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THEBIGGERPICTURE Evidence indicates that data acquired from and about human bodies inmedicine and
health do not always create equitable systems. Bias is pervasive in clinical devices, interventions, and inter-
actions. These include devices that are designedwithout regard for sex, gender, and skin color; interventions
that embed race; disease diagnoses that hinge on gender or ethnicity; and biased interactions between pa-
tients and healthworkers. Data from these systemswhen used inmachine learning algorithmswill promote or
exacerbate these biases. Often there is a lack of education in computer science about the systemic impact of
gender discrimination, racism, and socioeconomic inequalities on data used in developing machine learning
algorithms for health. The solutions to addressing these engrained biases are not easy and require intentional
efforts by those who develop algorithms and those who use algorithms including, computer scientists, en-
gineers, clinicians, healthcare institutions, and others. However, these solutions cannot exist without educa-
tion about the historical injustices against marginalized groups, a refusal to accept inequities as the norm,
and shouldering the responsibility to create and apply algorithms that reduce rather than promote inequity.

Mainstream: Data science output is well understood
and (nearly) universally adopted
SUMMARY

Machine learning has traditionally operated in a space where data and labels are assumed to be anchored in
objective truths. Unfortunately, much evidence suggests that the ‘‘embodied’’ data acquired from and about
human bodies does not create systems that function as desired. The complexity of health care data can be
linked to a long history of discrimination, and research in this space forbids naive applications. To improve
health care, machine learning models must strive to recognize, reduce, or remove such biases from the start.
We aim to enumeratemany examples to demonstrate the depth and breadth of biases that exist and that have
been present throughout the history of medicine. We hope that outrage over algorithms automating biases
will lead to changes in the underlying practices that generated such data, leading to reduced health dis-
parities.
INTRODUCTION

Machine learning is a group of algorithms, models, and tech-

niques that broadly seeks to find patterns from observed

data that could be usefully applied to predictions in unseen

data.1 Humans are imperfect, and society generally accepts

that there must therefore be some bias in any human-driven

processes, even those that may have life or death conse-

quences. In a medical context, this means that there are poten-

tially learnable biases that have been part of medical data as far

back as important medical devices or interventions have

existed.
This is an open access article under the CC BY-N
As machine learning researchers in health, we have some-

times operated under the assumption that the labels in observed

data are ‘‘real,’’ i.e., factual or unbiased.2 For instance, we as-

sume that the diagnoses extracted from electronic health care

records (EHR) are accurate and then build a model that will

predict those diagnoses as an output. We use the vital sign mea-

surements collected from medical devices as inputs to models

that predict future physiology. We assume that the interventions

observed in a clinical setting are unbiased implementations of

appropriate and expert medical care, and then build models to

mimic the policies we see enacted. Unfortunately, much evi-

dence suggests that the ‘‘embodied’’ data (i.e., data acquired
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from and about human bodies) in medicine and human health

does not always create systems that are equitable, specifically

these systems do not allow the same advantages for the diverse

populations that are served.3–5

Bias, defined as systemic neglect, stereotypes, and beliefs

and actions that create or promote health disparities,5–8 are pre-

sent inmedical devices, clinical interactions, clinical diagnostics,

clinical interventions, and policies. A clinical device biased to-

ward certain demographics, clinical interventions, and diagnos-

tics calibrated on a specific populationmight not work for others,

while implicit bias at health care institutions and racist policies

lead to a lower quality of care received bymillions. Data collected

from biased clinical devices and systems will lead to interpreta-

tion bias, and machine learning algorithms trained on these data

will replicate or exacerbate these biases. But why do these

biases exist and how canmachine learning algorithms learn any-

thing useful from these data?

Many articles have been written about bias in algorithms and

how these biases promote or exacerbate inequities. This

perspective aims to (1) summarize the breadth, depth, and

incredible scope of pervasive biased practices, and (2) elaborate

on how these issues are likely to be repeated or worsened in ma-

chine learning settings. We focus on algorithms as potential inte-

grand parts of all portions of the clinical pipeline described, e.g.,

devices/interventions/diagnostics, but do not consider sce-

narios where algorithms independently constitute any of those

components. We aim to enumerate many examples to demon-

strate that researchers must be wary of the biases that exist,

and that have been present throughout the history of medicine.

We hope that the continuous outcry over algorithms automating

such biases will lead to a larger examination and redefinition of

practice that will reduce health disparities.

BIAS IN CLINICAL DEVICES, INTERVENTIONS, AND
INTERACTIONS

To demonstrate the pervasiveness of bias in clinical devices, in-

terventions, and interactions, we provide examples of devices

that fail to work as intended across broad sections of humanity.

At a very basic level, devices such as pulse oximeters do not

correctly capture oxygenation levels for darker skin at low oxy-

gen saturation,9 exactly when it is crucial to capture oxygen

levels. Feiner et al.9 state that, ‘‘in our 20 years of testing pulse

oximeter accuracy, and probably in other testing laboratories,

the majority of subjects have been light skinned. Most pulse oxi-

meters have probably been calibrated using light-skinned indi-

viduals, with the assumption that skin pigment does not matter.’’

The authors also note that this also interacts with gender, poten-

tially impacting intersectional identities more. Another example

is the failure of hand soap dispenser stations to recognize dark

skin.10 While this might be considered a minor inconvenience,

it reflects broader issues around device failure.

Bias is also present in devices that are designed without con-

siderations of sex or gender differences. For example, manufac-

turers make a majority of artificial hearts in a ‘‘standard’’ size too

large for many women, despite a similar number of men and

women suffering from heart disease.11 Similarly, women face

increased risk from metal-on-metal hip implants, due in part to

anatomic differences between men and women that are not
2 Patterns 3, January 14, 2022
taken into account during implant design.12 Another study

reported that, among subjects treated with a ventricular assist

device (VAD) to provide mechanical circulatory support for

patients with heart failure, women had a higher rate of stroke.

Device manufacturers finally designed a smaller VAD for women

in 2010, almost 50 years after the device was first used.13 De-

vices that are not the right size or shape for women can lead to

avoidable health complications and death.

Interventions like anesthesia are also not immune to such

variant impact, with red-haired subjects requiring more and

dark-haired subjects less, to obtain the same sedation result.14

Risk scores across the spectrum of clinical areas embed race

into the basic data used to individualize risk assessments.15

However, algorithms that include these data must recognize

that adopting previous and current clinical decision support

scores may propagate existing biases. We note that interven-

tions are one example of resource allocation in clinical settings

because clinical attention, medication, etc., are all finite re-

sources. Such issues extend to clinical understanding of how

to treat female patients—who are not a minority group—even

at a basic level of medication dosages. Recent work has demon-

strated that women frequently have higher concentrations of

drugs in their blood, and take longer to eliminate drugs from their

bodies, when given the same drug dose as men.16 This is a po-

tential contributor to the more than 90% of adverse drug event

cases where women experienced worse side effects than men.

Furthermore, algorithms designed to predict patients’ health

risk and to allocate resources can also be biased toward minori-

tized populations. Obermeyer et al. showed that a commercial al-

gorithm used for predicting patients’ health risk was less likely to

refer sicker black patients for additional care comparedwithwhite

patients, thereby affecting the health care received by millions of

patients.3 By predicting need based on health care expenditure,

the algorithm failed to account for disparities in access to health

care between black and white patients, differences that are

rooted in systemic racism. Such discriminatory algorithms have

grave effects on individuals and entire populations since they

determine who does, or does not, receive needed care.

Diagnoses also have well-established biases where the very

definition of a condition or disease hinges on gender or ethnicity,

and has been used in a discriminatory fashion.15,17–20 Even for

conditions that do not rely on race or gender, the gender- or

race-specific presentation of a condition may be poorly under-

stood, or ignored, in medical education and literature.20,21 In

dermatology, the low percentage of examples in darker skin

(4%–18%) can lead to serious underdiagnosis,22 as in the

COVID-19 pandemic when skin-based manifestations of the

condition were initially on light-skin only.21 If disease presenta-

tion is never shown in dark skin tones in medical textbooks,

how will clinicians recognize it? Similarly, prior work has shown

that female patients disproportionately die from heart attacks,

but only when male doctors treat them.19 Note, the inverse is

not true—male patients do not die more often when female

doctors treat them post heart attack. As noted in the paper,

‘‘mortality rates decrease when male physicians practice with

more female colleagues or have treated more female patients

in the past.’’ This first effect—that more female colleagues help

male doctors recognize heart attack in women—is a sobering

argument for why representation in a care team helps all doctors
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improve. Machine learning algorithms that use medical images

(such as X-rays) and other clinical data on disease diagnosis

are likely to create or worsen these existing inequalities when

trained with gender or race/ethnic imbalanced datasets.23

Finally, even the interactions between patients and health

workers may be loaded with bias.24,25 A study by Schulman

et al. from 1999 found that doctors were much less likely to

recommend cardiac catheterization to black patients with medi-

cal files that are statistically identical to those of white patients.26

Recentwork on linguistic features onclinical notes suggested that

black patients may be subject to systematic bias in clinical per-

ceptions of their credibility.27 A study by Li et al. reported that,

although women presented with higher rates of hypertension

and heart failure than men, they were less likely to receive lipid-

lowering medications and optimal care at hospital discharge

compared with men.28 The quality of care a patient receives

may also vary based on their socioeconomic status, with patients

from lower socioeconomic status more likely to receive less

optimal care.29 Other work has shown that end-of-life care

disparity can be modeled algorithmically by examining the level

of mistrust between patient and caregivers in clinical notes30—

with higher levels of mistrust for black patients than white ones.

Furthermore, elicitation of responses from frontline workers may

strongly vary depending on their biases, and this biased elicitation

will create data that represent a biased narrative and could be

used to remove treatment options from patients.

We note that a key issue with all human-centric deployments of

machine learning is the inherent noisiness of human judgments,

even when we desire less variability in a judgment process.31

Such noise is concerning in medicine because human cognitive

biases shape judgments that will then dictate the clinical knowl-

edge that is recorded, and the clinical care that is dispensed. In

both cases, algorithms will mimic the knowledge and care that

they are provided as learning fodder, and human experts will be

hard-pressed to understand, audit, and address such biases

that can easily be downloaded and deployed by anyone with an

internet connection. In an account presented at a symposium

on antiracism as public health policy, Patricia Williams, a legal

scholar and proponent of critical race theory, described an inci-

dent where an algorithm used for making decisions about

osteopenia and osteoporosis care could not generate recom-

mendations because she had been labeled by the hospital as

black (Antiracism as Health Policy: Race, COVID-19, and Policy

Reform. Patricia Williams. University Distinguished Professor of

Law and Humanities, Northeastern University School of Law.

https://www.bu.edu/sph/conversations/uncategorized/part-2-

antiracism-as-health-policy-race-covid-19-and-policy-reform/).

Upon changing her race label to white, the algorithm proceeded

to ask questions about her family history, whether she had previ-

ously broken any bones, and whether she showed signs of rheu-

matoid arthritis. This experience highlights two critical issues—

the use of black box algorithms to disproportionately assign

care and medical resources to whites, and the inherent human

assumption that race is self-evident.

WHAT ROLE DOES MACHINE LEARNING HAVE?

These examples of the complexity present in all health care data

can be linked to a long history of discrimination and racism, and
unproven assumptions about race and biology. While clinical

staff operate in environments where they can observe such is-

sues (if they choose to), there is often a lack of understanding

and education in computer science about how discrimination,

racism, and inequalities have influenced the data used in training

algorithms in health care.

Many papers and books have discussed how biased data and

algorithms lead to biased interventions and policies, which

disproportionately affect marginalized individuals and groups.

Some algorithms will produce more accurate results for groups

that are most represented in the data. For example, an algorithm

trained to detect skin diseases using a dataset that mostly rep-

resents people with lighter skin will produce less accurate results

for people with darker skin. However, increasing representation

of diverse populations in such a dataset is not always sufficient

since clinical and public health datasets can carry racial, ethnic,

socioeconomic, and other social biases due to how they are

collected.

Also, without consideration of social factors that affect and

shape individual’s health based on their membership in specific

groups, such as, gender, race/ethnicity, income, or sexual orien-

tation, algorithms used for allocating resources and automating

medical decisions will make inaccurate predictions for the most

vulnerable or at-risk populations. But adding or removing a pa-

tient’s details will not automatically lead to unbiased outcomes.

For example, inclusion of patient details, such as ethnicity, body

mass index, or socioeconomic status, in health care decision

algorithms can lead to explicit bias against certain groups. Algo-

rithms that encode race are sometimes designed to reduce or in-

crease risk of diagnosing disease in specific populations solely

based on race.15 However, exclusion of personal details does

not automatically make an algorithm unbiased. One study

demonstrated that an algorithm designed to predict patients

who were likely to miss their hospital appointments based on

EHR data did not become unbiased after removing personal de-

tails, because it still included prior observations, i.e., information

onwhether a patient had previouslymissed an appointment, as a

variable in the algorithm.4 Predictions made by the algorithm

were likely to discriminate against particular individuals who

may have missed an appointment in the past due to inability to

afford transportation or childcare, thereby discriminating against

people from lower income groups.

At the population level, algorithms used to develop policies

that fail to address these socio-cultural forces that affect the

health of marginalized groups are likely to have biased impacts

that exacerbate existing health inequalities. Deference to

algorithms or probabilities is dangerous—in a world where

race, income, and gender concordance increase your probability

of survival. Understanding individual patient needs and devel-

oping targeted interventions and policies aimed at addressing

the needs of marginalized populations is one effective approach.

In the previous example, targeted interventions (such as hous-

ing, transportation, or child care assistance) to reduce no-shows

resulted in a 9% average reduction in no-show rates across 12

clinics, demonstrating that sometimes solutions to algorithmic

bias lie beyond the algorithm.

Unfortunately, there are no simple solutions to such en-

trenched problems. We attempt to make recommendations for

those who develop algorithms and those who use these
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algorithms for decision making, which includes computer

scientists, engineers, clinicians, healthcare institutions, and

others. Specifically, we suggest howwe, as machine learning re-

searchers, can develop an awareness that data labels are often

misleading or inappropriate, and develop or adopt practices that

lead to targeted solutions.

First, researchers must recognize that implicit biases against

minoritized groups in health care forbids naive applications,32

e.g., if we use clinical scores that—as defined—do not accu-

rately estimate the severity of a condition in black patients as

prediction targets, the ignoring of black pain is automated.33

Beyond the understanding that diverse groups should be in

data, a focus on disaggregated data helps emphasize an under-

standing of who is included and who is excluded. Researchers

should also question subgroup assumptions embedded in data

or models, as these are often based on unproven assumptions

about biology or environment, e.g., black people are more

muscular.34

Second, the clinicians and health care institutions that work

with machine learning systems should apply a ‘‘do-no-harm’’

approach to using algorithms. This requires health care pro-

viders to question how algorithms use patients’ information to

assess risk and make care recommendations, and perform

rigorous and regular audits to ensure that algorithms provide

equal care to patients. Most algorithms are developed with the

intention of solving a particular health challenge; however, algo-

rithms do not always perform as expected. Regular and rigorous

audits to assess how algorithms are affecting the populations

they are meant to serve, including marginalized and poor popu-

lations, are important for identifying and addressing bias. It is

common to quote the "do-no-harm" approach in medicine, but

it can be difficult to apply, especially when practitioners lack a

thorough understanding of how algorithms used to make deci-

sions contribute to harm.

Third, those who develop and use algorithms for making

health care decisions have a responsibility to reduce and not

exacerbate health inequalities by studying and acknowledging

historical injustices against marginalized groups and adopting

systemic anti-racist policies and practices.34 Researchers

without an understanding of the history of discrimination and

scientific racism are likely to blame negative health outcomes

on biology and behavioral choices rather than the policies that

restrict access to high-quality care, increase risk of certain

diseases, and restrict access to opportunities and resources

that contribute to good health. The impact of racism on individ-

uals and populations is not solely due to individual biases but

also institutions and policies that directly and indirectly affect

health.35–39 Policies that encourage residential segregation

based on race and ethnicity to those that promote the belief

that black people are naturally prone to having higher rates of

disease have long existed in the US. These biased policies

have been linked to negative health outcomes, including higher

rates of cancer, tuberculosis, asthma, and mental health issues.

Furthermore, without recognizing the impact of racism and other

forms of discrimination, there will not be deliberate efforts to

collect data that includes demographic details of groups that

are affected; and, without these data, researchers cannot mea-

sure and describe the impact of biased policies on health. See

Crear-Perry et al.40,41 and Yousif et al.40,41 for suggestions on
4 Patterns 3, January 14, 2022
how anti-racist practices can be incorporated into medical edu-

cation and practice. Similarly, those who develop machine

learning algorithms used in health care settings should study

the history and impacts of racism, and receive training on how

antiracism and decolonial methodologies can be incorporated

in the development, evaluation, and deployment of algorithms.

Fourth, machine learning researchers can adopt approaches

and ideas from fields where bias has been thoroughly studied.

For instance, the causal inference literature has rigorous formal

definitions of bias that can be addressed with various methods:

selection bias, measurement bias, and confounding bias.42

Many in the scientific community are working to harness the po-

wer of algorithms to improve understanding of, and personalized

risk prediction in, disease heterogeneity.43 For instance, current

biobanks, such as the UK-Biobank44 and All of Us, target ethni-

cally diverse data to understand individual gender or genetic risk.

Recently published standards for quality or performance, such

as the CONSORT and CONSORT-AI statements,45 can also

guide researchers on how to avoid bias, and provide guidance

on appropriate subgroup and secondary analyses.46 By

acknowledging label uncertainty and the veracity of data-driven

learning in the health sciences, we can progress past the limita-

tions of past research.47

We fully acknowledge that engaging with, and working

through, a system with encoded bias is going to be a hard

research process. However, the impact of publishing research

that may harm a group due to misunderstanding the nuances

of underlying data is enormous.48 Researchers and institutions

have the ability, and therefore a responsibility, to reduce health

inequalities by acknowledging and redressing historical injus-

tices against marginalized groups and adopting anti-racist

practices.49
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