/neurological
disorders/diseases or use of medications that might affect
neural function (e.g., medication for depression or seizure). All
participants had normal hearing and normal or corrected-to-
normal vision. At the time of testing, the Stuttering Severity
Instrument for Adults—Fourth Edition (SSI–4) was administered
by a speech therapist to each of the AWS and their stuttering
severities were rated to be between mild and severe (Riley,
1972). A consent form was signed by all participants after the
aim and procedure of the study was explained to them. The
study conformed to the Helsinki declaration obligations and
was approved by central ethical committee at Islamic Azad
University.

EEG Recording, Technical Setup, and
Signal Pre-processing
EEG was recorded from 19 scalp electrodes (Fp1, Fp2, F3, F4,
C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Oz)
positioned according to the 10–20 standard systems. A further
two electrodes were positioned at left and right preauricular
points (A1 and A2). EEGs were recorded using a Brain Master
Discovery 24 amplifier and Electro-cap (eci). A linked-ear
reference, commonly used in QEEG studies (Rotondi et al., 2016)
was used. EEG cancelation is minimized by this montage (Sanei
and Chambers, 2013). Impedance was kept under 5 k� during
recording. Recordings were performed in an electromagnetically

shielded faraday cage. EEG was digitized at 250 Hz and a low pass
filter (40 Hz cutoff) was applied to avoid aliasing effects. Eight
minutes of eyes open resting state EEG was recorded from each
participant (Wu et al., 2010). Participants were instructed to avoid
body or eye movements during the recording.

After recording, signals were screened for artifacts visually by
an expert and then submitted to a z-score based artifact rejection
algorithm implemented in the NeuroGuide software1. Twenty-
five artifact-free segments (each segment was between 4 and
5 s in duration) were selected and exported for LORETA source
localization.

LORETA Analysis
Functional connectivity between 84 regions of interests (ROIs)
was obtained by LORETA software version 201702202. LORETA
estimates cortical sources of brain waves based on the
distribution of scalp-recorded potentials (Pascual-Marqui, 2002).
This algorithm works as an inverse solution method and use
a smoothness matrix that optimizes the solution (see Pascual-
Marqui et al., 1994 for details). Recent versions of LORETA
provide a connectivity utility (Pascual-Marqui et al., 2011).
Functional dynamic connectivity of cortical regions with high
temporal resolution can be calculated by LORETA. Although the
number of EEG electrodes has a relationship to the precision of
source estimation, a number of previous studies indicate that
a reliable LORETA estimation can be achieved with only 19
channels (e.g., Thatcher et al., 2014; Aoki et al., 2015; Emory
et al., 2015; Alahmadi et al., 2016; Clemens et al., 2016; Hata
et al., 2016; Mohan et al., 2016b; Mumtaz et al., 2017). Time-
resolved activity in all Brodmann areas excepting areas 12, 14, 15,
16, and 26 (localization of these regions is not implemented in
the LORETA software) was estimated and the lagged coherences
between 84 ROIs (42 Brodmann areas in the left hemisphere and
42 Brodmann areas in the right side) were computed for four
frequency bands [theta (4–8 Hz), alpha (8–12 Hz), beta1 (12–
20 Hz), and beta2 (20–30 Hz)]. The length of selected segments
was at least 4 s and the sampling rate was 250 Hz (at least 1000
samples for each segment). The number of time frames per epoch
selected in the LORETA software was 1024.

Connectivity Measure and Adjacency
Matrix
Non-instantaneous or lagged coherence is a methodological
approach to frequency domain connectivity that removes the
effects of volume conduction in EEG co-spectra (Pascual-Marqui,
2007; Pascual-Marqui et al., 2011). Lagged coherence has been
used to investigate functional connectivity in resting-state brain
networks in several disorders, e.g., Olbrich et al. (2013), Mohan
et al. (2016a), Schwartz et al. (2016). However, to our knowledge,
brain connectivity in AWS has not yet been investigated with
lagged coherence.

The 84 by 84 adjacency matrices were calculated separately
in the theta, alpha, beta1, and beta2 bands. In the adjacency
matrix, each row and each column represents a Brodmann area,

1http://www.appliedneuroscience.com
2http://www.uzh.ch/keyinst/loreta.htm
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and the lagged coherences between pairs of Brodmann areas
are quantified at their intersections. Weighted and undirected
adjacency matrices for the two groups (AWS and controls) are
presented in Figure 1.

Small-World Properties, Shortest Path,
and Clustering Coefficient of Weighted
Graph
Before 1998, graphs were classified generally as either random
or regular (Boccaletti et al., 2006). In a random graph, edges
are connected randomly to nodes and a node’s degree (the
number of edges connected to each node) conforms to a Gaussian
distribution (Boccaletti et al., 2006). Since the shortest path
between nodes is typically small, random graphs are highly
integrated. However, at the local level, there are no significant
clusters between nodes and therefore random graphs are not
segregated. Conversely, in a regular graph, all nodes have the
same degree. In these graphs, the shortest path is long, and
therefore, integration is minimal and segregation high.

In the majority of previous studies utilizing GTA analysis,
small-world topography has been calculated for binary, non-
weighted, and undirected graphs. This represents the simplest
form of graph that requires the least computation and
programing for calculation of small-worldness (Boccaletti et al.,
2006; Humphries and Gurney, 2008). However, in a binary graph,

there is only information pertaining to the existence or not of
connections; connectivity strength between nodes is not visible.

Commonly, an adjacency brain connectivity matrix contains
connectivity measures between nodes (electrodes or brain
regions) that are not binary (e. g. coherence is a scalar that lies
in the range 0 to 1; phase lag falls between −1 and +1, etc.).
Therefore, the original adjacency brain connectivity matrix is a
weighted matrix. For simplification, thresholding can be applied
to transform weighted matrices to binary forms (Rubinov and
Sporns, 2010; Mohan et al., 2016b; Ghaderi et al., 2017). In this
approach, all of the matrix arrays with values higher than the
threshold are replaced by 1 and all other array values set to
zero. Although this approach has been used widely, e.g., Achard
et al. (2006), Mohan et al. (2016b), Ghaderi et al. (2017), two
basic problems are inherent in this approach. First, there is no
specific threshold that must be used to make binary matrices,
and therefore the choice of threshold can greatly influence
the resulting structure of the graph (Tewarie et al., 2015). By
systematically investigating the threshold “space,” any bias may
be countered, but a second problem then arises in the statistical
analysis where the use of multiple thresholds greatly increases the
number of comparisons being made. To avoid these problems,
analysis of weighted graphs has been proposed. Recently, a new
measure, Small-World Propensity (SWP), has been proposed for
identification of small-world properties of weighted networks
(Muldoon et al., 2016). SWP compares clustering coefficient and

FIGURE 1 | Weighted and sparse (MST ) adjacency matrices for the two groups (AWS and control) in the beta2 band. (A) Averaged weighted adjacency matrix for
controls. (B) Averaged weighted adjacency matrix for AWS. (C) Average MST adjacency matrix for controls. (D) Average MST adjacency matrix for AWS. Different
patterns are visually observable between the MST graphs.
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characteristic shortest paths of a given network using lattice and
random graphs:

φ =1−

√
12

C+12
L

2

Where, 1Cis Clattice−Cgiven divided by Clattice−Crandom and 1Lis
Lgiven−Lrandom divided byLlattice−Lrandom. In this equation,
Lattice and random graphs have the same size (number of nodes)
and the same distribution of degree (probability distribution of
degrees over all nodes) within the given network (Muldoon et al.,
2016).

As indicated in the above equation, SWP is related to the
characteristic shortest path (L) and clustering coefficient (C).
L is the average minimum number of edges between all pairs
of nodes. The clustering coefficient is defined by the number
of triangles around a given node relative to the number of
all neighbors (Boccaletti et al., 2006) and is closely related to
brain modularity and segregation (Bullmore and Sporns, 2009;
Rubinov and Sporns, 2010).

Here, random graphs with the same degree distribution and
same size were made by permutation of adjacency matrices. Then
L, C, and SWP were calculated for the stuttering group and
control using a MATLAB toolbox at http://www.seas.upenn.edu/
~dsb/ developed by Muldoon et al. (2016). For assessing SWP
measures for the two groups, the SWP of 50 randomly permuted
graphs was calculated and compared to the adjacency matrices.

Minimum Spanning Tree (MST) and
Integration Measures
The aforementioned problems involved thresholding the
connectivity matrix are overcome by transforming the original
weighted matrix into a unique sparse matrix. Functional brain
connectivity using the MST approach can be quantified by the
derived measures of maximum BC, nodal degree, leaf fraction
(LF), diameter, and eccentricity (van Lutterveld et al., 2017).

BC is calculated by the counting all of the shortest paths
that pass through a given node. Nodal degree is comparable
to BC (it is simpler than BC). Degree is equal to the number
of edges that are connected to a node. Nodes with a higher
degree or BC play an important role in information processing
within a graph (Boccaletti et al., 2006). It is suggested that a
graph with higher maximum BC is more integrated (Bullmore
and Sporns, 2009; Stam et al., 2014). LF relates to the integrative
properties of the brain network (Stam et al., 2014; van Lutterveld
et al., 2017). In a MST, the LF is equal to the number of
nodes with degree 1 divided by N − 1, where N is the number
of nodes in the graph. Therefore, a tree with a central node
connected to all other nodes has maximum LF (equal to 1) and
is highly integrated. Conversely, a tree with a series of one-to-one
connected nodes exhibits the lowest possible LF (near zero) and
also minimal integration (Stam et al., 2014). On the other hand,
the maximum path length in a tree is defined as its diameter.
Higher diameter is negatively associated with brain integration
(Bullmore and Sporns, 2009; Stam, 2014). Eccentricity of a node
is related to nodal isolation and average nodal eccentricity shows
the tendency of nodes within the network to be isolated and

poorly integrated (Rubinov and Sporns, 2010; Stam et al., 2014;
van Lutterveld et al., 2017). Here, MST analysis on the 84 by
84 adjacency matrices was performed using MATLAB R2016a
and the biograph toolbox. The measures of tree (e.g., BC, degree,
LF, diameter, and eccentricity) were obtained via the brain
connectivity toolbox developed by Rubinov and Sporns (2010)3.

Statistical Analysis
Non-parametric permutation tests (Maris and Oostenveld, 2007)
were applied to compare the between-subject measures of graph
indices within frequency bands. Each permutation contained
5000 random shuffles. Seven graph indices (SWP, L, C, maximum
BC, LF, diameter, and average eccentricity) were compared in
four frequency bands (theta, alpha, beta1, and beta2) and then
28 (7 indices × 4 frequencies) independent permutation tests
were performed. To minimize the possibility of false positives
resulting from multiple comparisons, False Discovery Rate (FDR)
correction was applied. The resulting q-values (corrected p-values
in FDR) less than 0.05 were accepted as indicating statistically
significant differences.

To evaluate the local corporation of cortical regions, BC
and eccentricity of all Brodmann areas was investigated using
a separate non-parametric permutation test. This latter analysis
was performed only at the frequencies that maximum BC or/and
average eccentricity was significant. FDR correction was also
applied to minimize the likelihood of type I errors that might
arise through comparison of 84 Brodmann areas over multiple
frequencies. Non-parametric statistical tests were performed in
MATLAB R2016a.

RESULTS

Figure 2 shows that both the controls and AWS exhibit SWP
values over 0.6 in all frequency bands. Conversely, randomly
permuted graphs show SWP less than 0.6. As suggested by
Muldoon et al. (2016), SWP values over 0.6 are indicative
of small-world networks. Therefore, all of the brain-based
graphs (in both groups) exhibit small-world properties that are
significantly different from random graphs (Figure 2).

After FDR correction, three graph indices exhibited significant
differences between groups in the theta band and one measure
was significantly different between groups in the beta2 band.

In the theta band a significant difference between groups
occurred in the diameter of MST (t = −2.83, P = 0.0001). In this
band, the AWS group had a smaller diameter (mean = 13.894,
SD = 2.051) than the fluent control group (mean = 15.750,
SD = 2.573). Significant differences were also observed between
the two groups in the measures of characteristic shortest path
(t = 2.71, q = 0.003) and clustering coefficient (t = −2.81,
q = 0.002). The fluent group had a lower characteristic
shortest path and a higher clustering coefficient (respectively:
mean = 1.061, SD = 0.026; mean = 0.937, SD = 0.019) than
the AWS group (respectively: mean = 1.080, SD = 0.029;
mean = 0.922, SD = 0.023).

3http://www.brain-connectivity-toolbox.net
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FIGURE 2 | SWP measures for all samples in permuted random graphs (group 1), the control group (group 2), and the AWS group (group 3). The control and AWS
groups exhibit values higher than 0.6, indicating that they have small-world connectivity. Permuted random graphs exhibit values less than 0.6.

In the beta2 band, a significant difference was seen in the
maximum BC of MST (t = 3.04, q = 0.007). The AWS group
(mean = 5023.684, SD = 574.688) had a higher maximum BC than
did the control group (mean = 4659.608, SD = 398.141). There
were no significant differences in any measures in the alpha and
beta1 bands between groups.

Since there was a significant difference between groups in the
maximum BC in the beta2 band, BC of MST was investigated
for the 84 Brodmann areas. After FDR multiple comparison
correction, significant differences between the stuttering group
and controls were observed in the right hemisphere; primary
motor cortex (BA4; t = −2.03, q = 0.001), inferior temporal lobe
(BA 20; t = 3.02, q = 0.0001) as a part of the DMN, and a part
of the inferior frontal gyrus (BA 47; F = 2.84, q = 0.0001). There
was no significant difference in the BC in the left hemisphere. The
normally fluent group exhibited higher BC in BA 4 than the AWS
group. However, they showed lower values of BC in BA 20 and
47 than the AWS group. Significant differences in BC are visually
presented in the Figure 3.

Weighted and sparse MST graphs for the beta2 band are
presented in Figure 1. While the weighted graphs are visually
similar between groups, differences are evident in the sparse MST
matrices. Topological MSTs are presented in Figure 3.

DISCUSSION

These results indicate that alterations in very fast fluctuations
and synchronization of post synaptic dipole arrangements, in
various brain regions involved in generating EEG coherence,
are associated with stuttering. Both groups studied here show
small-world networks in the functional brain connectivity, and
all participants exhibit SWP higher than 0.6. Since a graph with
small-world topology exhibits an optimized and enhanced signal-
propagation speed and synchronizability (Watts and Strogatz,
1998), optimized information transformation and propagation
occurs in adult who stutter (AWS) as well as in controls. However,
functional deficits in weighted graphs and MST analysis were
observed in the theta and beta2 bands in AWS. Significant
differences between controls and AWS in BC are also observable
in the right primary motor area, inferior temporal lobe, and
inferior frontal cortex. AWS show higher BC than controls in
right temporal and inferior frontal areas and lower BC in right
primary motor cortex. We discuss these results in the following

two sections with regard to the functional meaning of brain
oscillations and the regions involved in the observed functional
connectivity deficits in AWS.

Alpha Wave: The Role of Emotion in
Stuttering
The role of alpha activity in emotional states such as anxiety
(Boutcher and Landers, 1988; Knyazev et al., 2006) and
depression (Gotlib, 1998; Fingelkurts et al., 2007) has been widely
investigated. Several studies suggest that those who stutter exhibit
higher levels of anxiety (e.g., social anxiety or social phobia)
than people whose speech is fluent (Mahr and Torosiana, 1999;
Messenger et al., 2004; Iverach and Rapee, 2014). However, our
results indicate that, at least during resting conditions, AWS
exhibit alpha connectivity that is not different from that seen in
control subjects. This result is consistent with previous studies
that explain anxiety in stuttering as a secondary reaction (Alm,
2004). In the context of a possible alpha difference in AWS that
might be based on reactive anxiety, then, in the current study
where the AWS were at rest, it might not be expected that alpha
network differences between groups would be evident.

Theta Wave: The Role of Executive
Network in Stuttering
In the theta band, AWS have a higher value of characteristic
shortest path and a lower value of clustering coefficient than
controls, suggesting that the theta network is disrupted at both
local and global levels in AWS. Theta-mediated networks in AWS
are less integrated and also less segregated.

Theta activity is closely associated with executive functions
such as problem solving, planning, working memory, and
also attention (Sauseng et al., 2005; Mizuhara and Yamaguchi,
2007). Further, functional connectivity in the theta band is
related to activity in central executive networks (Sauseng et al.,
2004, 2005) and abnormal theta connectivity during rest state
may suggest impaired DMN function (Scheeringa et al., 2008).
Abnormal functional connectivity in the theta network is
reported in attention-related disorders such as attention deficit
hyper activity disorder (ADHD) during rest (Ghaderi et al.,
2017) and during tasks (Sauseng et al., 2007). Similar to
our current findings in AWS, in ADHD impaired functional
segregation and integration in the theta network is evident
(Ghaderi et al., 2017). Such similarities reinforce the hypothesis
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FIGURE 3 | Minimum spanning tree in the beta2 band. Significant differences of BC (red nodes) were observed for right primary motor cortex (4R), right inferior
temporal lobe (20R) and right inferior frontal gyrus (47R). The stuttering group (A) shows higher BC than the fluent group (B) in 20R and right 47R. The AWS exhibit
lower BC in 4R. The figure was generated using BrainNet viewer toolbox version 1.53 (Xia et al., 2013).

that there is a neural basis for abnormal executive functions
among the stuttering group that may explain previous findings
that indicate impairment of working memory (Kaganovich et al.,
2010), attention (Kaganovich et al., 2010), self-control (Eggers
et al., 2013), and also linguistic processing speed (Anderson and
Wagovich, 2010) in stuttering. This result may also help explain
the reported treatment effects of attentional training (Nejati et al.,
2013) and also mindfulness (Boyle, 2011) in stuttering.

MST analysis indicates that there is no regional theta-
mediated abnormality in AWS. This finding, in combination
with the aforementioned local and global anomalies of the theta
network, may suggest that attentional deficits in AWS are related
to the functional connectivity of the whole brain rather than those
within a specific module (e.g., middle frontal lobe as a hub in
executive network).

Beta Wave: The Role of Motor Timing
and Audio–Speech Regions
Many studies have investigated the role of motor, speech and
auditory related impairments in stuttering, e.g., (Büchel and
Sommer, 2004; Watkins et al., 2008; Chang et al., 2009). These
confirm motor–speech (Watkins et al., 2008) and audio–speech
(Luc et al., 2008; Chang et al., 2009) deficits exist, at least at
the neural level, in stuttering. The current results reaffirm that
functional brain differences in AWS occur in both primary motor
related regions and also audio-speech areas. We show that the
BC of beta2 mediated connections is decreased in the right
primary motor cortex in AWS. A node with high BC lies on a
large number of shortest paths. Nodes with significant association
in information transfer often have high BC while BC is zero
for a dead-end node (Barthelemy, 2004; Rubinov and Sporns,
2010). Decreased BC in right primary motor cortex suggest that
this area plays a reduced role in neural communication and
information propagation within the cortico-cortical networks
in AWS. This result is comparable with previous findings that
show hypo-activity of the cortical motor and premotor areas in
stuttering (Salmelin et al., 2000; Watkins et al., 2008). Previous
findings suggest that abnormal motor and pre-motor activity
during speech tasks may be causal in stuttering (Packman, 2012).

However, the present results were obtained during resting state
and could therefore fit with an explanation that posits DMN
deficits in stuttering (Xuan et al., 2012; Chang et al., 2017).

Recently it has been suggested by Etchell et al. (2014, 2016)
that stuttering is a timing deficit disorder underpinned by
abnormal functioning of beta-mediated timing networks (see
also Alm, 2004). According to the broader literature in this area
(Buhusi and Meck, 2005; Fujioka et al., 2009; Kononowicz and
van Rijn, 2015; Merchant and Bartolo, 2017), beta activity in the
basal ganglia-thalamocortical circuits (measured by EEG/MEG
from central brain locations) can be considered in relation to
interval timing. Behaviorally, deficits in response timing tasks
are frequently reported in people who stutter (Ezrati-Vinacour
and Levin, 2001; Olander et al., 2010; Falk et al., 2015) and
recently it has been suggested that impairment of resting state
functional connectivity is involved in time discrimination deficits
in stuttering (Chang et al., 2016). Since beta activity in primary
and supplementary motor cortices is associated with activity of
basal ganglia-thalamocortical circuit (Kropotov, 2010), decreased
BC of primary motor cortex in resting state beta2 adds further,
albeit indirect, neural evidence for a deficit in interval timing
networks in stuttering that involve the striatum.

AWS exhibit increased beta2 BC in the right speech–motor
related areas during resting state. This result suggests that extra
information is transferred via right audio–speech regions and
that hyper propagation of beta signals occurs in this region.
Increased activity of right audio–speech areas has previously
been observed in studies using fMRI (Luc et al., 2008; Chang
et al., 2009). Therefore, as suggested by other authors (Luc et al.,
2008; Chang et al., 2009), AWS may require more neural activity
in right audio–speech regions to compensate for deficiencies
elsewhere. It could be posited that decreased signal propagation
in the right primary cortex causes an imbalance in the neural
network and hence shortest paths are transferred from right
audio–speech regions.

Study Limitations
Two limitations that affect this study should be considered.
Firstly, as LORETA accuracy is dependent to an extent on
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the EEG montage density, the relatively small number of
electrodes we were limited to suggest that some caution regarding
interpreting absolute source localization accuracy should be
exercised. However, this is always the case with EEG source
analysis, and the fact that the results presented here are
both physiologically plausible and in strong concordance with
previous studies mitigate this concern. Furthermore, whilst
there is some evidence that suggests montage density positively
correlates with deep source reconstruction accuracy, a clear
relationship to reconstruction of superficial sources is less clear
(Liu et al., 2018). Secondly, whilst not an absolute limitation,
our choice of referencing scheme, the linked ear montage, whilst
widely used in similar studies e.g., Hata et al. (2016), is not
universally accepted as the best option for EEG studies in source
space. Future studies would be advised to systematically address
the implications of the choice of reference scheme on possible
functional connectivity deficits in AWS.

CONCLUSION

Our results reinforce previous findings that DMN deficits occur
in stuttering (Xuan et al., 2012; Chang et al., 2017). Altered
networks found in AWS include attentional circuits, primary
motor regions and also audio–speech related areas. We found
decreased functional integration and segregation comparable to
that seen in other developmental disorders (Ghaderi et al., 2017)
but no local impairments in specific regions were evident. AWS

also show impairment in the beta network in primary motor
cortex and audio-speech areas. We suggest that abnormal activity
in the beta network may relate to timing deficits and hypo-
activation of motor related areas.
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