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Herpesvirus saimiri (HVS) is a gamma herpesvirus with several properties that make it an amenable gene therapy vector; namely
its large packaging capacity, its ability to persist as a nonintegrated episome, and its ability to infect numerous human cell types. We
used RecA-mediated recombination to develop an HVS vector with a mutated virion protein. The heparan sulphate-binding region
of HVS ORF51 was substituted for a peptide sequence which interacts with somatostatin receptors (SSTRs), overexpressed on
hepatocellular carcinoma (HCC) cells. HVS mORF51 showed reduced infectivity in non-HCC human cell lines compared to wild-
type virus. Strikingly, HVS mORF51 retained its ability to infect HCC cell lines efficiently. However, neutralisation assays suggest
that HVS mORF51 has no enhanced binding to SSTRs. Therefore, mutation of the ORF51 glycoprotein has specifically targeted
HVS to HCC cell lines by reducing the infectivity of other cell types; however, the mechanism for this targeting is unknown.

1. Introduction

Herpesviruses are large double-stranded DNA viruses with
genomes of between 100 and 250 kb. They are divided
into alpha, beta, and gamma subgroups depending on their
genetic and biological properties [1]. The best characterised
herpesvirus, Herpes simplex virus (HSV), is also the most
developed gene therapy vector of this family, with several
recombinant viruses involved in clinical trials [2–4]. How-
ever, the disadvantage of vectors based on alphaherpesvirinae,
such as HSV, is their inability to persist in a dividing
cell population. The use of gamma-herpesvirus vectors is
an alternative approach. These viruses have many of the
advantages of alphaherpesvirinae but are also able to transfer
their genome to both daughter cells upon mitosis, thereby
persisting in proliferating cells. We are currently developing
gene therapy vectors based on Herpesvirus saimiri (HVS)
[5–7]. HVS is the prototype gamma-2 herpesvirus [8]
and was originally isolated from mononuclear blood cells
of squirrel monkeys, where it causes an asymptomatic

persistent infection [9]. It also infects other New World
primates causing acute malignant T-cell lymphomas [10].

HVS is an attractive candidate for a gene therapy vector
as, in addition to its persistence in dividing cell populations,
its large genome can accept heterologous DNA of up to
150 kb. HVS-based vectors also have no effect on cell growth
[11] and are capable of latently infecting a wide range of
cells in vitro and in vivo [12]. HVS exists as a stable episome
in infected cells, greatly reducing its potential to disrupt
genes and regulatory DNA sequences by recombination
with genomic DNA. HVS strains used in gene therapy
development are rendered nontransforming by the removal
of the oncogenic sequences Stp and Tip [6].

Genetic engineering of HVS is difficult due to its sizeable
genome. Originally HVS recombinant viruses were produced
by cotransfecting a linearised plasmid, containing the gene
of interest along with HVS homologous sequences, into
permissive owl monkey kidney (OMK) cells along with the
HVS genome [13, 14]. This technique, although successful
was time consuming and required replication-competent
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viruses. Another strategy was the use of an overlapping
cosmid library containing the genome of the HVS C488
strain [15, 16]. This system was quicker than the homologous
recombination method above; however, the transfection of
multiple cosmid constructs into the OMK cells has a low
efficiency.

Manipulation of HVS DNA has become easier and
quicker with the advent of F-factor-based bacterial arti-
ficial chromosomes (BACs). BACs can be maintained in
Escherichia coli as a single copy number construct and can
stably maintain DNA fragments up to 300 kb in length [17].
The first HVS BAC produced had the BAC elements inserted
into the H-DNA (the high G + C content terminal repeat
region that flanks the L-DNA coding region) of the viral
genome [18]. However, this BAC was unable to establish a
latent infection as the H-DNA is required for tethering of
the HVS genome to host chromosomes during cell division
[19–23]. Therefore, a second HVS BAC was produced by
our lab with the BAC element inserted into ORF15 [24].
This ORF was chosen as it encodes a nonessential gene
that expresses a viral homolog of CD59, a complement
control protein. This HVS BAC contains the F-factor-derived
elements essential for growth in E. coli, along with cassettes
for hygromycin and chloramphenicol resistance, a GFP
reporter gene controlled by the CMV promoter and a unique
rare restriction site, I-PpoI, to allow conventional cloning of
transgenes into the BAC. This HVS BAC is a valuable tool
for creating recombinant viruses to develop for gene therapy
applications.

One feature of HVS that makes it amenable to gene
therapy vector development is its broad cell tropism. HVS
has been shown to infect several human haematopoietic
cell lines [6, 14, 16]. Moreover, the virus has been used
to infect totipotent mouse ES cells, and GFP transgene
expression was maintained throughout differentiation of
those cells into mature haematopoietic cells [25]. HVS also
has potential as a cancer gene therapy vector. The vector can
efficiently infect a number of carcinoma cell lines [26, 27],
and studies have shown that it can efficiently penetrate
three-dimensional spheroid cell cultures similar to tumours
in vitro and can persist as a stable episome in tumour
xenografts after direct intratumoral injections in vivo [28].
A separate in vivo study has shown that HVS-GFP-infected
tumour xenografts had sustained transgene expression over
3 months in various organs without any spread of the vector
[11].

Although a wide tropism is suitable in some applications,
a more targeted approach is preferable to increase vector
uptake in diseased cell types. One way to establish a more
cell-selective infection is to retarget the virus by altering how
it enters cells. Hepesvirus cell entry is a multi-step process
mediated by interactions between several glycoproteins at
the virion surface and cognate receptors expressed at the cell
membrane. Virus binding is followed by membrane fusion
(the viral envelope either fuses with the membrane at the cell
surface or within an endosome), allowing the viral capsid to
enter the cytoplasm, where it is transported to the nuclear
periphery. Here, the capsid is degraded and the viral DNA
enters the nucleus via the nuclear pore.

Little is known about the mechanisms of HVS cell
entry. Initial binding is thought to be mediated via an
interaction between the viral glycoprotein ORF51 and cel-
lular glycosaminoglycans (GAGs), such as heparan sulphate
[29]. This is suggested to enable further specific interactions
between other viral glycoproteins such as gB and gH/gL with
as yet unknown receptors, facilitating membrane fusion and
viral entry.

HVS ORF51 is not well studied but has a homolog in
Kaposi’s Sarcoma-associated Herpesvirus (KSHV), glycopro-
tein K8.1. There is some ambiguity as to the extent that
K8.1 affects cell entry, as it has been shown that blocking
this receptor inhibits entry whereas other observations see
no apparent effect [30, 31]. A research article by Means
[29] investigated the function of HVS ORF51 and showed
that the protein contains a putative heparin-binding domain.
Moreover, ORF51 was shown to bind to heparin-conjugated
beads, and HVS infectivity could be neutralised by incu-
bation with soluble heparin. ORF51 is therefore an ideal
candidate to mutate for cellular retargeting, as it does not
appear to be intrinsically involved in fusion of the cell
membrane and viral envelope. Disruption of the gene will
not adversely affect cell-virus fusion, but a gain of function
mutation may cause an alteration to the viral tropism.

Although in a natural infection, HVS is found in
T-lymphocytes, when administered intravenously in mice
several organs are latently infected with HVS. Transgene
expression was mainly localised to the liver, with expression
also detected in the spleen, lung, and kidneys [32]. This
suggests that this vector is suited to gene therapy of liver
diseases. We therefore set out to enhance this natural tropism
by targeting HVS to neoplastic liver cells.

Hepatocellular carcinoma (HCC) is the 5th most com-
mon cancer worldwide [33] and is caused by sustained
liver damage, for example, from chronic hepatic infection
or alcohol abuse [34, 35]. One feature of this cancer that
could be exploited for gene therapy applications is the
overexpression of somatostatin receptors (SSTRs) on the
surface of HCC cells [36]. Somatostatin or its analogues
octreotide and vapreotide have been used in the treatment of
HCC and other cancers; however, their effectiveness has been
subject to debate [37, 38]. It has been shown that all 5 types
of SSTR are present on the majority of HCCs [36]. Therefore
a gene therapy vector that effectively binds to SSTRs could
be a valuable tool against hepatocellular carcinoma. We
have previously demonstrated that HVS naturally displays
a tropism for the liver when administered intravenously in
mice [32]. However, it may be possible to further increase
this targeting to preferentially infect cancerous liver tissue
by incorporating SSTR-binding properties in HVS-based
vectors.

We have therefore produced a recombinant virus, HVS
mORF51, by RecA-mediated recombination. The HVS
mORF51 virus was constructed, so that the heparan sul-
phate-binding region of HVS ORF51 was substituted for an
SSTR binding motif. This mutation was designed to alter the
tropism of the glycoprotein, so that it preferentially binds
SSTRs, thus increasing the affinity of the mutant virus for
HCC cells.
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2. Materials and Methods

2.1. HVS Propagation and Cell Culture. HVS-GFP-BAC is
based on the A11 S4 strain as described previously [24].
To produce working stocks of HVS mORF51, the virus was
propagated in the permissive owl monkey kidney (OMK)
cell line. Viral DNA was transfected into OMK cells in 6
well plates with Lipofectamine 2000 (Invitrogen). Cells were
exposed to the lipid-DNA complexes for 4–6 h in serum-
free DMEM. The media was then exchanged for 5% DMEM
to allow viral infection. This virus-containing media was
then used to reinfect large quantities of OMKs to produce
sufficient amounts of working virus stocks, as previously
described. All human cancer cell lines, HEK 293T and OMK
cells, were grown and passaged in DMEM with 10% foetal
bovine serum and 5 units/ml penicillin/streptomycin. Virus
propagation was performed in 5% DMEM with pen/strep.

2.2. Constructs. pKOV Kan ΔCm is modified from the
pKOV vector described previously [39]. The mutant HVS
ORF51 gene was constructed in pCR blunt (Invitrogen).
The mutated region of ORF51 (plus homology regions)
consisted of nucleotides 72626-73264 of the HVS genome
followed by insert sequence AGA TCT CCC ACC GGT GCG
TGT CGG TTT TGG AAA ACT TGG TGT GCG AGA TCT
and nucleotides 73310-73810. This “mORF51” sequence was
then inserted into pKOV Kan ΔCm via NotI/PstI restriction
and ligation. pDF25-Tet is based on the pDF25 vector with
the CmR gene replaced with a gene conferring tetracycline
resistance. This substitution prevented recombination with
the HVS-GFP-BAC (which contains a CmR gene) as previ-
ously described.

2.3. RecA-Mediated Recombination. DH10β E. coli cells har-
bouring the HVS-GFP-BAC episome were made competent
with RbCl. Cells were cotransformed with 5 μg pDF-Tet
and 1 μg pKOV Kan mORF51 and then plated onto LB
agar containing chloramphenicol (Cm), kanamycin (Kan)
and tetracycline (Tet) at 30◦C overnight. Positive colonies
were picked into 1 ml LB, and immediately 200 μl was
plated onto LB agar plates containing chloramphenicol and
kanamycin. These were incubated at 43◦C overnight to select
for cointegrants. The larger colonies that grew were then
analysed by restriction analysis and subsequent pulse field gel
electrophoresis.

E. coli containing the cointegrant HVS DNA were made
competent as above (but grown at 43◦C with Cm and
Kan). The cells were transformed with 50 ng pDF25-Tet
and grown overnight at 30◦C on LB agar containing Cm
and Tet. Colonies were subsequently picked into 1 ml LB
containing 5% sucrose (Cm + Tet) and incubated at 30◦C.
After 4 h 100 μl of this culture was transferred to 1 ml fresh
LB with the same selection and again incubated for 4 h at
30◦C. This was repeated again and the 1 ml culture left at
30◦C overnight. The overnight culture was streaked onto Cm
plates containing 5% sucrose and incubated at 43◦C. These
colonies were then replica plated onto agar with Cm + Kan,
and Cm only plates to screen for colonies with a mutation

in the SacB gene of pKOV Kan mORF51. Those colonies that
did not grow on the Kan plates were analysed further by PCR,
restriction analysis, and DNA sequencing.

2.4. Pulse Field Gel Electrophoresis. 1.2% agarose gels were
made with pulse field electrophoresis grade agarose (Sigma)
and 0.5x TBE buffer. 10 μl of DNA loading buffer was
mixed with DNA samples prior to loading. Midrange I PFG
Marker (New England BioLabs) or PFG Marker II (New
England BioLabs) was used along with Lambda DNA HindIII
Digest (New England BioLabs) to compare sizes of DNA
fragments. The BioRad CHEF-DR II control module was set
at 6 volts for 11.5–16.0 h depending on the size of expected
fragements. The 0.5x TBE buffer in the electrophoresis cell
tank was cooled using a Bio-Rad Model 1000 Minichiller
set to 15.5◦C. Gels were stained using 200 ml of 0.1 μg/ml
ethidium bromide (Sigma) in 0.5x TBE buffer subsequent to
running.

2.5. Neutralisation Assays and Flow Cytometry. All infections
were carried out in 6 well plates with media containing 5%
FBS. Neutralisation agents (heparin (Sigma), somatostatin
(Calbiochem) and SSTR Ab (Diagnostic Biosystems)) were
added to the media at the appropriate concentrations, 1 h
prior to the addition of virus and incubated at 37◦C. HVS-
infected cells were prepared for FACS analysis 48 hours after
infection. 5× 106 cells were trypsinised and resuspended
in PBS. Data was collected with a BD Facscalibur flow
cytometer and data was analysed using Cellquest software.

3. Results

3.1. RecA-Mediated Recombination of HVS ORF51. By an-
alysing the amino acid sequence of ORF51, Means [29]
identified motifs which could encode some of the struc-
tural features of the protein, including a putative heparan
sulphate-binding sequence, comprising residues 214–228.
Figure 1 outlines the alteration made to the ORF51 sequence
by replacing amino acids 214–228 (peptide sequence
SKHTNKLKPFKHKLQ) with a sequence determined by
phage library selection to have a nanomolar affinity for all
5 SSTRs (CRFWKTWC) [40]. This peptide contains a disul-
phide bridge between the flanking cysteine residues which
is essential for ligand binding. Restriction endonuclease sites
were also added in order to clone the this peptide sequence
into a vector prior to RecA mediated recombination; BglII at
either end of the sequence to allow insertion into the gene,
and AgeI as an analytical tool (AgeI cuts infrequently in the
HVS genome, so this added restriction site could be used for
identifying positive clones). Alanines were used between the
SSTR binding sequence and the restriction sites to exchange
a similar number of residues with the original sequence. The
final peptide sequence that replaced the heparan sulphate-
binding motif is therefore RSPTGACRFWKTWCKRS. The
recombination method used, consisting of a cointegration
step and a second step where mutant clones are resolved, is
outlined in Figure 2.
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Figure 1: Substitution of the heparan sulphate-binding region of HVS ORF51 protein. Analysis of the peptide sequence of the 269 amino
acid protein indicates that there is an N-terminal signal sequence, 9 N-linked glycosylation sites, a potential heparan sulphate-binding site
and a transmembrane domain. In the mutant ORF51 virus the heparan sulphate-binding site, highlighted in red, is replaced with the peptide
sequence in blue. This sequence contains the SSTR binding motif.
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Figure 2: Schematic of the RecA-mediated recombination method used to develop HVS mORF51. Two plasmids are transformed into
competent E. coli cells that already harbour the HVS-GFP-BAC genome. These plasmids are both temperature sensitive and have antibiotic
resistance markers for ease of selection. The first plasmid, pDF25-Tet, contains a RecA expression cassette to facilitate recombination, as well
as a tetracycline resistance gene. The second, pKOV Kan, contains the mutated region of the HVS genome flanked on either side by regions
of homology of at least 500 bp. These homology regions target the recombination event to a specific point in the viral DNA. pKOV Kan also
contains a SacB gene, allowing negative selection on sucrose-containing medium, and a kanamycin resistance gene. When both plasmids are
transformed into the E. coli, RecA expressed from pDF25-Tet induces a recombination event between one of the homology regions in pKOV
Kan and the corresponding region in the HVS genome. Clones containing the pKOV Kan plasmid integrated into the HVS genome are then
selected and made competent. These cointegrant clones are then retransformed with pDF25-Tet in order to produce a second recombination
event. Depending on whether this recombination is in the same or adjacent homology region to the initial recombination, a revertant clone
or a recombinant clone will be formed. Selection is used to identify recombinants, which can then be further analysed and confirmed by
restriction digest and sequencing.

Competent E. coli cells harbouring HVS-GFP-BAC episo-
mal DNA were cotransformed with the pKOV Kan mORF51
integrating vector and the pDF25-Tet vector which expresses
RecA. This promoted the insertion of pKOV Kan mORF51
into HVS-GFP-BAC via a recombination event at one of
the two homology regions flanking mORF51. Depending
on the site of recombination, the plasmid could be inserted

in 2 different orientations (shown in Figure 3(b)). It is
preferable to obtain cointegrants in both orientations as one
may be more dynamically favourable for the subsequent
recombination step (being more likely to produce a mutant
clone rather than revertant, due to steric hindrance). Both
orientations can be identified by AgeI restriction digest
analysis of purified HVS DNA (Figure 3(a)).
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Figure 3: Possible orientations of pKOV Kan mORF51 cointegrants as seen by AgeI digest. (a) AgeI restriction map of the HVS genome.
The restriction site marked in red is introduced when homologous recombination occurs between the pKOV Kan mORF51 plasmid and
the complementary sequence in the viral genome. This introduced restriction site can then be used for identification of cointegrants. (b)
Possible orientations of cointegrants. Depending on which homology region the reaction occurs (either 5

′
or 3

′
to the mutated ORF51 gene

in pKOV Kan mORF51), cointegrants can be in one of two orientations. The mutated region containing the introduced AgeI site is shown
in red. The pKOV Kan-mORF51 DNA is shown in blue, and the HVS DNA is shown in grey. The two orientations of cointegrant can be
detected upon AgeI digestion analysis due to a 7 kb difference in the size of the ∼50 kb fragment (see table). The larger ∼80 kb fragment
contains the terminal repeat (TR) region of the genome so is not suitable to detect this small difference as the number of TRs is not fixed.

12 possible cointegrant clones were investigated using
AgeI restriction analysis and then separated on a pulse field
electrophoresis gel. These were compared to the “wild-type”
HVS-GFP-BAC. All 12 had a restriction pattern consistent
with pKOV Kan mORF51 insertion. Figure 4 shows four
of these clones 3, 4, 8, and 9 with the HVS-GFP-BAC
digest. As predicted, the 130 kb band present in the HVS-
GFP-BAC lane has been digested into two smaller bands in
the cointegrant clones, indicating that pKOV Kan mORF51
has successfully inserted into the genome at the correct
location. These clones also clearly show the two different
expected restriction patterns consistent with both possible

orientations of pKOV Kan mORF51. Clones 3 and 4 have
the pKOV Kan mORF51 vector in orientation 1, whereas
clones 8 and 9 are in orientation 2 (as predicted in Figure 3).
Interestingly, the largest fragments in clones 8 and 9 are
different sizes due to the variable terminal repeat region in
the H-DNA of the genome. After sequence analysis to assess
for any unwanted mutation, these four clones were used for
further recombination.

Clones 3, 4, 8, and 9 were made chemically competent
and then transformed with pDF25-Tet to induce a second
recombination event. This could result in either a revertant
or a mutant clone as shown in Figure 5. After the appropriate
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Figure 4: AgeI restriction analysis of cointegrants formed by
homologous recombination. The mutated version of the ORF51
gene contains an AgeI restriction site. This extra restriction site can
be used as a marker for the integration of the pKOV Kan mORF51
vector into the HVS genome. Pulse field gel electrophoresis of
possible cointegrant clones 3, 4, 8, and 9 reveals successful
integration, as the ∼130 kb band seen in HVS-GFP-BAC is cleaved
into 2 smaller bands (indicated by arrows) due to the introduced
restriction site. The 2 different orientations of pKOV Kan mORF51
can be visualised as clones 3 and 4 show a restriction pattern with
bands at 45 kb and ∼90 kb, whereas clones 8 and 9 have bands
at 52 kb and ∼85 kb. This 7 kb difference in the restriction site
corresponds to the length of pKOV Kan mORF51.

selection, BAC DNA from resulting clones was purified by
miniprep, digested with AgeI, and analysed by pulse field
electrophoresis. Colonies were formed after recombination
of cointegrants 3 and 9. Figure 6(a) shows the restriction
analysis of 6 colonies from each of these cointegrants
(representative of 12 screened). HVS-GFP-BAC was also
digested as a negative control. All of the colonies originating
from cointegrant 3 have reverted back to “wild type,”
showing the same restriction pattern as the HVS-GFP-BAC
lane. The loss of the AgeI restriction site at ∼80 kb on the
restriction map (Figure 3) restores the ∼130 kb band seen
with “wild-type” viral DNA. Clones 9A, 9B, and 9F are also
revertants. The restriction pattern of 9C is not consistent
with either a revertant or mutant genotype, with a band at
approximately 95 kb. This may have been due to the genome
undergoing a deletion. 9E seems to have a dual population of
genomes, some of which have reverted and some of which
have retained the mutant copy of the gene. However, 9D
shows the correct restriction pattern and therefore has the
pKOV Kan plasmid removed while retaining the mutation.

As seen in Figure 6(b), the revertant restriction pattern
is identical to the “wild type,” however, the bands for the

mutant clone 9D are slightly different in size to its parental
cointegrant 9. This is due to the removal of the 7 kb plasmid,
shortening the 52 kb band seen with cointegrant 9 to 45 kb.
Sequence analysis confirmed the presence of the mutant gene
in the HVS mORF51 genome, and working stocks of the
recombinant virus were then produced by transfection into
permissive OMK cells.

3.2. Mutation of HVS ORF51 Affects Infectivity in Several
Human Cancer Cell Lines. To investigate the effects of
mutating ORF51, a panel of cell lines were infected with
HVS-GFP-BAC or HVS mORF51, and the infection rate for
each cell line was compared. Due to potential changes in
vector tropism, infectivity was compared by analysing dose-
dependent rates of infection using increasing viral titres.
The resulting fluorescence was measured as an indication
of the level of infection using flow cytometry. Examples of
the raw dot plots obtained when infecting permissive OMK
cells with HVS-GFP-BAC are shown in Figure 7(c). Data
confirm previous experiments in our laboratory showing
that HVS-GFP-BAC can infect a wide range of human cancer
cell lines [6, 28]. Figure 7(a) shows the percentage of HVS-
GFP-BAC infected cells (measured by GFP expression) in a
range of human cell lines, including lung, colon, and liver.
Also shown is infection in the fully permissive OMK cell
line as a positive control. HVS-GFP-BAC has a high tropism
for the Huh7 and 7.5 cell lines, with an m.o.i of 2 infecting
nearly 100% of cells. The HepG2 liver cancer cell line is less
efficiently infected, with the same titre infecting only 35% of
the cells. Interestingly the infection rate in HCC cell lines is
higher than that observed in lung, colorectal, and the human
embryonic kidney cell line. As expected, the OMK cells are
relatively well infected.

When an equivalent titre of HVS mORF51 virus was used
to infect the same cell lines, a distinct infection profile is
observed (Figure 7(b)). All three HCC cell lines have similar
infection rates to those previously observed with the “wild-
type” HVS-GFP-BAC virus, for example, 30% of HepG2
cells are infected compared to a 35% infection with HVS-
GFP-BAC. However, the level of infection for all the other
cell types decreased dramatically. This effect appears most
prominent with the OMK cell line, where HVS-GFP-BAC at
an m.o.i of 2 results in an 80% infection rate as measured
by fluorescence, whereas the same titre of HVS mORF51
infected on average 17% of cells.

This pattern can be more clearly observed in Figure 8.
Here, the HVS mORF51 infection (using an m.o.i of 2) is
displayed as a ratio of the infection seen with the equivalent
titre of HVS-GFP-BAC. This removes the variability of viral
tropism and allows a more relevant comparison of different
cell types. Where HVS mORF51 can infect HCC cell lines
to a similar extent to HVS-GFP-BAC (over 80%), infection
levels of the mutant virus in A549 lung carcinoma cell line,
OMK, and HEK 293T are all reduced to only∼20% of “wild-
type” infection. The SW480 infection is most attenuated by
the mutation, retaining only 4% of “wild-type” infection.
These results suggest that mutation of the ORF51 protein
affects viral entry in certain cell types. The mutation in
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recombination site is in the same homology region as the first recombination, the intact pKOV Kan mORF51 plasmid is excised, forming a
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Figure 6: AgeI restriction analysis of clones derived from cointegrants during homologous recombination. (a) Cointegrants formed from
the first stage of RecA-mediated recombination underwent a second recombination event to remove the integrated pKOV Kan plasmid. This
second recombination event could result in either a revertant or a mutant genotype. Of the 12 colonies screened, clone 9D had the desired
restriction pattern consistent with a mutated ORF51 gene. (b) The mutant clone 9D was digested and run alongside a revertant 3A and the
cointegrant clone 9 from which it originated. The loss of the integrated pKOV Kan plasmid can be visualised by the 52 kb band in the final
lane decreasing in size by 7 kb to 45 kb.



8 Journal of Biomedicine and Biotechnology

0

10
20
30
40
50
60
70
80
90

100
G

FP
ex

pr
es

si
on

(%
)

0 0.1 0.25 0.5 1 2

HVS-GFP-BAC virus (m.o.i)

SW480-colorectal
A549-lung
293T-embryonic kidney
OMK-natural host

Huh7-liver
Huh7.5-liver
HepG2-liver

(a)

0

10
20
30
40
50
60
70
80
90

100

G
FP

ex
pr

es
si

on
(%

)

0 0.1 0.25 0.5 1 2

HVS mORF51 virus (m.o.i)

SW480-colorectal
A549-lung
293T-embryonic kidney
OMK-natural host

Huh7-liver
Huh7.5-liver
HepG2-liver

(b)

0

200

400

600

800

1000

0 200 400 600 800 1000

FSC-height

HVS-GFP-BAC
(m.o.i of 2)

SS
C

-h
ei

gh
t

SS
C

-h
ei

gh
t

SS
C

-h
ei

gh
t

0

200

400

600

800

1000

0 200 400 600 800 1000

FL1-A

76.45%23.55%

0 200 400 600 800 1000

0%100%

FL1-A

SS
C

-h
ei

gh
t

0

200

400

600

800

1000

0 200 400 600 800 1000

Uninfected

0

200

400

600

800

1000

FSC-height

(c)

Figure 7: Comparison of wild-type and mutant virus entry measured by GFP expression. A range of human cancer cell lines were infected
with increasing amounts of HVS-GFP-BAC (a), and HVS mORF51 (b). Owl monkey kidney (OMK) cells (permissive to the virus) were also
used as a control, representative dot plots of which are shown in (c). 48 h after infection, GFP expression was measured by flow cytometry
using a Becton Dickinson FacsCalibur (n = 2). Mutation of the ORF51 glycoprotein inhibits virus entry in OMK cells and several of the
cancer cell lines. However, the HCC-derived cell lines are still able to be efficiently infected, suggesting that the SSTR binding region in the
mutated protein facilitates viral attachement in these SSTR-expressing cells.
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Figure 8: HVS mORF51 infection rates shown as a percentage of
HVS-GFP-BAC infection in different cell types. Each virus, at an
m.o.i of 2, was used to infect a panel of cell lines. GFP fluorescence
(used as a marker of infected cells) was measured by flow cytometry
48 h after infection (n = 2). All hepatocellular carcinoma cell lines
(Huh7, Huh7.5, and HepG2) have an infection rate of over 80%
of that observed with HVS-GFP-BAC. In the permissive OMK cell
line, as well as in the A549 lung cell line and HEK 293T cells,
HVS mORF51 infects only approximately 20% of the number of
cells infected with HVS-GFP-BAC. HVS mORF51 infects colorectal
cancer cell line SW480 most inefficiently, producing an infection
rate just of 4% compared to HVS-GFP-BAC.

HVS mORF51 is designed to ablate the heparan sulphate-
binding role of the protein, and this loss of function may
be responsible for the decreased infection rates. Alternatively,
the insertion of the SSTR binding motif may have provided
a gain of function to the protein, allowing higher rates of
infection specifically in the HCC cell lines.

3.3. HVS mORF51 Infection Is Independent of SSTR1 Expres-
sion. Somatostatin is a repressor of gastrointestinal hormone
production and also inhibits the release of insulin and
glucagon from the pancreas [41, 42]. Therefore, somatostatin
receptors are present in healthy pancreatic tissue. It has
been documented that during the development of pancreatic
cancer the expression of these SSTRs is lost [43]. Conse-
quently, pancreatic cancer cell lines would provide a suitable
negative control cell for HVS mORF51. We compared HVS
mORF51 infection between these cells and pancreatic cancer
cell lines stably transfected with a construct expressing
SSTR1 [43]. Figure 9 shows the infection levels observed,
measured by GFP expression. In both cell lines, there was no
increased infectivity in the SSTR1-positive cells. Surprisingly,
the infection rate was slightly higher in the SSTR1 negative
cells. This result indicates that the high levels of infection
observed in the HCC cell lines may not be due to the presence
of SSTR1 on the cell membrane. However, there are 5 types
of SSTR, and although the SSTR binding motif used in
the HVS mORF51 mutation should bind all 5 of these G-
protein coupled receptors, it may have higher affinities for
certain receptors than others, especially if it is in a restricted
conformation.

3.4. Soluble Heparin Inhibits HVS-GFP-BAC Entry to a
Greater Extent Than HVS mORF51. The natural cellular

ligand of ORF51 is purported to be heparan sulphate-con-
taining proteoglycans present on the surface of cells.Means
[29] demonstrated that ORF51 binds heparin and that
soluble heparin inhibits HVS infection of OMK cells. To
confirm these results, this experiment was repeated using
a flow cytometry assay measuring GFP-expression as an
indicator of viral infection. Soluble heparin was incubated
with cells for 1 h at 37◦C prior to the addition of HVS-
GFP-BAC or HVS mORF51. The heparin neutralisation
curve for HVS-GFP-BAC is shown in Figure 10. Results
demonstrate that as the concentration of soluble heparin was
increased from 0.01 to 1 mg/ml an initial slight increase in
viral infection was observed as previously reported by Means
[29], followed by a sharp decline in GFP expressing cells.
The percentage of GFP positive cells drops from 77% in
the absence of heparin to 12% at a heparin concentration
of 1 mg/ml. This result is also consistent with previously
published findings and indicates that the assay is appropriate
for measuring any change in viral entry. Also shown in
Figure 10 is the neutralisation curve for HVS mORF51. A
similar pattern is seen for the mutant virus; however, the
decrease in GFP positive cells is less marked. The percentage
of infected cells falls from 63% to 25%, suggesting that
although heparin does interfere with viral entry in HVS
mOR51, this virus is less dependent on binding heparin than
its “wild-type” counterpart. HVS viral entry involves several
glycoproteins and some, including gB, are also capable of
binding heparin. Therefore, the only partial neutralisation
observed for HVS mORF51 may be due to soluble heparin
interacting with gB. Moreover, the decreased neutralisation
activity of soluble heparin on HVS mORF51 compared to
HVS-GFP-BAC may be due to the removal of the heparan
sulphate-binding motif from ORF51 of the virus, making it
less sensitive to competitive inhibition.

3.5. Somatostatin Does Not Neutralise HVS-GFP-BAC or HVS
mORF51. To further investigate the role of SSTRs in HVS
mORF51 infectivity, the heparin neutralisation assay was
modified to measure the effects of the 14-amino acid peptide
somatostatin on virus entry. Again, concentrations from 0.01
to 1.0 mg/ml of soluble somatostatin were initially used;
however, incubation with 1 mg/ml somatostatin proved to
be toxic to the cells (Figures 11(a) and 11(b)). Therefore,
the 1.0 mg/ml measurement was removed. Figure 10 plots
the infection rate of HVS-GFP-BAC and HVS mORF51
against somatostatin concentration. Neither HVS-GFP-BAC
nor HVS mORF51 appear to be neutralised by somatostatin.
The infection rate at 0.25 mg/ml is similar to the rate
when no somatostatin was added. The percentage GFP
expression does decrease slightly when incubated with
0.5 mg/ml somatostatin, but this may be due to such a
large amount of the peptide having an adverse effect on cell
metabolism. Somatostatin naturally occurs in much lower
concentrations in human plasma, typically around 50 pg/ml.
These results are consistent with the data obtained using the
SSTR1-expressing cell lines and seem to imply that although
the mutation has impaired the heparin-binding ability of
mORF51, the protein does not bind somatostatin receptors.
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Figure 9: Somatostatin receptor 1 is not required for HVS mORF51 cell entry. Two pancreatic cancer cell lines (MiaPaCa, and Panc1) were
stably transfected with a construct expressing the SSTR1 gene. 48 h after infection with HVS mORF51, the cell lines expressing SSTR1 showed
no increase in GFP expression as measured by flow cytometry, indicating that the recombinant virus does not interact with this receptor to
enter the cell (n = 2).
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Figure 10: Soluble heparin blocks HVS-GFP-BAC entry in Huh7.5
cells and inhibits HVS mORF51 to a lesser extent. Cells were
incubated with a range of concentrations of heparin in 5% media
for 1 h prior to infection with virus (also in 5% media). 48 h after
infection, cells were removed from their wells, and GFP fluorescence
was measured by flow cytometry (n = 2). Concentrations of
heparin over 0.05 mg/ml resulted in viral cell entry being inhibited
with both viruses. However, the neutralisation effect is less severe
with HVS mORF51, suggesting some attenuation of its heparin-
binding capacity.

3.6. SSTR Antibody Fails to Neutralise HVS mORF51. The
data so far suggests that HVS mORF51 has not gained
the ability to bind SSTR expressing cells. However the
toxic nature of high concentrations of somatostatin make
interpretation of the neutralisation assay difficult. For this
reason the assay was repeated, using an antibody raised
against all 5 subtypes of somatostatin receptor. An antibody
against mouse IgG was used as a negative control. The
results of the neutralisation trial are shown in Figure 12.
The level of GFP expression is fairly constant in all four

assays, suggesting that increasing concentrations of SSTR
antibody, as well as the antibody against IgG, fail to neutralise
viral entry, irrespective of the mutated ORF51 protein. This
result is consistent with the previous data and contradicts
the hypothesis that somatostatin receptors are used for HVS
mORF51 entry.

4. Discussion

Viruses are powerful gene therapy tools as they have evolved
to efficiently enter their target cells and manipulate those
cells into transcribing and translating their genetic material.
To further exploit their gene therapy potential, techniques
have been developed to retarget a virus to specifically enter
or block entry to a particular cell type. Retargeting involves
the modification of proteins on the surface of the virion and
can be achieved by several means; molecules such as PEG
can be covalently attached to the virus surface (although
this is better described as detargeting) [44, 45]. Alternatively,
specific viral proteins can be modified to enhance binding
to target cells. Bispecific molecules such as bivalent ScFvs or
antibodies covalently conjugated to ligands can alter binding
[46, 47], or genetic mutation of viral proteins can provide a
permanent change in tropism [48, 49].

Genetic modification affects all copies of the protein
and would be preferable in conditionally replicating vec-
tors to maintain targeting in the progeny virus. However,
recombination is time consuming, and the mutation may
impair virus production. Chemical modification is a more
flexible system, allowing conjugation of multiple targeting
ligands to one viral particle. The ratio of conjugated viral
proteins can also be adjusted to suit the application, but
production of bispecific peptides and/or antibodies is costly.
Both strategies have been successfully applied in preclinical
studies, suggesting that vector retargeting could have clinical
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Figure 11: Somatostatin fails to neutralise HVS infection. The 14-
amino acid peptide somatostatin was incubated with Huh7.5 cells
at a range of concentrations for 1 h prior to infection with either
HVS-GFP-BAC or HVS mORF51. After 48 h, GFP fluorescence was
measured by flow cytometry (n = 2). Although cells incubated
with up to 0.5 mg/ml somatostatin appeared healthy under the
microscope (a), a concentration of 1 mg/ml was lethal (b). The
graph (c) shows that both viruses exhibited negligible change in
cell entry with increasing somatostatin concentration until the
0.5 mg/ml samples, where there is a reduced infection for both
viruses. This may be due to the toxicity of the peptide rather than a
true neutralisation effect.

benefit. We chose to use a genetic approach to ensure that all
copies of the target protein contained the new binding motif.

We have mutated the HVS glycoprotein ORF51 in order
to increase binding to hepatocellular carcinoma cells. The
putative heparan sulphate-binding region of this protein
was replaced with a motif designed to bind somatostatin
receptors, which are overexpressed in this form of cancer.
RecA-mediated recombination was used to introduce this
specific mutation into the large HVS genome, as this
powerful technique can mutate a single base in the context
of the 170 kb virus. The desired mutation resulted in the
exchange of just 17 amino acids, swapping residues 214–
228 of ORF51 (SKHTNKLKPFKHKLQ) with the sequence
(RSPTGACRFWKTWCKRS). The underlined SSTR binding
sequence was flanked by codons that contain restriction sites
required for cloning and analysis.

The engineered HVS mORF51 virus was then used to
infect a range of cancer cell lines to investigate any difference
in tropism compared to wild type HVS. The mutant virus
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Figure 12: SSTR antibody fails to neutralise HVS mORF51
infection. Huh7.5 cells were incubated with antibody (SSTR or
mouse IgG negative control) for 1 h prior to infection with HVS-
GFP-BAC or HVS mORF51. Samples were then measured for GFP
expression using flow cytometry 48 h after infection (n = 2).
Antibody concentration had no effect on either virus infection
suggesting that SSTRs are not required for HVS mORF51 entry.

demonstrated a striking affinity for HCC cells while showing
a reduced infectivity in other cell types, including the
permissive owl monkey kidney line. Surprisingly, further
investigation revealed that HVS mORF51 did not bind
SSTRs, and that this change in tropism was due to another
as yet unidentified mechanism. As the introduced mutation
disrupts native ORF51 function, these results suggest that
ORF51 is not required for HCC entry but does play a role
in cell entry in a number of human cells.

ORF51 may act in a similar manner to EBV gp42,
which is required for B-cell entry, but not for epithelial
cell infection [50]. Other HVS glycoproteins such as gM
and gN may facilitate initial binding of HCC cells or be
involved in membrane fusion. To determine the essential
glycoproteins required for entry in particular cell types, a
series of mutant viruses with deleted glycoproteins could
be constructed and characterised for infectivity. Although
time consuming, this collection of viruses would provide a
wealth of data regarding HVS infection and could aid in
identification of corresponding cellular receptors for these
glycoproteins. Alternatively, to locate possible HVS ligands
on HCC cells, a cDNA library of HCC genes could be
produced in OMK cells and virus-binding assays performed.

We cannot conclude that functional ORF51 is expressed
in the HVS mORF51 virus therefore, the nature of the
mutant protein can at present only be speculated. It is possi-
ble that the mutation caused such a dramatic change in struc-
ture that the protein cannot attain its native conformation,
causing degradation. Alternatively, oligomerisation may have
been affected, preventing ligand binding. Similarly, the SSTR
binding region may be obscured, or in the wrong orientation
to allow ligand interaction. The SSTR binding sequence itself
contains an essential disulphide bridge between the flanking
cysteine residues. Disruption of this bond would prevent the
mORF51 protein-binding SSTRs on HCC cells. Investigation
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into the structural status of wild-type and mutant ORF51
could provide valuable data about its function. In addition,
further studies with purified mORF51 protein could be
carried out to assess its binding capabilities to SSTRs
compared to wild-type ORF51. Expression would have to be
performed in a eukaryotic system to ensure that the protein is
appropriately glycosylated. Moreover, it would be interesting
to determine the cell infectivity profile of a HVS ΔORF51
virus, to assess if ORF51 is required for HCC cell entry, in
contrast to other cell lines.

ORF51 shares genomic colinearity with EBV gp220/350,
which binds complement receptor 2 (CR2) on host B cells
[51]. This induces a signalling cascade which results in
upregulated proliferation. It is possible that HVS ORF51
has a separate ligand in addition to heparan sulphate,
and that interaction with this receptor induces beneficial
changes to the intracellular environment for the virus. Many
viruses have evolved to bind receptors that stimulate specific
signalling pathways, which “prime” the cell for viral infection
in this manner. Therefore, mutation of these viral proteins,
and subsequent disruption of signalling may affect viral
fitness and transgene expression by reducing the ability of
the virus to control the cellular environment. This may
contribute to the reduced infectivity of HVS mORF51. This
phenomenon should be taken into account when designing
retargeted vectors. One way to tackle this problem is to retain
a wild-type copy of the mutant gene in the viral genome;
however, this may mask the effects of the mutated protein.

HVS infection is a complex process, involving a variety
of viral glycoproteins that act in concert to facilitate entry
in HCC cells. Little research has been conducted into how
these glycoproteins interact with cellular receptors and each
other during this process. The data described here illustrates
that ORF51 contributes to efficient cell entry in a number
of human cell lines but does not appear to be involved
in HCC cell entry. From these findings, it is clear that
mutation of ORF51 has practical implications for HVS in
gene therapy. Therefore, this research highlights the potential
of a retargeted HVS-based vector in redirecting cell tropism.
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