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Abstract: A variety of applications using miniaturized optical lenses can be found among rapidly
evolving technologies. From smartphones and cameras in our daily life to augmented and virtual
reality glasses for the recent trends of the untact era, miniaturization of optical lenses permits the
development of many types of compact devices. Here, we highlight the importance of ultrasmall
and ultrathin lens technologies based on metamaterials and metasurfaces. Focusing on hyperlenses
and metalenses that can replace or be combined with the existing conventional lenses, we review
the state-of-art of research trends and discuss their limitations. We also cover applications that use
miniaturized imaging devices. The miniaturized imaging devices are expected to be an essential
foundation for next-generation imaging techniques.

Keywords: metamaterials; metasurfaces; imaging; hyperlens; metalens; miniaturized imaging devices

1. Introduction and Need for Functional and Miniaturized Imaging Devices

Miniaturization of optical lenses is emerging as an essential task as technology
evolves. The development of compact devices such as mobile phones, cameras, or aug-
mented/virtual reality devices demands miniaturization of lenses down to sub-micrometer
scales. In this regime, a new type of lens other than conventional convex or concave lenses
is required for two reasons. First, the fabrication of conventional curved lenses using
the traditional cutting or curving process is challenging. Second, geometrical optics that
underpins the light focusing on those conventional lenses fails to work in this regime as the
wavelength of interest is not sufficiently larger than the lens dimension and electromagnetic
wave optics should be considered instead.

For these reasons, attention has focused on use of metamaterials and metasurfaces
that can implement various functions and can be miniaturized. Metamaterials are artifi-
cially engineered optical materials that are designed to exhibit unconventional properties.
Metasurfaces, on the other hand, are two-dimensional counterparts of metamaterials and
can be used to avoid three-dimensional nanofabrication and to minimize the optical losses
by shortening the optical path length. Propagation of light is determined by the geo-
metrical structure, dimensions and arrangement of the subwavelength-scale constituents
of the metamaterials. Thus, appropriately-designed metamaterials offer unprecedented
abilities to control the properties of light, including trajectory, wavefront, polarization
and phase [1–17]. Naturally, metamaterials and metasurfaces have been evaluated as
replacements for conventional lenses to focus light [18,19]. Here, we focus on two types
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of metamaterials-based lenses. First, a hyperlens is a metamaterial-based lens [20–25]. It
consists of multilayered metal and dielectrics in cylindrical or spherical geometry. A hyper-
lens has hyperbolic shape of dispersion, which enables access to subdiffraction features
that have arbitrarily high spatial frequencies and transfer of evanescent waves that contain
super-resolution features of an object to a far-field. In addition, the resolution below the
diffraction limit, hyperlenses can be applied to a miniaturized imaging device by using
the latest nanofabrication techniques. Dimensions of the hyperlenses are typically a few
micrometers, so they can be easily implemented in conventional optics compactly or used
as ultrasmall lensing devices.

Secondly, a metalens is a metasurface-based lens [18,19,26–28]. The metalens consists
of two-dimensional nanopattern that has deep subwavelength thickness and is fabricated
using metals or high-refractive-index dielectric materials. The main focusing mechanism
of the metalenses is a spatially gradient phase gain that is determined by the geometry
of nanostructures. A metalens that supports a gradient phase profile that is equal to the
phase accumulation of the conventional curved lenses can effectively focus light despite
ultrasmall thickness. Furthermore, metalenses can be combined with conventional optical
systems, or multiple metalenses can be stacked for better performance without making the
whole system bulky.

Increased portability and easy implementation to conventional optics as a consequence
of the ultrasmall size are distinct advantages of hyperlenses and metalenses that distinguish
them from the conventional optical technologies. These metamaterials-based lenses will
allow further miniaturization of research equipment including microscopes as well as
practical optical devices.

2. State-of-the-Art of Metamaterial-Based Imaging Techniques
2.1. Hyperlens

The high spatial-frequency components supported by the hyperbolic dispersion pro-
vide a direct route toward super-resolution imaging. Additionally, the curved geometry
compresses the wave vector of light inside the hyperlens according to the angular momen-
tum conservation law, resulting in a conversion of the evanescent waves to propagating
waves as well as the magnification of the images. The concept of the hyperlens was first
proposed theoretically in 2006 [22,23,29]. The light propagation inside the hyperlens has
been studied using classical optics, an effective medium theory [22,29] and using semiclas-
sical description [30]. In principle, spatial resolution of an ideal hyperlens is arbitrarily
large, as implied by the open isofrequency contour, but the finite thickness of the multilayer
and fabrication imperfection in evaporating thin film cause violations of effective medium
theory at a high wave vector and limit the experimentally available resolution.

The theoretical prediction has led to the explosive investigation towards the exper-
imental demonstration of hyperlens-assisted super-resolution imaging [20,21,24]. Early
hyperlenses had a cylindrical shape (Figure 1a) that allows super-resolution imaging along
one spatial dimension. Silver and aluminum oxide have been used for hyperlenses op-
erating in the ultraviolet regime [20,21]. Subdiffraction-limited resolution of 130 nm [21]
and 125 nm [20] have been achieved at wavelength λ = 365 nm. Later, two-dimensional
super-resolution imaging at visible wavelength was demonstrated by using a spherical
hyperlens (Figure 1b). The spherical geometry dictates the conservation of angular mo-
mentum along two spatial dimensions and accordingly enables super-resolution imaging
along two dimensions. A hyperlens composed of silver and titanium oxide deposited
alternatingly on a hemisphere geometry resolved two-dimensional subdiffraction features
of 160 nm separation at λ = 410 nm.
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Figure 1. Hyperlens. (a) One-dimensional super-resolution imaging that uses a cylindrical hyperlens. (i) Schematic of cy-
lindrical hyperlens and (ii) simulation result of subdiffraction-limited object. Reprinted with permission from ref. [21], 
AAAS. (b) Two-dimensional super-resolution imaging using a spherical hyperlens. (i) A scanning electron microscope 
(SEM) image of the spherical hyperlens. Measured images of object having two 100 nm size dots and a 100 nm bar 
through (ii) SEM and (iii) hyperlens. All scale bars shown in (i)–(iii) are 500 nm. (iv) Cross-sectional analysis result of 
image by captured hyperlens. Reprinted with permission from ref. [24], Springer Nature. (c) Non-resonant, broadband 
hyperlens. Experimental results of sample (i) with hyperlens and (ii) without hyperlens. Reprinted with permission from 
ref. [31], Springer Nature. (d) A large-scale hyperlens fabricated by nanoimprinting. (i) Photograph, (ii) SEM and (iii)–(v) 
TEM images of hyperlens with different magnification. (e) A biomolecular imaging using a hyperlens array. (i) Concept 
of positioning samples on a hyperlens array and (ii) hyperlens implemented imaging setup. (iii) Captured neuron image. 
Reprinted with permission from ref. [32], ACS. 

Although these hyperlenses have the clear advantages of far-field super-resolution 
capability and compatibility with conventional optics, the multilayered geometry limits 
the operating wavelength of the super-resolution imaging near the metal plasma fre-

Figure 1. Hyperlens. (a) One-dimensional super-resolution imaging that uses a cylindrical hyperlens. (i) Schematic of
cylindrical hyperlens and (ii) simulation result of subdiffraction-limited object. Reprinted with permission from ref. [21],
AAAS. (b) Two-dimensional super-resolution imaging using a spherical hyperlens. (i) A scanning electron microscope
(SEM) image of the spherical hyperlens. Measured images of object having two 100 nm size dots and a 100 nm bar through
(ii) SEM and (iii) hyperlens. All scale bars shown in (i)–(iii) are 500 nm. (iv) Cross-sectional analysis result of image by
captured hyperlens. Reprinted with permission from ref. [24], Springer Nature. (c) Non-resonant, broadband hyperlens.
Experimental results of sample (i) with hyperlens and (ii) without hyperlens. Reprinted with permission from ref. [31],
Springer Nature. (d) A large-scale hyperlens fabricated by nanoimprinting. (i) Photograph, (ii) SEM and (iii)–(v) TEM
images of hyperlens with different magnification. (e) A biomolecular imaging using a hyperlens array. (i) Concept of
positioning samples on a hyperlens array and (ii) hyperlens implemented imaging setup. (iii) Captured neuron image.
Reprinted with permission from ref. [32], ACS.

Although these hyperlenses have the clear advantages of far-field super-resolution
capability and compatibility with conventional optics, the multilayered geometry limits
the operating wavelength of the super-resolution imaging near the metal plasma frequency
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as a result of resonant effective permittivity. To overcome this limitation, a radial fan-
shaped hyperlens has been proposed as a non-resonant alternative (Figure 1c) [31]. It
supports broad bandwidth ranging at 500 ≤ λ ≤ 1000 nm theoretically and has achieved
low loss super-resolution imaging at λ = 780 nm. In addition, non-resonant design, the
high optical losses of the hyperlens can be alleviated by adopting new materials such as
natural hyperbolic materials [33], semiconductors and transparent conducting oxides [34].

The curved geometry of the hyperlens sometimes imposes restrictions in practical
applications. Thus, to improve the practicality and compatibility of the hyperlens, a
planar hyperlens has been proposed theoretically, by using transformation optics [35–37].
While the planar hyperlens is favorable in implementation to conventional optics, use
of planar slabs to mimic the light propagation in a curved geometry complicates the
inner geometry. For example, planar hyperlenses entail the curved interfaces between
the metal and dielectrics [35,37] or a spatially-varying thickness [36], these shapes require
complicated fabrication techniques and have not been experimentally realized so far.

As an alternative, a scalable fabrication technique for large-area hyperlens arrays
has been proposed [38]. The previous hyperlens had a single pattern of a few microm-
eter dimension, which requires a precise control of sample placement. This sensitive
sample-positioning step hinders practical implementation of the hyperlens. In contrast, a
wafer-scale array of densely packed hyperlenses in a hexagonal pattern fabricated using
nanoimprint lithography eliminates such a burden (Figure 1d). As a consequence, a subd-
iffraction imaging of a biomolecular sample has been achieved with a resolution of 151 nm
at λ = 410 nm (Figure 1e) [32].

2.2. Metalens

A metalens is a flat lens that uses a metasurface to replace the bulk, curved dielectric
lenses in nanoscale [18,19]. The operating mechanism of the metalens has a long history
that goes back to diffractive optics [39–45]. Instead of a curved geometry that yields
spatially-varying phase by controlling the optical path length, the metalens modulates the
phase profile in the whole 2π phase space and reshapes the wavefront by using nanoscale
scatterers [2,46]. A metalens that has a hyperbolic phase profile (Figure 2a) [47,48],

φ(r) = −2π

λ

(√
r2 + f 2 − f

)
, (1)

where r =
√

x2 + y2 is a radial position and f is a focal length, focuses normally-incident
light with a planar wavefront as a conventional refractive lens with a focal length of f
does. More specifically, the phase can be controlled resonantly by using plasmonic, Mie or
Fabry–Ferot resonance [49–51], or non-resonantly by using geometric phases [52–54].

The resonant metalens uses a geometrical shape and dimensions, materials and ar-
rangement of the subwavelength scatterers that are engineered to achieve the desired phase
profile. A properly designed metalens focuses monochromatic light to a subwavelength
focal spot (Figure 2b). The resonant nature inherently limits the bandwidth to a narrow
range but requires relatively small aspect ratio, which makes the resonant metalenses more
productive in comparison to the non-resonant ones.

On the other hand, the non-resonant metalenses rely on nanopatterns with high
aspect ratio to effectively modulate the phase gain without accompanying resonance.
Nevertheless, broad bandwidth and high efficiency have made the non-resonant met-
alenses appealing candidates for practical lensing applications. The phase modulation
of the non-resonant metalenses can also be achieved by tuning the geometries of the
nanoscatters, or more simply by rotating anisotropic scatterers [55]. For the latter case,
spatially-inhomogeneous orientations of the scatterers assign the desired spatial profile of
a geometric phase accumulated in a Poincare sphere, the so-called Pancharatnam–Berry
phase (Figure 2c).
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nant dielectric metalens. (i) Schematic (ii) optical microscope image and (iii)–(iv) SEM images of a fabricated metalens. 
Scale bars are 1 μm. (v) Electric energy density. Scale bars are 20 μm in the main figure and 2 μm in the inset. Reprinted 
with permission from ref. [49], Springer Nature. (c) A non-resonant metalens based on Pancharatnam-Berry phase. (i) 
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Figure 2. Metalens. (a) A hyperbolic phase profile of a metalens. (i) Hyperbolic phase profile to focus a
plane wave to a focal spot. (ii) Discretized phase profile for realistic sample. Reprinted with permission
from ref. [47], ACS. (b). A resonant dielectric metalens. (i) Schematic (ii) optical microscope image
and (iii,iv) SEM images of a fabricated metalens. Scale bars are 1 µm. (v) Electric energy density.
Scale bars are 20 µm in the main figure and 2 µm in the inset. Reprinted with permission from
ref. [49], Springer Nature. (c) A non-resonant metalens based on Pancharatnam-Berry phase. (i) SEM
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image of the fabricated metalens. Scale bar is 300 nm. Measured focal spot intensity profile at
different wavelength: (ii) 660 nm, (iii) 532 nm and (iv) 405 nm. (v)–(vii) Corresponding cross-
sectioned intensity of focal spots. Reprinted with permission from ref. [46], AAAS. (d) A broadband
achromatic metalens. (i) Schematic and (ii) SEM image of a metalens element. Scale bar is 500
nm. (iii,iv) Intensity profiles of diffractive and achromatic metalenses, respectively. Reprinted with
permission from ref. [56], Springer Nature. (e) Experimental verification of achromatic metalenses.
SEM images of (i) Babinet structures and (ii) nanopillars region from the fabricated achromatic
metalens. Scale bars are 500 nm. (iii) Captured images using fabricated achromatic metalens.
Reprinted with permission from ref. [57], Springer Nature.

To improve the practicality, efforts toward efficient metalenses have been made natu-
rally. Plasmonic metalenses generally suffer from high absorption arising from the intrinsic
metallic properties [58]. Thus, one solution to increase the efficiency is to use dielectric
materials that have high refractive index and low absorption coefficient simultaneously
at a target wavelength [59–62]. Furthermore, material choice of the metalenses is a crit-
ical factor that determines their operating wavelength and efficiency. Thus, metalenses
for different target wavelengths generally consist of different materials. Representative
dielectric materials include hafnium oxide and aluminum nitride for the ultraviolet [63,64],
titanium dioxide and gallium nitride for the visible [65,66] and germanium and silicon for
the infrared [67,68] regimes.

A metalens that is designed to have the hyperbolic phase profile (Equation (1)) entails
several monochromatic aberrations. However, correction of monochromatic aberration is
essential for high numerical aperture, which in turn increases the focusing efficiency and
widens the field of view. The off-axis aberration that appears under an obliquely incident
light can be eliminated by superposing sinusoidal corrections on the hyperbolic phase
profile [69]. Use of a metalens on an aplanatic substrate has been studied theoretically
to remove coma aberration and spherical aberration [70]. A double metalens, one side
of which is an aperture lens and the other side is a focusing lens, has been proposed to
alleviate spherical aberration [71]. Metalenses with monochromatic aberration correction
have been designed using optimization methods such as topology optimization [72–74].

Chromatic aberration correction is another important procedure to develop a metalens
that operates over a wavelength regime. The focusing effect of a metalens that is designed
for a single target wavelength generally degrades as it deviates from the target wavelength.
Thus, correction terms should use a Taylor series expansion such as

φ(r, ω) = φ(r, ωt) +
∂φ

∂ω

∣∣∣∣
ω=ωt

(ω − ωt) +
1
2

∂2φ

∂ω2

∣∣∣∣
ω=ωt

(ω − ωt)
2 + O

(
ω3
)

, (2)

where ωt is a target angular frequency. The first term on the right-hand side corresponds
to the spherical wavefront as Equation (1) states. The derivatives in the second and third
terms are a group delay and group delay dispersion respectively, which lead directly to
the chromatic aberration [72]. Equation (2) implies that an ideal, aberration-free metalens
should satisfy a series of conditions of phase, group delay and group delay dispersion.
Metalenses provide a large structural degree-of-freedom in that geometry, dimension,
arrangement and materials of the nanoscatterers as well as those of the substructures that
consist of a unit cell affect the phase and its derivative.

An achromatic metalens that operates at 470 ≤ λ ≤ 670 nm has been demonstrated by
independently controlling the phase, group delay and group delay dispersion by using
the design principle in Equation (2) (Figure 2d) [56]. Similarly, a broadband achromatic
metalens operating over a half of the visible regime has been proposed by using a judi-
ciously designed metalens (Figure 2e) [57]. The efforts towards the metalens beyond the
monochromatic operation have been also made for several discrete wavelengths in the
visible [72,73] or in the near-infrared [52]. The broad bandwidth has been also achieved by
using plasmonic materials despite their strong material dispersion, by compensating for
it by using structure dispersion of surface plasmon polaritons [74]. To tackle the series of
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phase derivatives, several numerical optimization and inverse design methods have been
applied to design achromatic metalenses [75–77].

Despite its advantages, a metalens that exhibits only fixed functionalities after fabrica-
tion is not desirable for applications. Thus, intensive attempts have been made to develop
an active metalens, whose optical responses can be reconfigured for target applications
at will. A tuning of focal lengths of metalenses has been demonstrated by applying me-
chanical strain [78–80] or displacement [81] or by using phase transition materials [82,83].
Metasurfaces whose two-dimensional optical properties can be assigned and removed us-
ing femtosecond laser in a non-volatile and reversible manner provide a new path towards
multifocal lensing techniques [84,85].

3. Challenges and Perspectives

Metamaterials and metasurfaces provide a new paradigm to replace optical compo-
nents and systems. However, practical uses of these technologies require development of
methods to greatly reduce the production cost of optical components and to manufacture
miniaturized components by utilizing equipment that is already used in the semiconductor
industry. Several alternatives to fabricate metamaterials and metasurfaces at low cost
are emerging. Nanoimprint lithography and deep UV lithography are being considered
because they have the advantages of high speed, low cost and compatibility with mass
production [78,86–89].

Detailed challenges and limitations for the two lithography techniques also need to
be addressed. For hyperlenses to be practically usable in imaging, their efficiency and
operating wavelength range should be increased. A simple and inexpensive method
to fabricate large-scale hyperlens would also be an advantage [32]. So far, research on
metalenses has focused on ways to overcome the following limitations. First, metalenses
are less efficient than traditional lenses. Metalenses do not transmit as much light as the
traditional lens, but to be used as a lens of an imaging system that can acquire a clear image,
they must be able to utilize most of the incident light. Second, metalenses have a small
diameter to capture a sufficient amount of light. This means that to acquire high-quality
images, the lens should be large. Third, many optical systems that use metalenses also use
additional optical components to process unmodulated signals; this approach makes the
entire system complex and bulky and reduces efficiency. Therefore, development of ideal
metalenses requires optimization of the diameter and design of the lens to achieve high
efficiency and high numerical aperture. In addition to being more practical, metalenses
should have polarization-independent characteristics. Furthermore, aberration-free optical
systems operating in broad wavelength range should be developed.

Nevertheless, miniaturized lenses and applications will lead to size reduction and
simplification of devices in a few years. Research that can increase the efficiency of
lenses by exploration of various materials [90] and fabrication conditions is being actively
conducted [91]. Establishment of silicon-deposition conditions to minimize optical loss
and development of methods to manufacture lenses with larger diameters than now
are expected to expedite commercialization of the technology. Potential applications as
imaging sensors and systems and diagnostic tools are of great interest to many companies
and governments.

Thus, recently reported results are promising in that they have reduced the complexity
of sophisticated optical systems and have opened up a wide range of possible applications.
Development of hyperlenses has shown the possibility of producing low-cost, large-area
devices by large-scale fabrication [32], but research is pursuing innovation by use of
various materials to widen the operating wavelength range and increase the efficiency;
examples include investigation of organic hyperbolic metamaterials that have low loss or
photostability [92]. The use of ultra-small, ultra-high-resolution functional materials has
the potential to develop portable devices that can measure various samples with increased
efficiency and that can diagnose diseases and identify viruses.
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Metalenses also show strong potential for combination with other industrial fields.
For example, the lenses are actively being applied to compact and high-resolution micro-
scopes [93–95] and to ultra-small optical devices that can be used in virtual and augmented
reality [96,97]. Although active metalenses whose functionalities can be manipulated
under external stimuli have been demonstrated, considerable efforts still remain for the
development of genuine active metalenses for real-world applications.

In addition, they are also showing the possibility of use in functional optical devices
that are complicated to implement with traditional optical lenses; examples include a
full-Stokes polarization camera [98], a depth-sensing camera that uses multi-focal length
metalenses [99,100] and varifocal metalenses [83,101–104]. Other technologies of organic
light-emitting diodes [105], wearable optical devices [106] are also being combined with
original industries.

In this opinion, we have focused on the potential of miniaturized lenses based on
metamaterials or metasurfaces, with a special focus on hyperlenses and metalenses. These
are expected to open new avenues in the construction of new optical devices. Use of meta-
materials or metasurfaces may enable encoding of various functions and implementation
of miniaturized optical devices. This capability will lead to improvements in optics and
systems and will enable the development of single devices that can significantly reduce the
volume and cost of existing imaging devices and electronic devices.
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