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Background and objective: Cognitive impairment (CI) is common in multiple sclerosis 
(MS), but underlying mechanisms and their imaging correlates are not completely under-
stood. The gray and white matter structures of the limbic system (LS) play crucial roles 
in different aspects of cognition. To investigate their role in MS related CI, and since a 
detailed evaluations are lacking in the literature, we used a comprehensive neuroimaging 
approach to evaluate CI’s correlations with the main components of the LS.

Methods: Ten non-cognitively impaired MS patients and 30 MS patients with diagnosed 
CI, who underwent a comprehensive neuropsychological evaluation were included in 
the analysis. Microstructural integrity, volumetry of main limbic gray and white matter 
structures and cortical thickness were assessed for associations with CI.

results: Fornix and cingulum/cingulate cortices were found to be the strongest cor-
relates of CI in MS. As expected, LS’ gray and white matter structures were involved in 
various cognitive functions. Uncinate fasciculi showed significant correlation with verbal 
and visuospatial learning and memory, phonemic and semantic fluency; hippocampi with 
visuospatial skills, phonemic and semantic fluency, executive functions, and processing 
speed; thalami with verbal learning, visuospatial skills, semantic fluency; and amygdala 
with verbal recognition discrimination.

conclusion: This comprehensive neuroimaging approach elucidated the role of the 
main limbic structures in cognitive functions associated with MS-related CI.
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inTrODUcTiOn

Cognitive impairment (CI) occurs in 40–65% of patients with multiple sclerosis (MS) (1), mainly 
encompassing disturbances in memory, attention, verbal fluency (VF), information processing 
speed, conceptual reasoning, and visuospatial perception (2). Damage to white matter structures 
from demyelination or axonal loss leading to disconnection between the cortical and subcortical 
regions responsible for cognition, underlies the cognitive symptomatology in MS (3, 4). Although 
MS was originally thought to be mainly a white matter disease, gray matter structures are also known 
to be involved in the disease pathogenesis and shown to correlate with impairment (5, 6).
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FigUre 1 | (a–c) Illustration of spatial-normalized MNI summary of cingulum, fornix, uncinated fasciculus (UF), thalamus, entorhinal cortex (EC), amygdala (Amy) in 
sagittal, coronal and axial T1w slices in our multiple sclerosis (MS) cohort. (D,g) Schematic (D) and atlas-based (g) representation (in one MS patient) of limbic 
connections between limbic gray matters on 3D T1w and mean diffusivity images. (e,F) Illustrates cingulum (green), UF (pink), and fornix (red) on T1w. Abbreviation: 
OFC, orbitofrontal cortex. MRIcron (http://people.cas.sc.edu/rorden/mricron/index.html), Diffusion tensor imaging (http://cmrm.med.jhmi.edu/), and DSI (http://
dsi-studio.labsolver.org/) studios are used to generate this figure.
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The limbic system (LS) includes gray matter and white matter 
structures that along with paralimbic structures, play a crucial role 
in different aspects of cognition (7). Hippocampus, thalamus, and 
the ventral cingulum connected by the fornix, are responsible for 
memory and spatial orientation, whereas the amygdala, orbito-
frontal cortex (OFC), entorhinal cortex (EC), and parahippocam-
pal (PH) cortex connected by uncinate fasciculus, are involved 
in multimodal sensory integration, behavioral inhibition, the 
reward-pleasure system, and memory for visual information 
(8). On the other hand, the cingulate gyrus and cingulum are 
associated with attention, response selection/action monitoring, 
self-knowledge, and reasoning (9) (see Figure 1).

The LS recently received more attention in the pursuit of 
understanding the neural correlates of abnormal cognitive 
symptomatology in MS (4, 10). The LS’s white (11, 12) and gray 
matter structures (13, 14) are found to be implicated in various 
cognitive symptoms in MS. Of note, compared with healthy 
controls, reduced cerebral blood flow was present in limbic 
regions of patients with CI (15). Although most studies focus 
on individual parts of LS, a comprehensive evaluation that 
included all components of the LS is lacking (see Table 1 for 
a summary of key MRI studies investigating limbic structures 
in MS).

Several studies have shown correlation between various MRI 
measure and histopathology (16, 17, 18). Diffusion tensor imag-
ing (DTI) metrics of white matter tracts were found to correlate 
with a histologically derived measure of tract myelination (17, 
18). It is suggested that fractional anisotropy (FA) and mean 
diffusivity (MD) of white matter tracts are affected by axonal 
count in post mortem analyses in MS (18). Additionally, cortical 
thickness measures derived from MRI and histological measure-
ments showed significant correlations in MS (17). While no 
specific postmortem DTI studies have been detailed for limbic 
structure damage in MS, cortical thickness (19) and diffusion 

measurements are a reliable in vivo technique to quantify gray 
and white matter injury in MS (18).

In this study, we attempted to provide a comprehensive analy-
sis of the roles of the LS’s gray and white matter structures on the 
main cognitive functions affected by MS. We used quantitative 
MRI (qMRI) methods such as cortical thickness and volumetric 
analysis of deep and cortical gray matter structures derived from 
T1-weighted (T1w) images. In addition, we used microstructural 
measures such as FA and MD derived from DTI. Cognitive 
scores were obtained from subsets of the Minimal Assessment 
of Cognitive Function in MS (MACFIMS), a comprehensive 
cognitive battery assessing various cognitive domains specifically 
related to MS (20).

MaTerials anD MeThODs

Ten non-cognitively impaired MS patients (MSNI) and 30 
patients with diagnosed CI (MSCI) were included (36 relaps-
ing–remitting, and 4 secondary-progressive) age 40.53 ± 11.53 
(range 18–58) years, education 14.65  ±  2.33  years, disease 
duration 13.71  ±  8.82  years, Expanded disability status scale 
3.21  ±  1.89 (0–7), left handedness 3/40 (Table  2). Written 
informed consent was obtained from each subject following 
University of Texas Health Science Center Institutional Review 
Board approval of the protocol. All patients underwent the 
comprehensive cognitive testing as detailed below. Cognitive 
testing was performed in the morning to avoid fatigue, prior 
to and within 2 weeks of the imaging session. Inclusion criteria 
specified meeting 2010 McDonald Criteria for MS. Exclusion 
criteria included history of psychiatric disorders, recent history 
of drug or alcohol abuse, history of depression or relapse within 
3 months of enrollment, history of allergy to gadolinium, his-
tory of other brain pathology, claustrophobia, or positive urine 
pregnancy test prior to MRI.
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TaBle 1 | Tabulated summary of key MRI studies investigating limbic structures in multiple sclerosis (MS).

author name structures clinical test Mri technique number of 
subjects

results/notes

Batista et al. (14) Whole gray matter 
structures

PASAT, SDMT, CVLT, 
COWAT, BVMT, D-KEFS

T1w-volumetric 
segmentation

59 RRMS
27 SPMS

Thalamus-SDMT was found to be correlate with CI, 
correlations were adjusted for age and neocortical volume

Benedict et al. 
(45)

All GM structures by 
Freesurfer

SDMT, CVTL-II, BVMT T1w-Freesurfer 35 RRMS
15 SPMS

Thalamus showed some correlation with almost all cognitive 
scores but strong correlation was noted between Thalamus-
SDMT, amydala-recognition DI

Dineen et al. (3) Cingulum, Fornix, UF MACFIMS DTI-TBSS 35 RRMS
2 SPMS

Associations between left cingulum FA and PASAT, left 
cingulum FA, and fornix FA and BVRT, and left cingulum FA 
and fornix FA CVLT-II

Fink et al. (50) Fornix, UF, cingulum CVLT DTI-deterministic 
tractography

50 RRMS Right fornix RD were associated with delayed recognition

Hojjat et al. (52) Whole brain MACFIMS pCASL 39 RRMS Decreased blood flow in bilateral cingulate gyri in cognitively 
impaired MS

Houtchens et al. 
(13)

Thalamus COWAT, JLO, CVLT-II, 
PASAT, BVMT, SDMT

T1w/T2w-manual 
delineation

62 RRMS, 
16 SPMS, 1 
PPMS

Thalamus volume was strongly correlated with COWAT, JLO, 
CVLT-II, BVMT, PASAT, SDMT

Kern et al. (12) Fornix, UF, cingulum, 
thalamus, and 
hippocampus

WAIS III, the D-KEFS, 
SDMT, PASAT the BSRT, 
and the spatial-recall task

DTI-deterministic 
tractography

27 RRMS Group instead of correlation analyses were used. Attention, 
verbal memory, closely associated with thalamic volume and 
processing speed, spatial memory associated with UF FA

Meijer et al. (10) Cingulum, UF, fornix PASAT-3, SDMT SRT, 
RMT, FRT, WAIS III, 
Stroop color-word 
interference test, and 
Hayling Sentence 
Completion Test

TBSS-DTI 32 SPMS Limbic pathways were associated with visuospatial memory

Mesaros et al. 
(43)

UF and cingulum PASAT SDMT SPART-D 
SPART-T SRT-C SRT-D, 
SRT-L, WLG

DTI-Atlas-based 40 RRMS
19 SPMS
23 PPMS

Cingulum DTI metrics were the best classifiers across 
numerous tests: PASAT, SDMT, SRT, and WLG

Pardini et al. (47) FSL segmentation of 
hippocampus

Brief repeatable 
neuropsychological 
battery

T1w-FSL 25 RRMS Verbal memory correlated with left hippocampal volume, 
spatial memory with right hippocampal volume, memory 
deficits with left cingulum, and left UF’ mean FA

Pravatà et al. 
(48)

All GM structures by 
Freesurfer

Brief repeatable battery of 
neuropsychological tests

T1w-FreeSurfer 108 RRMS, 
14 SPMS, 4 
PPMS

Bilateral entorhinal, right OFC, right cingulate and bilateral, 
temporal poles were associated with CI. (correlations not 
adjusted for age, lesion load, and education)

Riccitelli et al. 
(44)

Whole brain thru VBM PASAT 3, short story, 
verbal learning, recall-
ROCF, verbal fluency, 
spatial cognition-ROCF

T1/T2w-VBM 22 RRMS, 
29 SPMS, 
22 PPMS

MS with CI vs HC had GM reduction in the hippocampi, right 
insula, cingulate cortex. GM loss in the left hippocampus 
was correlated with CI index. Anterior cingulate cortex was 
found to separate MS with cognitively intact MS vs. CI

BSRT, Buschke Selective Reminding Test; BVMT-R, Brief Visuospatial Memory Test-Revised; BVRT, Benton Visual Retention Test; CI, cognitive impairment; COWAT, the controlled 
oral word association test; CVLT-II, California Verbal Learning Test II; D-KEFS, the Delis–Kaplan Executive Function System; DTI, Diffusion Tensor Imaging; FA, fractional anisotropy; 
FRT, Free recall test; GM, gray matter; JLO, Judgment of Line Orientation test; MACFIMS, minimal assessment of cognitive function in MS; OFC, orbitofrontal cortex; PASAT, Paced 
Auditory Serial Addition Test; pCASL, pseudo-continuous arterial spin labeling; PPMS, primary progressive MS; RD, radial diffusivity; RMT, Recognition Memory Test; ROCF, The 
Rey–Osterrieth complex figure test; RRMS, relapsing–remitting MS, SDMT, Symbol Digit Modality Test; SPART-D, Spatial Recall Test–delayed recall; SPART-T, Spatial Recall Test–
immediate recall; SPMS, secondary–progressive MS, SRT-C, Selective Reminding Test; SRT-D, Selective Reminding Test–delayed recall; SRT-L, Selective Reminding Test–long-term 
storage; T1w, T1 weighted; T2w, T2 weighted; TBSS, tract-based spatial statistics; UF, uncinate fasciculus; VBM, voxel-based analysis; WAIS-III, Wechsler Adult Intelligence Scale-
III; WLG, Word list generation.
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Behavioral laboratory Measures
In order to determine CI in our cohort, an impairment index 
methodology was applied to the behavioral scores. Based on previ-
ously validated methodology (20), 20 MACFIMS parameters were 
identified as most pertinent in the measurement of MS-related 
cognitive deficits and a CI index was derived. The processing speed 
and working memory was evaluated by using Paced Auditory 
Serial Addition Test (PASAT) (21) and symbol digit modality test 
(SDMT) (22), memory and learning evaluated by using California 

Verbal Learning Test Second Edition (CVLT-II) (23, 24) and Brief 
Visuospatial Memory Test-Revised (25), executive function using 
Wisconsin Card Sorting (26), visual perception/spatial processing 
using Judgment of Line Orientation test (JLO) (27), and VF meas-
ured by the controlled oral word association test (COWAT) (27). 
Patients were classified as cognitive impaired if their perform ance 
was more than one standard deviation below the mean on at least 
40% of the pre-identified parameters and classified as cognitively 
intact if performance was less than 40% impaired.
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Mean sD

BVMT_TotalRecallRaw 18.92 8.83
BVMT_LearningRaw 3.57 2.23
BVMT_DelayedRaw 7.31 3.64
BVMT_Percent_RetainedRaw 86.12 24.99
BVMT_RecognitionHitsRaw 5.10 1.01
BVMT_RecognitionFalseAlarmsRaw 0.53 0.44
BVMT_Recognition_DiscriminationIndexRaw 4.57 1.41
BVMT_RecognitionResponseBiasRaw 0.44 0.20
COWAT_TotalFAS_Raw 33.10 13.49
COWAT_Animals_Raw 15.71 5.24
JLO_FormH_Raw 19.98 6.50
JLO_FormH_Freq 16.14 11.88
JLO_FormV_raw 19.41 6.31
JLO_Form_V_freq 16.16 11.81
WCST_NumberCategories 5.14 1.61
WCST_TrialsAdministered 100.35 21.87
WCST_TotalCorrect 71.82 10.84
WCST_Trialsto1st 22.27 21.79
WCST_PerseverativeErrors 12.96 10.80
WCST_NonPerseverativeErrors_Raw 15.57 12.05
WCST_FailureToMaintainSet 0.88 0.77
CVLT_TotalCorrect_t 44.51 14.39
CVLT_ListB_zscore −0.64 1.12
CVLT_SFDR_zscore −0.96 1.49
CVLT_SCDRcore_zscore −0.97 1.58
CVLT_LDFR_zscore −1.09 1.68
CVLT_LDCR_zscore −0.94 1.49
CVLT_Hits_zscore −1.04 1.57
CVLT_FalsePositives_zscore −0.80 1.78
SDMT_Written_zscore −1.41 1.39
SDMT_Oral_zscore −1.31 1.44
PASAT_3_zscore −1.22 1.48
PASAT_2_zscore −0.90 1.25
BVMT_TotalRecall_t 38.37 14.92
BVMT_Learning_t 49.41 12.75
BVMT_Delayed_t 40.22 15.75
VF_TotalFAS_t 39.92 11.80
VF_Animals_t 35.51 11.73
Benton_FormH_Percentile 35.96 32.20
Benton_Form_V_percentile 32.41 28.81
WCST_NumberCategories_percentile 13.33 4.81
WCST_Trialsto1st_percentile 10.63 6.24
WCST_PerseverativeErrors_t 47.80 11.61
WCST_NonPerseverativeErrors_t 43.45 9.63

Volumes [mean and SD are expressed in milliliter (mL)], thicknesses in millimeter (mm), 
fractional anisotropy (FA) in μ ± σ, and mean diffusivities (MD) in ×10−3 mm2 s−1 for right 
(RH) and left (LH) hemispheres. 2s, 2 s tests; 3s, 3 s, BVMT, Brief Visuospatial Memory 
Tests; COWAT, Controlled Oral Word Association Test; CVLT, California Verbal Learning 
Test 2nd version; JLO, Benton Judgment Line of Orientation; LDCR, long-delayed 
cue recall; LDFR, long delayed free recall; PASAT, Paced Auditory Serial Addition Test; 
SDCR, short-delayed cue recall; SDFR, Short-Delayed Free Recall; SDMT, symbol digit 
modality test; t, t test; z, z scores; WCST, Wisconsin Card Sorting Test.

TaBle 2 | Subject characteristics, MRI derived values of the brain structures, 
and cognitive scores investigated in this study.

Mean sD

Age 40.53 11.53
Expanded Disability Status Scale 3.21 1.89
Disease DURATION 13.71 8.82
Education 14.65 2.33
T1 black holes (mL) 3.95 3.65
T2 hyperintensities (mL) 14.48 13.15
Fornix volume 3.23 1.35
Fornix FA 0.33 0.03
Fornix MD 1.38 0.11
Left cingulum volume 11.10 2.44
Left cingulum FA 0.36 0.02
Left cingulum MD 0.81 0.04
Right cingulum volume 10.45 3.03
Right cingulum FA 0.34 0.02
Right cingulum MD 0.80 0.05
Left uncinate volume 4.97 2.74
Left uncinate FA 0.37 0.02
Left uncinate MD 0.85 0.07
Right uncinate volume 4.90 2.05
Right uncinate FA 0.35 0.02
Right uncinate MD 0.84 0.05
Left thalamus volume 7.09 1.40
Left thalamus MD 0.88 0.05
Right thalamus volume 6.38 1.29
Right thalamus MD 0.88 0.04
Left hippocampus volume 3.66 0.58
Left hippocampus MD 0.95 0.02
Right hippocampus volume 3.77 0.52
Right hippocampus MD 0.94 0.03
Left amygdala volume 1.42 0.29
Left amygdala MD 0.88 0.05
Right amygdala volume 1.53 0.27
Right amygdala MD 0.88 0.04
LH lateralorbitofrontal thickness 2.45 0.17
LH medialorbitofrontal thickness 2.29 0.15
RH lateralorbitofrontal thickness 2.46 0.18
RH medialorbitofrontal thickness 2.32 0.15
LH caudalanteriorcingulate thickness 2.44 0.25
LH isthmuscingulate thickness 2.27 0.20
LH posteriorcingulate thickness 2.37 0.18
LH rostralanteriorcingulate thickness 2.76 0.22
RH caudalanteriorcingulate thickness 2.45 0.21
RH isthmuscingulate thickness 2.22 0.20
RH posteriorcingulate thickness 2.34 0.14
RH rostralanteriorcingulate thickness 2.81 0.25
LH parahippocampal thickness 2.56 0.27
RH parahippocampal thickness 2.52 0.24
LH entorhinal thickness 3.02 0.41
RH entorhinal thickness 3.18 0.43
CVLT_Total Correct 45.88 12.76
CVLT_CVLT_List B 5.12 2.32
CVLT_SDFR Score 8.43 4.12
CVLT_SDCR Score 10.02 3.77
CVLT_LDFR Score 8.88 4.31
CVLT_LDCR Score 10.16 3.69
CVLT_Hits 13.73 2.48
CVLT_False Positives 4.08 3.18
CVLT_Repetitions 3.73 3.27
CVLT_Intrusions 6.32 6.19
SDMT_Written 40.02 12.53
SDMT_Oral 46.41 14.85
PASAT_3 37.41 14.32
PASAT_2 28.43 12.65

(Continued)

TaBle 2 | Continued
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Magnetic resonance imaging Data 
acquisition
Whole brain MRI data were acquired on a Philips 3.0T Intera 
scanner using a SENSE receive head coil. The MRI protocol 
included conventional and non-conventional MRI sequences 
[dual echo turbo spin echo, fluid attenuation by inversion recov-
ery (FLAIR) and 3D T1-weighted magnetization prepared rapid 
acquisition with gradient echo (MPRAGE)]. The T1-weighted 
sequence spatial resolution was 1  mm  ×  1  mm  ×  1  mm and 
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FigUre 2 | Illustration of fiber tractography in color-coded diffusion tensor imaging map. For fornix, we have seeded first ROI in subcallosal green fibers seen in 
axial slice where body and crus of fornix can be observed (a) and second and third ROIs are seeded in the mid and distal parts of crus (B) (35). For uncinate 
fasciculus (UF), we have seeded first ROI in the coronal section of temporal lobe and second ROI in the superomedial green projections fibers at the anterior 
commissure level (c) (34). For cingulum, we have seeded first ROI and second ROI in supracallosal green projection fibers anteriorly (D) and posteriorly  
(e). Third ROI was seeded in the green hippocampal cingulum fibers seen in the medial temporal lobe (F) (4). Once a fiber tract was reconstructed, its entire 
trajectory was verified on a slice-by-slice basis to compare with established anatomical landmarks described in the human brain neuroanatomy atlases (33).
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field-of-view was 256 mm × 256 mm. Diffusion-weighted image 
(DWI) data were acquired axially from the same graphically 
prescribed conventional MRI volumes using a single-shot multi-
slice 2-D spin-echo diffusion sensitized and fat-suppressed echo 
planar imaging (EPI) sequence, with the balanced Icosa21 tensor 
encoding scheme (28, 29). The b-factor  =  1,000  s  mm−2, TR/
TE = 7,100/65 ms, FOV = 256 mm × 256 mm, and slice thick-
ness/gap/#slices = 3 mm/0 mm/44. The EPI phase encoding used 
a SENSE k-space undersampling factor of two, with an effective 
k-space matrix of 128 × 128, and an image matrix after zero-filling 
of 256  ×  256. The constructed image spatial resolution for the 
DWI data was = 1 mm × 1 mm × 3 mm.

lesion load (ll) segmentation using 
conventional Mri
Whole brain LL was quantified in all patients using the co-regis-
tered multispectral dual FSE and the FLAIR volumes. The lesion 
probability masks were computed in MRIcron (http://www.nitrc.
org/projects/mricron/) (30, 31). The lesion volumes were saved 
as binary masks to enable fusion with other multimodal volumes 
acquired from the same subject. We obtained both T1 and T2 LL 
to adjust for in the correlation analyses.

Diffusion Tensor White Matter 
Tractography
We used a brute force and multiple regions-of-interest (ROI) 
tracking method and the fiber assignment with continuous trac-
tography (FACT) algorithm (32, 33) (DTI Studio, Johns Hopkins 
University, Baltimore, MD, USA) to reconstruct fornix, cingulum, 

and uncinated fasciculus with a FA threshold of 0.15 and an angle 
threshold of 70°. Reproducibility of the fiber construction in both 
hemispheres was tested on all subjects by two experienced raters 
(Zafer Keser and Khader M. Hasan). We used color-coded prin-
cipal eigenvector red–green–blue (RGB) map derived from DTI 
to seed ROIs. Multiple ROI-based deterministic tractography was 
used for fornix, cingulum, and uncinate fasciculus as described in 
Figure 2 (4, 34–37) (Figure 2).

Tissue segmentation and Parcelation 
Using T1-Weighted and DTi Data
Using FreeSurfer software library (version 5.3) (38), the T1-weighted 
brain data were automatically segmented into cerebellar, brain-
stem, brain, and cerebrospinal fluid, which also included thala-
mus, amygdale, and hippocampus (39). DTI-derived data volumes 
(FA, mean, axial, and radial diffusivities) were coregistered to the 
T1-weighted volume to obtain diffusivity values for gray matter 
limbic structures. In brief, all the T1-weighted data were visually 
inspected to rule out artifacts and input to FreeSurfer’s “recon-all” 
routine for segmentation and extraction of morphometric meas-
urements. FreeSurfer provided average cortical thickness using the 
cortical atlas labels described elsewhere (40).

statistical analyses
We used raw scores for cognitive scores. We tested normality 
using the Kolmogorov–Smirnov test for all reported measures. As 
our data couldn’t assure normal distribution for all the variables 
likely due to small sample size, we used non-parametric Spearman 
correlation analyses. For the whole cohort (n = 40), individual 

http://www.frontiersin.org/Neurology/
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FigUre 3 | Demonstration of several scatter plots of limbic structures and California verbal learning (CVLT) (a–e) and controlled word association test [semantic 
verbal fluency (VF)] (F). Abbreviations: FA, fractional anisotropy; RH, right hemisphere; SDFR, Short-Delayed Free Recall; SDCR, short-delayed cue recall; LDCR, 
Long-delayed cue recall; LDFR, Long Delayed Free Recall; voladj, volume adjusted for intracranial volume.
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behavioral scores from each component of the MACFIMS were 
adjusted for age, years of education, and total brain lesion volume 
(T1 hypointensities + T2 hyper intensities without double count-
ing), but not for handedness. They were then, computed with all 
qMRI measures using the partial Spearman rank correlations. 
We used normalized volumetric measures scaled for each subject 
by the individual estimated intracranial volume. All analyses 
and generation of scatter plots were performed in SPSS Statistics 
24.0-IBM software. Significance defined if p  <  0.05. We used 
Bonferroni corrections for multiple comparisons. After multiple 
comparisons, significance defined as p < 0.00003.

resUlTs

Figures  3 and 4 highlight scattered plots with the best fit line 
curves for the some of the most notable correlations. Table  3 
shows all the significant correlations with r and p-values. Most of 
the significant correlations did not survive multiple comparisons 
except the correlations of fornix FA with long delayed free recall 
in CVLT-II, SDMT oral test, and COWAT animals; left cingulum 
FA-PASAT 2 s, left hemisphere rostral anterior cingulate-form H 
in JLO and left hippocampus MD-form H in JLO.

california Verbal learning Test ii (cVlT ii)
California Verbal Learning Test II evaluates episodic verbal learn-
ing and memory (24). In our study, the fornix, bilateral uncinated 
fasciculus (UF) bilateral thalami, left parahippocampus, and right 

posterior cingulate cortex were found to be critical regions for 
encoding function. For short term recall, our analyses showed 
significant correlations for right anterior and posterior cingulate 
cortices and thalamus whereas for long-term recall; bilateral 
thalami, and bilateral anterior and posterior cingulate cortices. 
Fornix was found to be crucial for both short and long term recall.

Recall discriminability measures, which we recently included 
in CVLT version II for better recall accuracy, were shown 
to be related with most of the limbic gray and white matter 
structures bilaterally; frontal limbic cortices, bilateral anterior 
and posterior cingulate cortices, bilateral thalami, fornix and 
right uncinate and cingulum tracts. Please see Table 3 for the 
numeric results and Figures  3A–E for the prominent scatter 
plots.

The Brief Visuospatial Memory  
Test—revised
Brief Visuospatial Memory Test—Revised has been commonly 
used to evaluate visuospatial memory abilities in neuropsycho-
logical populations (25). In our MS population, visuospatial 
recall is found to be related to fornix, right UF, right anterior, and 
posterior cingulate cortices whereas learning to right cingulum, 
left UF, left EC. Delayed recall scores showed correlations with 
right UF, right anterior, and posterior cingulate cortices.

Although verbal recall discrimination is found to be carried 
out by more structures in LS, visuospatial recall discrimination 
is found to be related to bilateral anterior and posterior cingulate 
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cortices bilaterally and right PH cortex. Table 3 and Figures 4E,F 
illustrates numeric results and notable scatter plots, respectively.

controlled Oral Word association Test
Controlled oral word association test evaluates phonemic flu-
ency with FAS and semantic fluency with animal’s test (27). 
Previously (41), phonemic and semantic fluency are related to 
temporal regions. In our study, main limbic pathways connecting 
frontal and temporal lobes are shown to correlate with verbal 
phonemic and semantic fluency as well as right anterior and pos-
terior cingulate cortices. Interestingly, bilateral thalami showed 
more association to semantic VF than phonemic VF (Table 3; 
Figure 3F).

symbol Digit Modality Test
Symbol Digit Modality Test is a useful screening test for CI in MS 
and assesses attention, visual scanning, and motor speed (22), in 
our cohort; fornix, right cingulum, left OFC, and right posterior 
cingulate cortex, we found to be associated with the SDMT score 
(Table 3; Figures 4A,B).

Paced auditory serial addition Test
Paced Auditory Serial Addition Test measures auditory informa-
tion processing speed and flexibility, as well as calculation ability 
(21). All the main limbic white matter pathways, bilateral hip-
pocampi, left PH cortex, and right thalamus were found to be 
associated with PASAT (Table 3; Figures 4C,D).

Benton Judgment of line Orientation 
(JlO)
Judgment of Line Orientation is a standardized test of visuospatial 
skills (27) commonly associated with functioning right parietal 
and occipital activation, as well as bilateral frontal activation (42). 
In our MS population, although it was found to be lateralized to 
right cingulum and UF, and to left OFC, overall it showed bilateral 
associations to gray and white matter limbic structures. Fornix, 
bilateral cingulate cortices, bilateral hippocampi, and thalami 
were the most prominent structures related to the scores (Table 3).

Wisconsin card sorting Test
Wisconsin Card Sorting Test scores test attention, working 
memory, and visual processing. These scores measure frontal 
lobe functions; strategic planning, organized searching, utilizing 
environmental feedback to shift cognitive sets, directing behavior 
toward achieving a goal, and modulating impulsive responding 
(26). As expected, OFC showed correlation but lateralized to left. 
Temporal lobe structures were also found to be involved; bilateral 
hippocampi and entorrhinal cortices as well as left PH cortex. 
Bilateral cinguli and fornix as well as right thalamus showed 
significant correlations with the functions tested (Table 3).

Fornix
Our data indicate forniceal white matter to be essential for multi-
modal cognitive functions. It might be due to its central location 
connecting important limbic centers.
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TaBle 3 | Significant correlations are shown for California Verbal Learning Test 2nd version (CVLT_II), Brief Visuospatial Memory Tests (BVMT), symbol digit modality 
test (SDMT) and Paced Auditory Serial Addition Test (PASAT) 3 seconds (3 s) and 2 second (2 s) tests, Controlled Oral Word Association Test (COWAT), Benton 
Judgment Line of Orientation (JLO), Wisconsin Card Sorting Test (WCST).

cVlT_ii BVMT cOWaT

Trials 1–5 r-Values hits r-Values Total recall r-Values Fas r-Values

For_FA 0.406** R_Cing_MD 0.369* L_Cing_MD −0.318* For_FA 0.377**

L_UF_FA 0.298* R_UF_vol −0.291* R_UF_FA 0.332* L_Cing_FA 0.325*

R_UF_vol 0.309* L_Tha_vol −0.349* L_PH_th −0.319* L_UF_MD −0.338*

R_iCC_th 0.370* R_Amy_vol −0.328* R_caCC_th 0.333* R_iCC_th 0.327*

L_PH_th −0.378* False Positives For_FA 0.326* L_HippMD −0.382*

R_UF_vol 0.393** For_FA −0.412** R_iCC_th 0.511** L_caCC_th 0.460**

R_iCC_th 0.455** L_Tha_vol −0.371* Learning L_raCC_th 0.551**

R_Tha_vol 0.496** R_Tha_vol −0.352* R_Cing −0.303* R_iCC_th 0.389*

SFDR L_caCC_th −0.326* L_UF_FA −0.325* L_Cing_MD −0.368*

For_FA 0.379** L_raCC_th −0.335* Delayed Recall R_Cing_FA 0.421**

R_Tha_vol 0.349* R_iCC_th −0.366* R_UF_vol 0.431** R_Cing_MD −0.350*

R_caCC_th 0.338* R_ThaMD 0.336* R_caCC_th 0.371* L_UF_FA 0.288*

R_iCC_th 0.421** Repetitions R_iCC_th 0.374* L_UF_MD −0.315*

SDCR L_pCC_th −0.360* Retained Percent R_UF_vol 0.407**

For_FA 0.436** Intrusions For_MD 0.395** R_UF_FA 0.315*

R_Tha_vol 0.368* R_UF_FA −0.308* L_Cing_vol 0.407** R_UF_MD −0.435**

R_iCC_th 0.388* R_Tha_vol −0.318* False Alarms R_Tha_vol 0.326*

LDCR R_Amy_vol −0.327* R_mOFC_th −0.387* L_Hipp_vol 0.355*

For_FA 0.419** R_lOFC_th −0.325* L_iCC_th −0.399* R_Amy_vol 0.331*

R_iCC_th 0.405** R_mOFC_th −0.340* L_pCC_th −0.368* R_iCC_th 0.387*

LDFR L_iCC_th −0.358* L_raCC_th −0.384* Animals

For_FA 0.500** L_raCC_th −0.388* R_caCC_th −0.380* For_FA 0.562**

L_Tha_vol 0.356* R_caCC_th −0.458** R_iCC_th −0.487** R_Cing 0.380**

R_Tha_vol 0.381* R_iCC_th −0.505** R_pCC_th −0.506** R_UF_MD −0.339*

L_caCC_th 0.337* R_pCC_th −0.338* R_PH_th −0.317* L_Tha_vol 0.414**

L_raCC_th 0.323* R_PH_th −0.377* DI R_Tha_vol 0.488**

R_caCC_th 0.323* L_EC_th −0.380* R_iCC_th 0.325* R_caCC_th 0.344*

R_iCC_th 0.437** L_ThaMD 0.367* R_iCC_th 0.426**

R_ThaMD 0.315* L_HippMD −0.389*

L_AmyMD 0.367*

JlO PasaT WcsT sDMT

h Form r-Values 3 s r-Values number of categories r-Values Written r-Values

For_FA 0.458** For_FA 0.366* R_Cing_FA −0.379** For_FA 0.484**

R_UF_vol 0.297* L_Cing_FA 0.369* L_Hipp_vol 0.413** L_lOFC_th 0.326*

R_UF_MD −0.350* R_Cing_FA 0.412** Correct R_iCC_th 0.333*

R_Tha_vol 0.346* R_Cing_MD −0.415** L_Cing_MD 0.348* Oral

L_lOFC_th 0.336* L_UF_FA 0.389** L_caCC_th 0.364* For_FA 0.502**

L_caCC_th 0.489** L_UF_MD −0.298* R_pCC_th 0.349* R_Cing_FA 0.313*

L_iCC_th 0.329* R_UF_FA 0.302* Trial to1st L_lOFC_th 0.341*

L_raCC_th 0.544** R_UF_MD −0.366* For_FA −0.371* R_iCC_th 0.353*

R_caCC_th 0.337* L_PH_th −0.359* L_lOFC_th −0.350*

R_iCC_th 0.401* R_ThaMD −0.404** L_raCC_th −0.338*

R_ThaMD −0.375* L_HippMD −0.474** R_iCC_th −0.328*

L_HippMD −0.466** R_HippMD −0.493** Perseverative Errors

R_HippMD −0.418** 2 s L_Hipp_vol −0.346*

V Form For_FA 0.451** R_Hipp_vol −0.313*

For_FA 0.440** L_Cing_FA 0.535** L_lOFC_th −0.335*

R_Cing_FA 0.296* L_Cing_MD −0.288* NonPerseverative Errors

R_Cing_MD −0.390** R_Cing_FA 0.452** L_lOFC_th −0.319*

R_UF_vol 0.349* R_Cing_MD −0.293* R_HippMD 0.327*

R_UF_MD −0.312* L_UF_FA 0.493** Failure to Maintain

R_Tha_vol 0.432** L_UF_MD −0.289* R_pCC_th 0.350*

L_lOFC_th 0.341* R_UF_FA 0.344* L_PH_th 0.326*

(Continued)
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JlO PasaT WcsT sDMT

h Form r-Values 3 s r-Values number of categories r-Values Written r-Values

L_raCC_th 0.379* R_UF_MD −0.319* L_EC_th 0.369*

R_caCC_th 0.352* L_PH_th −0.415** R_EC_th 0.368*

R_iCC_th 0.357* R_ThaMD −0.361* R_ThaMD −0.344*

L_HippMD −0.447** L_HippMD −0.385*

R_HippMD −0.424** R_HippMD −0.460**

*Indicates p < 0.05 and **p < 0.01.
adj, adjusted for intracranial volume; Amy, Amygdala; ca, caudalanterior; CC, cingulate cortex; Cing, cingulum; DI, discrimination index; EC, entorhinal cortex; FA, fractional 
anisotropy; For, Fornix; Hipp, hippocampus; i, isthmus; LDCR, long-delayed cue recall; LDFR, long delayed free recall; L, left hemisphere; l, lateral; m, medial; MD, mean diffusivity; 
OFC, orbitofrontal cortex; p, posterior; PH, parahippocampal; R, right hemisphere; ra, rostralanterior; SDCR, short-delayed cue recall; SDFR, short-delayed free recall; Tha, 
thalamus; UF, uncinate fasciculus; vol, volume.
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cinguli/cingulate cortices (cc)
Left cingulum was found to be associated with visual spatial 
memory, phonemic fluency, executive functions, and processing 
speed whereas right cingulum similar to fornix was associated 
with broader cognitive functions such as executive functions, 
attention motor and processing speed, phonemic and semantic 
fluency, visuospatial learning and skills, and verbal learning. 
When it comes to parts of cingulate cortices, the isthmus of 
right CC showed correlation with all cognitive modalities; right 
anterior caudal CC with visuospatial memory and skills, verbal 
learning, semantic fluency; isthmus of left CC with visuospatial 
skills and verbal memory, and left anterior caudal CC with execu-
tive functions, visuospatial skills, and verbal learning. Posterior 
CC was associated with verbal learning bilaterally and executive 
functions on the right side.

Uncinate Fasciculus
Left UF showed significant correlation with verbal and visuos-
patial learning, phonemic fluency, and processing speed whereas 
right UF with visuospatial memory and skills, verbal learning, 
phonemic and semantic fluency, and processing speed.

Orbitofrontal cortex
Left lateral OFC correlated with written and oral attention, 
executive functions, whereas right lateral OFC with verbal 
learning and right medial OFC with visuospatial learning and 
memory.

hippocampus/Parahippocampus
Right hippocampus was microstructurally related to visuospatial 
skills, executive functions and processing speed, left hippocampus 
related to phonemic and semantic fluency, executive functions 
and processing speed. Bilateral parahipppocampi related to visual 
and verbal learning, and left parahippocampus with processing 
speed and executive functions.

Thalamus
Left thalamus was found to be correlated with verbal learning, 
visuospatial skills, semantic fluency whereas right thalamus with 
verbal learning, visuospatial skills, processing speed and execu-
tive functions, phonemic and semantic fluency.

amygdala
Bilateral amygdala were associated with verbal recognition 
dis cri mi nation.

entorhinal cortex
Bilateral entorhinal cortices were correlated with executive func-
tions and left entorhinal with verbal recognition discrimination.

DiscUssiOn

This study provided associations between LS structures includ-
ing volumes and microstructure measures with various cogni-
tive functions, both evaluated in a comprehensive manner for 
the purpose of a detailed cognitive mapping of limbic regions 
in MS patients with and without CI. Our findings are mostly 
in line with previous less comprehensive MS studies as can be 
seen in Table 1. The novelty of this study is the adoption of a 
comprehensive approach to the role of all major limbic struc-
tures in different cognitive functions rather than studying one 
or some limbic structures and their cognitive functions. Results 
show that many limbic gray and white matter structures are 
involved in various cognitive functions rather than one specific 
center being responsible of a specific function. We adjusted our 
correlations for age, LL and education, which play independent 
roles in cognitive functioning of patients. Overall, fornix and 
cingulum/cingulate cortices were found to be the strongest cor-
relates of CI in MS.

Highlights of our findings are that cingulate cortex and its 
main white matter pathway the cingulum, which have multiple 
complex functions that make its exact behavioral significance 
very elusive but are known to mainly serve as a modulator 
among different cognitive networks (7). In our cohort, similar 
to the literature, the cingulate cortex especially its anterior part, 
showed correlation with multi cognitive modalities evaluated 
by the MACFIMS. Interestingly, although posterior cingulate is 
known to be involved with visuospatial awareness and memory, 
our MS cohort showed association to verbal learning and execu-
tive functions. Like fornix, cingulum was associated with broader 
cognitive functions. A previous study revealed that cingulum DTI 
metrics were the best classifiers across numerous cognitive tests 
measuring CI in MS [(43); see also Table 1].
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