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SUMMARY

Exercise training is critical for the prevention and treatment of obesity, but its underlying 

mechanisms remain incompletely understood given the challenge of profiling heterogeneous 

effects across multiple tissues and cell types. Here, we address this challenge and opposing effects 

of exercise and high-fat diet (HFD)-induced obesity at single-cell resolution in subcutaneous 
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and visceral white adipose tissue and skeletal muscle in mice with diet and exercise training 

interventions. We identify a prominent role of mesenchymal stem cells (MSCs) in obesity and 

exercise-induced tissue adaptation. Among the pathways regulated by exercise and HFD in MSCs 

across the three tissues, extracellular matrix remodeling and circadian rhythm are the most 

prominent. Inferred cell-cell interactions implicate within- and multi-tissue crosstalk centered 

around MSCs. Overall, our work reveals the intricacies and diversity of multi-tissue molecular 

responses to exercise and obesity and uncovers a previously underappreciated role of MSCs in 

tissue-specific and multi-tissue beneficial effects of exercise.

In brief

In this paper, Yang et al. provide a high-quality single-cell atlas of obesity-exercise interactions 

in subcutaneous and visceral white adipose tissue and skeletal muscle in mice. It uncovers a 

previously underappreciated role of mesenchymal stem cells in the response to obesity and 

exercise training in these three tissues.

Graphical Abstract

INTRODUCTION

Regular physical exercise is a well-established intervention to prevent and treat people 

with obesity and diabetes (Kirwan et al., 2017). Determining the molecular mechanisms 

mediating the beneficial effects of exercise can lead to the identification of biomarkers and 
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therapeutic targets (Sanford et al., 2020). However, this has been a challenging task because 

exercise is a complex physiological stimulus that induces beneficial adaptations to different 

organ systems by altering expression of key genes and proteins. We hypothesize that this 

occurs by directly impacting heterogeneous cell types within individual tissues and by 

modulating intra- and inter-tissue communication. Here, taking advantage of recent single-

cell technologies and advancements in computational biology, we address the challenge by 

simultaneously investigating responses to exercise and obesity on the molecular, cell-type-

specific, and cross-tissue levels.

White adipose tissue (WAT) and skeletal muscle (SkM) are among the most dynamic 

endocrine organs impacted by obesity and exercise, and as such have been the focus of 

studies on the tissue level (Gonzalez-Gil and Elizondo-Montemayor, 2020; Leal et al., 

2018; Nigro et al., 2021; Sakurai et al., 2013; Stanford et al., 2015; Takahashi et al., 

2019). Subcutaneous and visceral WAT (scWAT and vWAT), the two major WAT depots, 

as well as SkM are highly heterogeneous tissues with complex structures consisting of 

different cellular components. Both WAT depots are composed of mature adipocytes and 

the stromal vascular fraction (SVF), which consists of multiple cell types including adipose 

stem cells (ASCs) and a variety of immune cells (Stenkula and Erlanson-Albertsson, 2018). 

SkM consists of myofibers, surrounded by connective tissue; MSCs, including satellite 

cells and fibro-adipogenic progenitors (FAPs); and immune cells (Camps et al., 2020; Dos 

Santos et al., 2020; Oprescu et al., 2020; Rubenstein et al., 2020). Dissection of WAT 

using single-cell or single-nucleus RNA sequencing has been presented in the context of 

obesity, cold exposure, or beta-adrenergic treatment but not following exercise interventions 

(Henriques et al., 2020; Rajbhandari et al., 2019; Sárvári et al., 2021; Vijay et al., 2020). 

In SkM, single-cell efforts have been limited compared to WAT and the existing studies 

have focused on SkM cell-type characterization and tissue regeneration (Camps et al., 2020; 

Dos Santos et al., 2020; Rubenstein et al., 2020). There have been no investigations of 

the beneficial effects of exercise to combat obesity at a single-cell resolution and spanning 

multiple tissues.

In this study, we dissect the opposing effects of exercise training and diet-induced obesity in 

scWAT, vWAT, and SkM at both tissue-level and single-cell resolution. Our results provide 

a reference atlas of obesity-exercise single-cell changes in metabolic tissues (Figures 1A 

and 1B; http://scmetab.mit.edu/) and reveal key roles for MSCs in potentially mediating 

tissue-specific and inter-tissue communication changes in response to obesity and exercise 

interventions.

RESULTS

Phenotypic response to diet-induced obesity and exercise and profiling of three metabolic 
tissues

We studied 6-week-old C57BL/6N male mice with diet-induced obesity and voluntary 

wheel running exercise training interventions (Figure 1A; n = 51 across 4 groups). 

Phenotypically, high-fat diet (HFD) induced, and exercise attenuated, weight gain and 

glucose intolerance (Figures 1C and 1F). Diet did not significantly impact running distance 

(Figure 1D) and HFD mice consumed more calories, especially when sedentary (Figure 1E). 
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Each statement is true for separate mouse cohorts studied for tissue- and single-cell-level 

experiments (Figures S1A–S1E). scWAT, vWAT, and SkM were collected and processed for 

transcriptomic profiling. For both bulk and single-cell assays, the major drivers of variation 

were tissue, diet, and exercise, but not batch (Figure S1F).

Tissue-level gene and pathway alterations by obesity-exercise across the three tissues

We found 1,386 tissue-level differentially expressed genes (DEGs) across all three tissues 

(568 in scWAT, 562 in vWAT, 256 in SkM; DESeq2-Negative-Binomial corrected p < 0.05) 

and all three pairwise intervention comparisons for “obesity” (HFD versus standard diet for 

sedentary), “training” (exercise training versus sedentary for standard diet), and “rescue” 

(exercise training versus sedentary for HFD; Tables 1 and S1). Gene ontology (GO) pathway 

enrichment and protein-protein interaction (PPI) analyses revealed common and distinct 

biological processes across interventions and tissues (Figures 2A–2D).

For the subset of DEGs identified in at least two comparisons in adipose tissues, nearly 

all (94%–95%) stemmed from opposite changes in obesity versus training/rescue (Figures 

2A and 2B). This anti-correlation held for all genes (not only DEGs), with obesity versus 

rescue showing negative correlation in both depots (Pearson scWAT, p < 10−10; vWAT, 

p < 10−16), and obesity versus training anti-correlated in vWAT (Pearson, p < 10−16; 

Figure S1G). Adipose-depot DEGs included both well-known and less-studied metabolism-

associated genes. The latter included training/rescue increasing circadian rhythm regulators 

(Dbp, Tef, Nr1d2, and Per3), and training/rescue downregulating extracellular matrix (ECM) 

remodeling genes (Thbs1 and Sparc). For SkM (Figure 2C), rescue/training upregulated 51 

genes and downregulated 20 genes, including the fat metabolism repressor Pdk4 (Kim et al., 

2006) and the musclemass repressor Asb2 (Davey et al., 2016). Rescue showed more DEGs 

than training (n = 164 versus 21), suggesting a more robust response of SkM to training 

under HFD than standard diet. Similar to WAT, training and rescue showed similar effect 

directions for most genes in SkM (Figure S1G).

Across tissues and interventions, DEGs clustered into biologically meaningful modules 

of interacting proteins (Figures 2D and S2). Rescue/training led to upregulation of 

fatty acid biosynthesis/beta-oxidation module and cellular respiration module, including 

oxidative phosphorylation, tricarboxylic acid (TCA) cycle, and reactive oxygen species 

(ROS) response. Rescue/training downregulated an immune module, including antigen 

presentation, neutrophil degranulation, immune cell migration, phagosome-related genes, 

and modules related to ECM and cell proliferation. Figure S2 summarizes the effect of each 

intervention on the genes comprising each module. For example, Cdkn1a, encoding a protein 

involved in cellular senescence, was downregulated by rescue in scWAT and vWAT (Figure 

S2). Taken together, these tissue-level results reveal specific genes and pathways that may 

mediate many of the beneficial effects of exercise training.

Single-cell atlas of metabolic tissues in obesity and exercise conditions

In addition to our tissue-level datasets, we generated a single-cell atlas of 204,883 cells for 

obesity-exercise interactions across the three tissues and the four intervention groups (Figure 

3A). To capture low-abundance cell types (e.g., ASCs in WAT and FAPs in SkM), we used 
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a single-cell library preparation that enriched for stromal vascular fraction (SVF) instead of 

mature adipocytes in WAT and muscle fibers in SkM, parenchymal cells that are already 

well captured by tissue-level studies. We also included lymph nodes in scWAT to capture 

immune cells migrating between tissue and lymph nodes.

We annotated 22 cell types using marker gene expression in cell clusters (hierarchical and 

density-based) of non-linear embeddings (tSNE and UMAP) for dimensionality-reduced 

data (top 50 PCs; STAR Methods). These include (1) 3 types of stem cells, including 

ASCs, satellite cells, and FAPs; (2) 10 types of immune cells from both lymphoid and 

myeloid lineages; (3) 2 types of connective cells, including tenocytes in SkM and fibroblasts 

primarily in vWAT; (4) 2 types of muscle cells, including muscle fibers and smooth muscle 

cells; and (5) 4 additional cell types including endothelial, epithelial, epididymis, and glial 

cells (Figure 3A). Within each cell type, our analysis revealed subclusters driven by tissue 

provenance (Figure 3B; Table S2) and to a lower degree by intervention group (Figure 3C). 

Sub-clustering revealed 42 cell subtypes/states for 11 of the 22 cell types, including 3 ASC 

states, namely interstitial progenitor cell (IPC), committed preadipocyte (CP), and CD142+ 

ASC (Table S3). Two-dimensional embeddings of each tissue showed clear distinctions of 

these cell subtypes/states (Figure S3A).

Molecular signatures of depot-specific ASC states

We evaluated WAT ASC transcriptional diversity as a marker of differentiation potential 

(Figure 3D). The robustness of this concept was demonstrated in the CytoTRACE 

framework, which showed that transcriptional diversity decreases during differentiation 

(Gulati et al., 2020). For vWAT, we confirmed that IPCs show increased transcriptional 

diversity, consistent with their earlier differentiation state (Merrick et al., 2019). In scWAT, 

however, CPs and CD142+ cells showed increased transcriptional diversity, which may be 

related to their beiging trans-differentiation and de-differentiation potential (Ghaben and 

Scherer, 2019). We performed pseudotime trajectory analysis (Qiu et al., 2017) and selected 

the starting point of the trajectory (IPCs) based on previous experimental evidence (Merrick 

et al., 2019). The predicted pseudotime depicted a trajectory from IPCs to CPs and CD142+ 

cells in both WAT depots (Figure S3B).

We sought co-expressed regulator/target-gene combinations (regulons) for each ASC state 

to gain insights into their gene-regulatory circuitries. We identified depot-shared as well 

as depot- and state-specific regulons (Figure 3E). Depot-shared regulons (Figure 3E, blue) 

included established regulons Klf3 and Creb5 for IPCs, which are activated very early 

during adipogenesis (Farmer, 2006; Sue et al., 2008); regulons Cebpa, Pparg, and Gsc for 

CPs, among which Cebpa and Pparg are the two principal adipogenic factors overseeing the 

terminal differentiation process (Farmer, 2006); and for CD142+ cells, a regulon controlled 

by thyroid hormone receptor beta (Thrb). As for the depot- and state-specific regulons, IPC-

highest Irx3 (lowest in CPs) in scWAT is consistent with its early-adipocyte-differentiation 

role (Claussnitzer et al., 2015). In vWAT pre-CPs, a state lying between IPCs and CPs, 

we identified two potential IPC-to-CP lineage commitment regulators. Foxc1 is implicated 

in progenitor cell identity maintenance (Omatsu et al., 2014), and Nfil3 is implicated in 

a circadian lipid metabolic program and regulating lipid absorption and export (Wang et 
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al., 2017). Overall, our single-cell data highlight depot-shared and depot-specific gene 

regulatory circuitries for different populations of ASCs and enable regulator prediction for 

early ASC differentiation in vWAT.

Seven distinct FAP states and a novel FAP population in SkM

We classified the ~55,000 FAPs into seven distinct cellular states using mouse and 

human markers (Camps et al., 2020; Oprescu et al., 2020; Rubenstein et al., 2020): (1) 

multipotent IPC_SkM, sharing IPC markers with WAT; (2) FAP_Cxcl14+; (3) FAP_Prg4+; 

(4) adipogenesis-regulating FAP_CD142+ cell similar to adipose tissue CD142+ cell 

(Camps et al., 2020); (5) FAP_post_injury representing an inflammatory post-injury-like 

state; (6) mesoangioblasts (MABs), marked by Alpl+; and (7) a previously unreported Sca1 

population of FAPs, discussed in more detail below (Figure S3C). The first six subtypes 

were all positive for Pdgfra, Cd34, and Ly6a (Figure S3D). All seven subtypes were 

detectable in previous single-cell data (Dos Santos et al., 2020; Oprescu et al., 2020) (Figure 

S3E).

Surprisingly, while FAPs are usually defined using interchangeable combinations of the 

canonical markers Pdgfra+, Cd34+, and Sca1+, we found an FAP population negative for 

Sca1 (Joe et al., 2010) (Figure S3D). Downregulation of SCA1 occurs as cells differentiate 

along a particular lineage (Soliman et al., 2020). According to CytoTRACE differentiation 

prediction, Sca1− FAPs showed a more differentiated state (less transcriptional diversity) 

than Sca1+ FAPs (Figure 3F). Trajectory analysis (Qiu et al., 2017) confirmed the 

differentiated state of Sca1− FAPs with later pseudotime (Figure S3C). Sca1− FAPs 

expressed higher levels of collagen genes, which are pan-fibroblast markers, and IL33, 

which is known for its role in recruiting Tregs and ILC2s in non-lymphoid tissues to combat 

inflammation (Spallanzani et al., 2019) (Figure S3F). Thus, we hypothesize Sca1− FAPs 

as a population of fibrogenic progenitors differentiated from MSCs. We validated Sca1− 

FAPs for both triceps and gastrocnemius muscle by stringent fluorescence-activated cell 

sorting (FACS) and gating. We used qPCR to verify expression patterns of Sca1+ (Pdgfra, 

Ly6a, and Dpt) versus Sca1-marker genes (Pdgfra and Apoe), and lack of expression of 

endothelial cell (Pecam1), tenocyte (Scx), or glial cell markers (Plp1; Figures 3G, S3G, and 

S3H; Table S3). We visualized Sca1− FAPs using RNA and immunofluorescence staining 

(Figures 3H and 3I). Based on marker gene expression, this FAP is similar to a population 

reported in heart (cardiac fibrogenic SCA-1− cell) (Soliman et al., 2020) (Figure S3I), which 

was differentiated from PDGFRα+ SCA-1+ cells. This SCA-1− population increased in 

post-myocardial infarction hearts with a pathogenic role in remodeling and arrhythmogenic 

cardiomyopathy. Interestingly, there was a trend for Sca1− FAP abundance to decrease in 

training leading to the hypothesis that exercise training downregulates SkM fibrosis through 

its effects on Sca1− FAPs.

Marker genes for the seven FAP states were enriched in shared and unique pathways (Figure 

3J). Shared pathways across the seven states included core matrisome, matrisome associated, 

IGF transport and uptake, and aging, suggesting FAP as a key contributor to ECM (Chapman 

et al., 2017), IGF signaling (Giuliani et al., 2021), and aging (Ancel et al., 2019) in SkM. 

FAP state-specific signaling pathways and regulons supported their respective functions 
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(Figures 3J and 3K). In Sca1− FAPs, we found IL6-mediated signaling pathways and the 

Mafg and Cebpg regulons, which are involved in the IL6-induced oxidative stress response 

(Forcina et al., 2019), highlighting a potential response of this population to IL6 that is 

known to be released with muscle contraction (Lauritzen et al., 2013).

Cell-type and cell-state proportion changes in obesity and exercise across the three 
tissues

We also deconvolved (Newman et al., 2015) our tissue-level data using independent single-

cell maps refined by manual curation (Dos Santos et al., 2020; Rajbhandari et al., 2019). 

As expected, deconvolution captured primarily high-abundance cell types (Table S2). We 

used these tissue-deconvolution results to characterize cell-type proportion changes in our 

three intervention comparisons. In both adipose tissues, HFD-induced obesity significantly 

decreased mature adipocytes and increased ASCs and myeloid cells (Figures 4A and 

4B), consistent with increased adipocyte necrosis and macrophage infiltration in obesity-

associated metabolic decline (Ghaben and Scherer, 2019). Exercise training reversed these 

effects in HFD, even though training alone showed no effect under standard diet conditions. 

Histology staining in both WAT depots showed that obesity significantly enlarged mature 

adipocyte size (adipocyte hypertrophy) and increased tissue weight, which were both 

reversed by training (rescue; Figures 4D and 4E). In SkM, training and rescue decreased 

type II (fast) myonuclei and increased FAPs, myeloid cells, and endothelial cells (Figure 

4C).

We also used our single-cell results to annotate changes in cell subtype/state proportions 

(Figures S4A–S4D; Table S2). In WAT across interventions, ASCs, macrophages, and 

T cells were the cell types with the most subtype/state proportion changes. In obesity, 

we found changes in vWAT specifically, with ASCs showing increased CD142+ cells, 

consistent with previous results (Merrick et al., 2019; Schwalie et al., 2018). Rescue once 

more reversed the change, decreasing CD142+ cells in vWAT (Figure S4B). In addition to 

ASCs, obesity both increased macrophage proportion and M1 (pro-inflammatory) versus M2 

(anti-inflammatory) ratio in vWAT (Figure S4C). Rescue restored the M1/M2 ratio toward 

baseline. In lymphoid lineage there was an increase of Tregs and a decrease of NKT cells 

in obesity, changes reversed in rescue. Furthermore, there were similar changes of Tregs 

and NKT cells in training, suggesting that the beneficial effects of exercise training on 

lymphocytes occur regardless of diet. In SkM, training showed a tendency to decrease the 

ratio of Sca1− and Sca1+ FAPs, which suggests that training improved SkM physiology and 

decreased inflammation and fibrotic potential (Figure S4D).

Cell-type-specific transcriptomic changes highlight ECM remodeling and circadian rhythm 
gene expression in MSCs across the three tissues

We next used our single-cell data to infer cell-state-specific and cell-type-specific gene 

expression changes modulated by obesity and exercise training interventions. In WAT 

(Figures 4F and 4G; Table S4), we found 139 scWAT DEGs and 502 vWAT DEGs at 

the cell-state level, affecting primarily ASCs followed by T cells in both WAT depots. In 

ASCs, DEGs in IPCs and CPs accounted for 57% in scWAT and 59% in vWAT, indicating 

that IPCs and CPs are the ASC states most responsive to the interventions. Between the 
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two fat depots, vWAT was affected the most by obesity, showing a 7.6-fold enrichment for 

DEGs (265 versus 35). In vWAT, rescue reversed ~12% of the obesity-regulated genes 

in ASCs, but 0% in T cells, indicating that obesity-induced immune dysregulation is 

potentially longer-lasting. In SkM, we identified 290 DEGs (13 obesity + 74 training + 

203 rescue; Figure 4H; Table S4). Rescue led to more single-cell DEGs than obesity and 

training, consistent with our tissue-level results. Sca1+ FAPs showed the most DEGs, with 

IPC_SkM and FAP_CD142+ cell accounting for 81% of the Sca1+ FAP DEGs. Cell-type-

level DEGs showed similar gene expression change patterns for the three tissues and the 

three phenotypic comparisons (Figures S4E–S4G).

In the three tissues, ECM-related pathways were upregulated by obesity and downregulated 

by training and rescue in scWAT IPCs, all four states of vWAT ASCs, and three Sca1+ FAP 

states (IPC_SkM, FAP_CD142+, and MAB; Figures 4I–4K; Table S4). Excessive deposition 

of ECM has been observed with obesity in WAT to both provide structural support to the 

enlarged mature adipocytes and promote tissue fibrosis (Marcelin et al., 2017; Shao et al., 

2021). In SkM, ECM is essential for muscle development, growth, repair, and mechanical 

support during exercise. These data support a significant role for ASCs in scWAT and vWAT 

and FAPs in SkM in regulating ECM remodeling in the context of obesity and exercise.

Circadian rhythm is another notable pathway regulated in all the three tissues, which was 

only observed in single-cell but not tissue-level data. The pathway was upregulated by 

training and rescue and enriched in FAPs in SkM and ASCs in WAT, suggesting a close 

link between exercise and circadian rhythmicity in these tissues (Figures 4I–4K; Table 

S4). Upstream regulator analysis revealed Dbp, Tef, and Hlf, three homologous PAR bZIP 

TFs sharing motif specificity (Yoshitane et al., 2019), as potential master regulators of 

these training-altered circadian pathways in specific MSC states (Figures S4H–S4J). These 

findings suggest that exercise training upregulates the circadian rhythm pathway through 

shared transcriptional regulators in MSCs of the three tissues.

Distinct cell-type-specific pathways regulated by exercise and obesity in each tissue

In scWAT, pathway analysis of the DEGs indicated that obesity downregulated type I 

interferon signaling and defense response in T cells, which suggests a shift from adaptive 

immune response to inflammation (Figure S4E; Table S4). Rescue was enriched in the 

prostaglandin synthesis and regulation pathway in ASCs, which included a downregulation 

of the expression of the prostaglandin degradation gene Hpgd by 1.5-fold (Figure S4E; Table 

S4). Downregulated Hpgd is associated with increased prostaglandin E2 levels, which has 

been shown to help to maintain ASC self-renewal capacity and enhance immunomodulatory 

potency (Lee et al., 2016).

In vWAT, obesity upregulated and rescue downregulated two pathways that may mediate de 
novo adipogenesis in ASCs (Figure S4F; Table S4). One is the TGFβ1 stimulus response, an 

antiadipogenic inflammatory molecule secreted from hypertrophic, dysfunctional adipocytes 

and known to inhibit adipocyte differentiation in mice and humans (Ghaben and 

Scherer, 2019). The second is ROS metabolic process, whose intracellular accumulation 

by mitochondrial respiration decreases preadipocyte differentiation and drives a pro-

inflammatory and fibrotic phenotype (Joffin et al., 2021; Shao et al., 2021).
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In SkM, obesity upregulated IL-18 and cytokine signaling pathways in DCs and rescue 

downregulated fat cell differentiation in FAPs (Figure S4G; Table S4). In myopathies and 

obesity, FAP adipogenesis has been reported to be involved in ectopic fat deposition (Jia 

and Sowers, 2019; Reggio et al., 2020). Rescue downregulated adipocyte differentiation, 

consistent with increased FAP CD142+ (Figure S4D), which inhibits adipogenesis in SkM 

(Camps et al., 2020). In the immune compartment of SkM, obesity upregulated the IL-18 

signaling pathway in conventional type 2 DCs, consistent with the IL-18 increase in DCs in 

inflammatory myopathies (Tucci et al., 2007).

DEGs identified using deconvolved tissue-level data were mostly regulated in opposite 

directions in obesity versus training/rescue (Figures S4K–S4M). The enriched pathways in 

both fat depots include lipid metabolism in mature adipocytes, ECM-related pathways and 

IGF transport and uptake in ASCs and myeloid cells, immune cell activation, regulation of 

inflammatory response, and monocyte chemotaxis in lymphoid and myeloid cells. In SkM, 

44 out of the 50 tissue-deconvolved DEGs were found within fast myonuclei (Figure S4M).

Exercise training reprograms within- and cross-tissue cellular communication

Taking advantage of our high-resolution single-cell annotations, we used co-expression of 

interacting structure-based ligand-receptor pairs (Efremova et al., 2020) to predict pairwise 

cellular communication within and across tissues and interventions at both cell-type and 

cell-state levels (Figures 5 and S5; Table S5).

Within tissues, we observed MSCs function as self- and cross-regulating hubs of 

immune and non-immune cell types in obesity, training, and rescue comparisons (Figures 

5A, 5B, S5A, and S5B). By comparing ranks of significant interactions overlapping 

intervention groups, we observed networks of differential interactions, including obesity 

upregulated non-immune interactions (ASC autocrine regulation in scWAT and fibroblast-

ASC interactions in vWAT). RANK-RANKL-OPG triad showed a particularly interesting 

co-expression pattern change in response to HFD and exercise training in vWAT (Figures 

S5A, S5C, and S5D). RANK is the receptor among the three and encoded by Tnfrsf11a, 

RANKL is the ligand and encoded by Tnfsf11, and OPG (osteoprotegerin) is the decoy 

receptor of RANKL and encoded by Tnfrsf11b. OPG was mostly expressed in ASC IPCs 

and fibroblasts, RANKL was highly expressed in nILC2s and CD27− Tgds, and RANK was 

expressed mainly in M2 macrophages (Figure S5C). Obesity increased OPG expression in 

fibroblasts and IPCs and RANKL expression in nILC2s while training and rescue decreased 

OPG expression (Figure S5D). Interestingly, RANKL expression in CD27− Tgd and RANK 

expression in M2 macrophages showed an opposite trend of changes in obesity versus 

training and rescue. This led us to hypothesize that HFD promoted interaction between 

RANKL in nILC2 and the decoy receptor OPG in fibroblast and IPCs, and on the contrary, 

exercise training induced a shift from this ligand-receptor interaction to interaction between 

RANKL from CD27− Tgd and RANK from M2 macrophage.

Across tissues, we performed slightly different comparisons to highlight physiologically 

meaningful directed communication changes between WAT and SkM with obesity and 

exercise training. Specifically, we compared ligand-receptor co-expression from SkM to 

WAT mediating the effect of obesity (HFD versus standard diet) in sedentary state or with 
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exercise training. We performed a similar analysis from WAT to SkM comparing the training 

effect (training versus sedentary) under HFD or standard diet. We discovered that HFD 

effect with exercise training downregulated cross-tissue communication from non-immune 

cell states in SkM to immune cell subtypes in vWAT compared to HFD effect with the 

sedentary condition (Figures 5C and 5D). However, there is little such communication 

between SkM and scWAT. Conversely, training effect with HFD downregulated numerous 

crosstalk from immune cell subtypes in vWAT to non-immune cell states in SkM compared 

to training effect with standard diet (Figures 5E and 5F). The SkM non-immune cell 

states involved in the two-way interactions are primarily FAP states, while the immune 

cell subtypes differ for the ones receiving molecular signals from SkM with training 

versus the ones sending signals to SkM with HFD (Figures 5C–5F). Specifically training 

downregulated SkM FAP ligands with co-expressing receptors on DCs and macrophages 

in vWAT (Figures 5C and 5D). MIF-CD74 signaling is one such interaction, which was 

downregulated by exercise training from different SkM cell types including FAPs to M1 

macrophages and cDC1s and cDC2s in vWAT, but slightly upregulated its interaction 

with M2 macrophages (Figures S5E and S5F). In turn, HFD downregulated interactions 

between ligands secreted from Tregs and nILC2s in vWAT and corresponding receptors 

on FAPs in SkM (Figures 5E and 5F). Expression of AREG secreted by Tregs and 

nILC2s in vWAT and its receptor EGFR on FAPs in SkM was co-downregulated by HFD 

(Figures S5G and S5H). AREG-EGFR signaling has been shown to play an important role 

in wound healing by regulating differentiation of fibroblasts to myofibroblasts and their 

proliferation in many diseases (Son et al., 2021). Based on our results, exercise training 

may dampen the HFD-induced profibrotic effect on SkM through regulation of the AREG-

EGFR signaling axis between vWAT and SkM. More interestingly, although there are cell 

types expressing MIF within vWAT and cell types expressing AREG in SkM, we did 

not detect significant within-tissue interaction changes for these two ligand-receptor pairs 

with exercise, further indicating the importance of cross-tissue analysis in the context of 

obesity-exercise interaction.

Genetics of two exercise-training candidate genes in two independent large-scale human 
studies

To evaluate the human relevance of our results, we selected one gene that was upregulated 

and one that was downregulated across all three tissues and tested anthropometric trait 

genetic associations in UK biobank (Sudlow et al., 2015) and human metabolic tissue 

expression changes in the Metabolic Syndrome in Men (METSIM) study (Laakso et 

al., 2017) (Figure 6A). Among the 18 commonly upregulated genes, we selected Dbp 
(Figure 6B), as it is a key regulator in diet/exercise-regulated circadian rhythm pathways 

and its homologs Hlf and Tef were also upregulated in MSCs by exercise training. In 

humans, DBP showed a negative correlation with body mass index (BMI), homeostatic 

model assessment for insulin resistance (HOMA-IR), fasting serum insulin and glucose 

concentrations, C-reactive protein (CRP), and waist-hip ratio (WHR) adjusted for BMI, and 

a positive correlation with Matsuda insulin sensitivity index in METSIM (Figures 6D, 6E, 

and S6A–S6F), demonstrating DBP’s obesity and exercise relevance in human phenotypes.
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Of the 15 commonly downregulated genes, we selected cell proliferation and senescence 

regulator Cdkn1a. Cdkn1a is downregulated by training/rescue primarily in MSCs in the 

three tissues as assessed using both bulk and single-cell methods (Figure 6C). In humans, 

CDKN1A showed a positive correlation with BMI, HOMA-IR, fasting insulin levels, CRP, 

and WHR adjusted for BMI and a negative correlation with Matsuda insulin sensitivity 

index in METSIM (Figures 6D, 6E, and S6A–S6F). The CDKN1A genetic locus contained 

two SNPs, one intronic (rs762624) and one missense (rs2395655) in linkage disequilibrium 

(r2 = 0.49 in EUR), that were significantly associated with body weight, fat and fat-free 

mass, and basal metabolic rate in the UK Biobank (Figure 6F). The minor allele of both 

SNPs (C for rs762624 and G for rs2395655) showed protective associations with increased 

body fat-free mass, increased basal metabolic rate, and lower HbA1c. These SNPs are 

significant splicing quantitative trait loci (QTLs) for CDKN1A in METSIM, with the minor 

alleles increasing expression of a non-coding transcript isoform (long non-coding RNA, 

ENST00000462537.3; Figures S6G and S6H). These results suggest a potentially causal role 

for CDKN1A in human metabolic phenotypes, validating the human disease relevance of 

our results.

DISCUSSION

Our single-cell atlas with more than 200,000 cells and 53 annotated cell subtypes/

states enabled identification of rare cell subtypes/states, notably MSC populations in 

three key metabolic tissues (scWAT, vWAT, and SkM). We computationally inferred the 

differentiation trajectory of ASCs and identified depot-shared and depot-specific regulons 

for the three ASC states in scWAT and vWAT (IPCs, CPs, and CD142+ cells). We 

identified seven distinct FAP states in SkM and validated one population of Sca1− FAPs 

as potential fibrogenic progenitors. By studying the three tissues using comprehensive and 

complementary single-cell, tissue-level, and tissue-deconvolution analyses, we determined 

two prominent gene programs, ECM and circadian rhythm, both of which were regulated in 

opposite directions by exercise and obesity in MSCs across the three tissues. We inferred 

intra-tissue communication changes between ASCs and immune cell subtypes in vWAT. We 

inferred inter-tissue crosstalk changes between FAPs in SkM and immune cell subtypes in 

vWAT (Figure 1B). With this study, we set the foundation for understanding the molecular 

changes and cell types mediating the systemic and heterogeneous effects of exercise on 

obesity in different tissues.

Our single-cell data indicate that at the pathway level, obesity and exercise training modulate 

gene expression related to ECM remodeling and circadian rhythm in specific MSC states in 

the three tissues. Obesity upregulated and exercise downregulated ECM-related pathways in 

MSCs. Notably, IPC is the only shared MSC state across the three tissues showing consistent 

ECM pathway regulation with obesity and exercise. Recently, others reported the presence 

of fibro-inflammatory progenitors in mouse WAT depots, which correspond to IPCs (Figure 

S3J), with a fibrogenic and inflammatory phenotype featuring ECM gene expression (Hepler 

et al., 2018; Shao et al., 2021). In humans the frequency of a similar population of cells 

has been shown to be correlated not only with omental WAT (oWAT) fibrosis level but also 

with the severity of insulin resistance and type 2 diabetes (Marcelin et al., 2017). Our results 
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suggest that obesity and exercise training could modulate the fibro-inflammatory phenotype 

of IPCs through ECM-related gene expression.

Another notable MSC-specific exercise-regulated pathway detected in our study was the 

circadian rhythm pathway, which was upregulated by exercise training across the three 

tissues. We identified Dbp and its homologs Tef and Hlf as potential master regulators 

of the upregulated rhythmic pathway. Dbp is a transcription factor with expression under 

circadian control (Zvonic et al., 2006) and has been reported to improve insulin sensitivity 

and enhance adipogenesis in pre-adipocytes of vWAT in mice and humans (Suzuki et 

al., 2019; Ushijima et al., 2020). Taken together, we hypothesize that training-induced 

increases in circadian rhythm gene expression via Dbp may contribute to hyperplasia in 

WAT. Our hypothesis is further supported by our analysis of a large human cohort where 

DBP expression in scWAT is negatively associated with BMI and HOMA-IR. Thus, training-

induced circadian rhythm genes in mice and humans may function as MSC differentiation 

regulators, affecting whole-body metabolic functions.

Single-cell data also empowered us to look into cell-cell communication within and across 

tissues. Our within-tissue analysis of vWAT highlighted an interesting protein triad, RANK-

RANKL-OPG. High serum OPG levels have been associated with metabolic disease in 

humans, while low OPG levels and high RANKL in rodents were associated with scWAT 

browning, de novo adipogenesis, and improved metabolic function of WAT (Matsuo et al., 

2020). RANK is mostly expressed on M2 macrophages in our single-cell data, macrophages 

known to confer anti-inflammatory and beiging functions in WAT (Li et al., 2020b). We 

propose that exercise changes RANKL-OPG to RANKL-RANK interaction, which could 

recruit M2 macrophages or re-polarize macrophages into an M2 state in vWAT, and in this 

way promote anti-inflammatory and beiging effects.

Our cross-tissue analysis suggested directed ligand-receptor interactions between distinct 

vWAT immune cell types and SkM FAPs in response to obesity and exercise training. 

MIF-CD74 signaling was downregulated by exercise training from SkM FAPs to M1 

macrophages and DCs in vWAT, but slightly upregulated its interaction with M2 

macrophages in the same tissue. Downregulation of MIF-CD74 signaling on macrophages 

and DCs has been shown to restore antitumor immune response in cancer (Figueiredo et 

al., 2018) and reduce adipose tissue inflammation (Kim et al., 2015), which aligns with 

the notion that exercise training reduces chronic inflammation in vWAT through secreted 

cytokines from SkM. At the same time, MIF-CD74 interaction is known to play important 

roles in cell proliferation and survival by activating PI3K-Akt, NF-kB, and AMPK pathways 

(Farr et al., 2020; Moon et al., 2013), suggesting a potential pro-survival role of the MIF-

CD74 signaling axis for M2 macrophages in vWAT. As such, an intriguing hypothesis is that 

MIF secreted from SkM acts differently on distinct myeloid subtypes in vWAT and that M2 

macrophages are regulated by both intra- (RANKL) and inter-tissue (MIF) signals.

In summary, we propose a previously underappreciated role of MSCs in response to obesity 

and exercise training in the three tissues, mediated through alterations in their fibrogenic, 

inflammatory, and differentiation potentials. Exercise, as one of the most effective strategies 

to maintain a healthy body and mind, is increasingly understood to induce tissue-specific 
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and shared adaptations in the context of many other diseases beyond obesity. There may be 

similar exercise-induced alterations of MSCs in other tissues and in a diverse set of disease 

and physiological contexts such as cancer and aging.

Limitations of study

In this study, we did not investigate additional physiological conditions including sex, age, 

and different training modalities, and our experiments were done using a mouse model and 

not human subjects. Our single-cell protocol enriched for cell types in SVF and resulted 

in limited observations in parenchymal cell types. For the cross-tissue communication 

analysis, although we restricted one of the two interacting partners being secretable and 

the interaction being non-integrin, orthogonal data types such as proteomics in the blood and 

experimental efforts using in vitro co-culturing systems and in vivo tracer approaches will be 

useful to fully resolve tissue crosstalk.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Manolis Kellis (manoli@mit.edu).

Materials availability—This study did not generate new unique materials.

Data and code availability

• All raw and processed bulk mRNA-seq and scRNA-seq data have been 

uploaded in the GEO database (https://www.ncbi.nlm.nih.gov/gds) with the 

accession numbers GEO: GSE183239 and GSE183288 under SuperSeries GEO: 

GSE183290. We also provide an interactive data and analysis browser for all the 

data at http://scmetab.mit.edu/. Additional supplemental figures and tables were 

deposited in Zenodo: https://doi.org/10.5281/zenodo.7011615.

• Original codes for data analysis were deposited on Github at https://github.com/

KellisLab/scmetab.

• All values used to generate the graphs of the paper can be found in the file Data 

S1 – Source Data. Any additional information required to reanalyze the data 

reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were conducted following NIH guidelines and protocols were approved by 

the Institutional Animal Care and Use Committee at Joslin Diabetes Center in Boston, MA. 

C57BL/6 N mice were purchased from the Charles River Laboratories and were housed 

in singular cages at room temperature (23°c) on a 12 h/12 h light/dark cycle (6a [ON]/6p 

[OFF]) in an AAALAC-approved animal facility at Joslin Diabetes Center. The mice were 

given ad libitum access to food and water and fed either a standard chow-diet (10% kcal fat; 

9F5020-LabDiet, PharmaServ) or an HFD (60% kcal fat; 9F5020-LabDiet, PharmaServ). 

Any mouse that ran less than 3 km/day was excluded from analyses. Mice were anesthetized 
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24 h after the last bout of exercise and following a 6-h fast, using Isoflurane and heart 

puncture. We used 5% v/v Isoflurane (NDC 60307–120, Piramal Healthcare) which was 

administered with an EZ-150C anesthesia machine (E-Z Systems). Tissues were then rapidly 

dissected and processed or stored for analysis. All participants of the METSIM cohort 

provided informed consent and the study was approved by the ethics committee of the 

University of Eastern Finland. The genetic analysis in UK Biobank has been conducted 

using the UK Biobank Resource under Application Number 21942, “Integrated models 

of complex traits in the UK Biobank” (https://www.ukbiobank.ac.uk/enable-your-research/

approved-research/integrated-models-of-complex-traits-in-the-uk-biobank). All participants 

of the UK Biobank provided written informed consent (more information is available at 

https://www.ukbiobank.ac.uk/2018/02/gdpr/).

METHOD DETAILS

Animals, exercise, and sample collection—We used 6-week-old male mice for this 

experiment. For the first 3 weeks, all mice were sedentary, and half of the mice were fed 

a chow standard diet (10% kcal fat; 9F5020-LabDiet, PharmaServ) and the other half a 

HFD (60% kcal fat; 9F5020-LabDiet, PharmaServ) ad libitum. HFD feeding was used as a 

robust model for the development of impaired glucose tolerance. At the start of week 4, mice 

were further divided into sedentary and training groups, resulting in four groups: sedentary 

chow-fed; exercise training chow- fed; sedentary HFD fed; and exercise training HFD fed. 

The mouse cohort consisted of 60 mice: 12 in each sedentary group (12 chow; 12 HFD) and 

18 in each training group (18 standard diet; 18 HFD). Exercise training was done by housing 

mice in individual cages containing a running wheel. Mice had free access to the wheel 

at all times, and running distance was recorded daily. Sedentary mice were individually 

housed in standard cages. All mice had body weights measured every two days. After 21 

days, mice underwent a glucose tolerance test (GTT) after a 12-h fast. Seven days later (day 

28), the wheels of the trained mice were locked. Twenty-four hours later, following a 6-h 

fast, mice were anesthetized with 5% v/v Isoflurane (NDC 60307–120, Piramal Healthcare) 

using EZ-150C anesthesia machine (E-Z Systems) and blood was drawn by heart puncture. 

Perigonadal visceral (vWAT) and inguinal subcutaneous white adipose tissue (scWAT) and 

triceps muscle were rapidly dissected and were either snap frozen or processed fresh to 

generate cell suspension.

Bulk mRNA sequencing—For the whole-tissue RNAseq, also known as bulkRNAseq, 

we euthanized 5 mice per group and harvested inguinal and perigonadal WAT as well 

as triceps. These tissues were snap frozen in liquid nitrogen immediately after collection. 

Total RNA was extracted at the Goodyear lab using an RNA extraction kit (Direct-zol 

RNA MiniPrep, Zymo Research). 10 ng of total RNA quantified and quality assessed by 

Advanced Analytical Fragment Analyzer was used for library preparation on Tecan Evo150. 

3′ DGE-custom primers 3V6NEXT-bmc#1–12 were added to a final concentration of 1 

uM. (5’-/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCT [BC6]N10T30VN-3′ 
where 5Biosg = 5’ biotin, [BC6] = 6 bp barcode specific to each sample/well, N10 = 

Unique Molecular Identifiers, Integrated DNA technologies), to generate two subpools of 

15 samples each. After addition of the oligonucleotides, Maxima H Minus RT was added 

per manufacturer’s recommendations with Template-Switching oligo 5V6NEXT (10uM, 
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[5V6NEXT: 5′-iCiGiCA CACTCTTTCCCTACACGACGCrGrGrG-3′ where iC: iso-dC, 

iG: iso-dG, rG: RNA G]) followed by incubation at 42°C for 90′ and inactivation at 80°C 

for 10’. Following the template switching reaction, cDNA from 12 wells containing unique 

well identifiers were pooled together and cleaned using RNA Ampure beads at 1.0X. cDNA 

was eluted with 17 ul of water followed by digestion with Exonuclease I at 37°C for 30 min, 

and inactivated at 80°C for 20 min.

Second strand synthesis and PCR amplification was done by adding the Advantage 

2 Polymerase Mix (Clontech) and the SINGV6 primer (10 pmol, Integrated DNA 

Technologies 5’-/5Biosg/ACACTCTTTCCCTACACGACGC-3′) directly to the exonuclease 

reaction. Eight cycles of PCR were performed followed by clean up using regular SPRI 

beads at 0.6X, and eluted with 20ul of elution buffer (Qiagen). Successful amplification of 

cDNA was confirmed using the Fragment Analyzer.

Illumina libraries were then produced using standard Nextera tagmentation substituting 

P5NEXTPT5-bmc primer (25 μM, Integrated DNA Technologies, 5′-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG*A

*T*C*T*−3′ where * = phosphorothioate bonds) in place of the normal N500 primer. Final 

libraries were cleaned using SPRI beads at 0.7X and quantified using the Fragment Analyzer 

and qPCR before being loaded for sequencing using the Hiseq 2000 (Illumina, Inc) in 50 bp 

single-end mode at the BioMicro Center at MIT.

Single-cell RNA sequencing—Tissues from 2–3 mice were pooled to achieve >1×106 

analyzable cells (final sample size per group = 3–4). Fresh tissues were enzymatically 

digested and dissociated according to tissue dissociation kit protocols (adipose tissue Cat 

No 130–105-808, skeletal muscle Cat No 130–098-305 by Miltenyi) using the gentleMACS 

Dissociator (Miltenyi). Dissociated tissues were filtered, centrifuged, and the isolated cells 

were resuspended in 0.1% BSA in PBS and immediately processed for the generation of 

single-cell RNA (scRNA) libraries using the droplet-based RNA sequencing technology. 

Briefly, 5000–6000 cells were profiled per sample using the Chromium Single Cell 3′ RNA 

reagent kit v3 according to the 10X Genomics protocol. The generated cDNA libraries were 

indexed, pooled, and sequenced in three batches using the NovaSeq 6000 S2 system and 

reagent kits (100 cycles; Illumina) at the BioMicro Center Core at MIT.

Histology—Representative samples of scWAT and vWAT were fixed with 3.7% 

formaldehyde for 24hrs and then stored in 70% ethanol at 4°C. Five-micrometer-thick tissue 

sections were stained with hematoxylin and eosin (Richard Allan Scientific) and relative 

adipocyte size was estimated at 20-fold magnification of 5 random fields using an inverted 

fluorescence microscope (IX51Olympus). CellProfiler 3.0 (http://cellprofiler.org) was used 

for the automatic measurement.

FACS-based cell isolation, RNA isolation and quantitative PCR—Single cell 

suspension passed through 40 um (FisherBrand) and dead cell removal MS column 

(Miltenyi Biotec) were stained with anti-CD45 BV650 antibody (1:100, Biolegend), anti-

CD34 PE antibody (1:100, Biolegend), anti-CD140 PE-Cy7 (1; 100, Biolegend), anti-SCA1 

BV421 (1:100, Biolegend) in PBS containing 0.1% BSA at 4°C for 30 min. After 3 times 
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of washing, Cytox green (1:100, Invitrogen) was added as a dead cell marker. Live CD140+ 

SCA1+ and CD140+SCA− cells from CD45−CD34+ populations were sorted on Aria II (BD 

biosciences), and the RNA were isolated using Trizol in combination with miRNeasy kit 

(Qiagen). 15 ul of elution buffer was used to elute RNA, and we performed qRT-PCR using 

RNA to Ct kit on Quant Studio 7 (Thermo Scientific) to detect gene differentially expressed 

in CD140+SCA1+ and CD140+SCA1−.

RNAscope LS Multiplex Fluorescent ISH assay—RNA in situ hybridization 

experiments were performed using the RNAscope technology, which has been previously 

described (Wang et al., 2012). Paired double-Z oligonucleotide probes were designed 

against target RNA using custom software. The RNAscope LS Fluorescent Multiplex Kit 

and the probes targeting mouse pdgfr variant 1 and ly6a mRNA were from Advanced 

Cell Diagnostics (Newark CA). The RNAscope LS Fluorescent Multiplex Kit was used 

with standard pre-treatment conditions. FFPE mouse skeletal muscle tissue samples were 

incubated with Leica BOND Epitope Retrieval Solution 2 (ER2) at 95°C for 15 min. 

RNAscope 2.5 LS Protease III was used for 15 min at 40°C. Pre-treatment conditions were 

optimized for each sample and quality control for RNA integrity was completed using 

probes specific to the housekeeping genes Polr2a, Ppib, and Ubc. These probes are low, 

moderate, and high expressing genes, respectively. Negative control background staining 

was evaluated using a probe specific to the bacterial dapB gene. Fluorescent images were 

acquired using a 3D Histech Panoramic Scan Digital Slide Scanner microscope using a 40x 

objective.

Immunohistochemistry assay—The 5um gastrocnemius muscles sections were fixed 

with 3.7% formaldehyde for 24hrs, embedded in paraffin and submitted to antigen retrieval 

with a hot 1x sodium citrate buffer (10 mM sodium citrate, 0.05% Tween 20, pH6). 

Immunofluorescence was carried out using 15ug/mL anti-SCA1 (710952, ThermoFisher), 

5ug/mL anti-PDGFRA (TA807645 S, Origene), and 15ug/mL anti-LAMA4 (AF3837-SP, 

R&D Systems). Primary antibodies were incubated overnight at 4°C. Secondary antibodies 

were anti-mouse Alexa 488, anti-rabbit Alexa 568, and anti-goat Alexa 647 at a 1:400 

dilution. Secondary antibodies were incubated for 1 h at room temperature. The slides were 

mounted with Vectashield with DAPI to counterstain nuclei. Immunofluorescence images 

were obtained with a confocal laser scanning microscope (Zeiss LSM 710).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of bulk mRNA-seq data

Pre-processing and DE analysis: Six FASTQ files for each sample were concatenated 

for read de-duplication using unique molecular identifiers (UMIs). We then ran Salmon 

0.14.2 (Patro et al., 2017) to quantify the number of unique reads for each transcript against 

Ensembl version 98 mouse transcripts. The transcript level information was summarized 

to the gene-level using R package tximport (Soneson et al., 2015). We then clustered all 

the samples across three tissues unbiasedly to observe potential batch effects and sample 

outliers. Next for each tissue, genes with a count greater than 10 in all the samples were 

retained, and differential gene expression analysis for our three comparisons was carried out 

using R package DESeq2 (Love et al., 2014). We used Independent Hypothesis Weighting 
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(IHW; Ignatiadis et al., 2016) to adjust p values and adaptive shrinkage estimator (ashr; 

Stephens, 2017) to adjust fold changes from DESeq2 results. We called significant DEGs at 

an adjusted p value cutoff of 0.05 (Table S1).

Deconvolution: We performed deconvolution on bulk mRNA-seq data using CIBERSORTx 

(Newman et al., 2019) and in reference to two publicly available datasets (Dos Santos et 

al., 2020; Rajbhandari et al., 2019): one is a scRNA-seq data in scWAT and the other is a 

snRNA-seq data in skeletal muscle. We integrated and re-annotated the scWAT scRNA-seq 

dataset, and confirmed original cell type annotation for the skeletal muscle snRNA-seq 

dataset (figures on Zenodo). We ran CIBERSORTx using default parameters for all three 

analysis modules, including creating signature matrices using the two reference datasets, 

imputing cell fractions, and sample-level gene expression using our bulk data. We calculated 

expression changes for genes with imputed expression levels in the three comparisons using 

the Wilcoxon rank sum test.

scRNA-seq data analysis

Pre-processing, clustering and annotation: Gene count matrices for each single-cell 

sample were generated by aligning reads to the mm10 genome (refdata-gex-mm10–2020-A) 

using 10X Genomics Cell Ranger software v4.0.0. We profiled 317,754 cells across 42 

libraries from 93 tissue samples (pooling tissues from 2–3 mice to obtain enough cells), 

capturing 6501 cells per library, 2025 genes per cell, and 45,421 reads per cell on average. 

We clustered pseudo-bulk profiles of individual single-cell samples to determine potential 

batch effects, and excluded one low-quality sample based on unbiased clustering results. 

Then for each sample, we removed ambient RNA contamination using SoupX (Young 

and Behjati, 2020) with a fixed contamination fraction of 20%. The 20% fixed threshold 

performed the best compared to no ambient RNA removal, automatic removal implemented 

in SoupX, 10 and 15% fixed thresholds, and threshold estimated using hemoglobin genes, 

to reach a desirable de-contaminated visualization and keep the greatest number of cells. We 

then excluded low-quality cells using four QC metrics: (i) number of genes with non-zero 

expression fewer than 500; (ii) number of UMIs fewer than 200 or more than 6000; (iii) 

percentage of reads mapping to mitochondrial genes more than 10; and (iv) number of reads 

mapped to Mki67 more than 0. We removed potential cell doublets using DoubletFinder 

(McGinnis et al., 2019) with default parameters and 3.1% homotypic doublet proportion 

estimation based on statistics published by 10X Genomics. After stringent QC, we report 

expression levels for a total of 17,341 genes across 204,883 cells. Next we integrated all 

the 41 samples across three tissues together for an atlas, and samples belonging to a single 

tissue together for tissue-specific maps. Integration was done without any batch correction 

using Seurat v3 (Hafemeister and Satija, 2019). We used “sctransform” in Seurat for data 

normalization, performed principal component analysis (PCA) to obtain the first 50 PCs, 

used the 50 PCs to build community, and clustered the cells using both a graph-based 

clustering approach as implemented in Seurat v3 and a density-based clustering approach in 

R package dbscan (Hahsler et al., 2019). Visualization of the tissue- and atlas-level datasets 

was through non-linear dimensional reduction techniques such as tSNE and UMAP. We 

adjusted processing steps for tSNE in reference to this paper (Kobak and Berens, 2019). 

We then annotated cell clusters using SciBet (Li et al., 2020a), SingleR (Aran et al., 2019), 
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and cell type-specific markers from Tabula Muris (Tabula Muris Consortium et al., 2018) 

and tissue-focused studies in the field (Giordani et al., 2019; Merrick et al., 2019; Oprescu 

et al., 2020; Ramirez et al., 2020). For unknown cell type subclusters like Sca1− FAP, we 

identified cell type-specific markers using the “FindMarkers” function in Seurat with an 

expression cutoff of 25% in either of the two tested populations. We further subsetted each 

cell type and performed sub-clustering within the cell type to identify cell subtypes/states. 

We annotated identified cell subtypes/states referencing markers from the literature. We 

distinguished: (a) follicular vs. memory B-cells; (b) M1 vs. M2 macrophages; (c) T-cell 

subtypes including CD8 naive, CD8 cytotoxic, CD4 naive, CD4 memory, T regulatory 

(Treg), NKT, and naive (Cd27−) vs. memory (Cd27+) gamma-delta (Tgd); (d) dendritic 

cell (DC) subtypes conventional type 1, type 2, and monocyte-derived; (e) inflammatory vs. 

patrolling monocytes; (f) six tenocyte subtypes, including Pdgfra + tendon stem/progenitor 

cells (TSPCs), pre_Dpp4+, Dpp4+, Col22a1+, Pappa2+, and Scx−; (g) vascular smooth 

muscle cells (SMCs) vs. SMC precursors vs. pericytes; (h) endothelial subtypes (Kalucka et 

al., 2020) associated with large vessel vs. large artery vs. capillary vs. lymphatic vessel; 

(i) myelinating vs. non-myelinating glial (Schwann) cells; (j) three states of ASCs in 

WAT, including interstitial progenitor cells (IPCs, marked by Dpp4+/Pi16+), committed 

pre-adipocytes (CPs, marked by Icam1+/Fabp4+), and CD142+ cells (defined as CD142+/

Fmo2+ Dong et al., 2022; Merrick et al., 2019; Schwalie et al., 2018), and a fourth state 

specific to vWAT (pre_CP), lying between IPCs and CPs and expressing both Dpp4 and 

Icam1; and (k) seven states of FAPs.

DE analysis: We performed cell-type- and cell-state-specific differential expression (DE) 

analysis on “pseudo-bulk” profiles, generated by summing counts together for all cells with 

the same combination of cell type/state and sample. This approach leverages the resolution 

offered by single-cell technologies to define cell types/states, and combines it with the 

statistical rigor of existing methods for DE analysis involving a small number of samples 

(Amezquita et al., 2020). The DE analysis was performed using quasi-likelihood (QL) 

methods from the edgeR package (Robinson et al., 2010). We removed cell type/state and 

sample combinations containing fewer than 10 cells. Cell-type/state-specific DE-Gs were 

determined using an FDR cutoff of 0.05 (Table S4).

Cellular communication: For within- and cross-tissue communication prediction, we 

exported gene-by-cell count matrices and cell type/state assignment for each cell as two 

input files for CellPhoneDB “statistical analysis” (Efremova et al., 2020). CellPhoneDB is 

a publicly available repository of curated receptors, ligands and their interactions with the 

advantage of taking subunit architecture into consideration. We then imported CellPhoneDB 

results into R, merged interactions identified in each sample, and compared rank and mean 

values for all the interacting partners of an interaction in our three defined comparisons 

(“obesity”, “training”, and “rescue”). Specifically for cross-tissue interactions, we forced 

ligands to be secretable and interactions to be non-integrin. We then derived log2 fold 

changes using mean value, and calculated statistical significance on ranks using the 

Wilcoxon rank sum test implemented in base R. Interactions with a nominal p value of 

0.1 were plotted using RCy3 package (Gustavsen et al., 2019) and Cytoscape (Table S5).
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Gene regulatory network and CytoTRACE: We inferred per-sample GRNs using 

SCENIC with GRNBoost implementation in Python (Aibar et al., 2017), and detected 

regulons with differential activities between intervention groups using the Wilcoxon rank 

sum test. We estimated differentiation stages of ASCs and FAPs using the script provided 

with the CytoTRACE framework (Gulati et al., 2020). CytoTRACE leverages a simple, yet 

robust, determinant of developmental potential-the number of detectably expressed genes 

per cell, or gene counts to predict the differentiation state of cells from single-cell RNA-seq 

data. All the QC steps and analysis performed on single-cell data were illustrated and 

summarized in a figure deposited to Zenodo.

METSIM and UK biobank analysis

METSIM RNA-seq: The METSIM cohort consists of 10,197 Finnish men with detailed 

metabolic phenotyping (Laakso et al., 2017). Among these, we analyzed 335 participants 

with RNA-seq data from subcutaneous adipose tissue biopsies. Reads were mapped using 

STAR v2.5.2b (Dobin et al., 2013) to the GRCh38 genome with Gencode (Frankish 

et al., 2019) v26 as a transcriptome annotation. Gene read counts were calculated 

using FeatureCounts. We performed transcriptome-wide differential expression for insulin, 

glucose, Homa-IR, C-reactive protein (CRP), free fatty acids (FFA), Matsuda index, BMI, 

and waist-hip ratio adjusted for BMI (WHRadjBMI). All phenotypes except WHRadjBMI 

were log-transformed to induce an approximate normal distribution. To improve power, we 

included RIN, the first PC, and sequencing batch as covariates. Normalization factors for 

library size were calculated using Trimmed Mean of M-values (TMM). To perform DE, we 

used edgeR v3.22.5 (Robinson et al., 2010) with the quasi-likelihoods to fit the models and 

obtain p values. P-values were adjusted for multiple testing using FDR.

METSIM isoform QTL: To estimate isoform transcript abundance, we ran Kallisto (Bray 

et al., 2016) using Gencode v26 as a transcriptome reference. Isoform QTLs were detected 

with FastQTL (Ongen et al., 2016). Isoform transcripts per million (TPM) estimates from 

Kallisto were rank transformed to a standard normal distribution. FastQTL was run using 

RIN, batch, and the first 35 PCs as covariates. To determine the number of PCs, a QTL 

analysis was run on chromosome 21 with successively larger numbers of PCs as covariates. 

We selected 35 as this roughly maximized the number of isoform QTLs. We extracted 

nominal p values and corrected for multiple testing as follows. For each isoform, we 

corrected SNP-isoform p values using Benjamini-Hochberg. Then, we corrected the q-values 

for the number of isoforms tested using Bonferroni.

UK biobank: To assess the phenome-wide associations of the genetic variants in DBP and 

CDKN1A across anthropometric and metabolic traits in human, we investigated GWAS 

summary statistics across 8 variants in the two candidate genes and 108 traits in UK 

Biobank. Briefly, we focused on meta-analyzed GWAS summary statistics on directly 

genotyped arrays (Bycroft et al., 2018) across a total of 451,354 individuals consisting 

of white British (n = 337,129), non-British white (n = 44,632), African (n = 6,497), 

South Asian (n = 7,831), East Asian (n = 1,704), semi-related (n = 44,632), and admixed 

(n = 28,656) individuals, defined from a combination of genotype PCs and self-reported 

ancestry as described elsewhere (Sinnott-Armstrong et al., 2021; Venkataraman et al., 2021). 
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The association summary statistics was visualized with R ‘ggforestplot’ package (https://

nightingalehealth.github.io/ggforestplot/index.html) and is available as a part of Global 

Biobank Engine (McInnes et al., 2019).

Other computational analyses and data processing remarks—Enrichment 

analysis was performed using the web server Metascape with default parameters (Zhou 

et al., 2019). All the heatmaps were generated using R package ComplexHeatmap (Gu et al., 

2016). All computational analyses were performed using R version 3.4.0. All Wilcoxon rank 

sum tests were unpaired and two-sided. All two-way ANOVA followed by Tukey multiple 

comparison tests were generated in GraphPad Prism v9. All boxplots were generated and 

displayed in R, using the geom_boxplot() function with default parameters. The median 

value is indicated with a black line, and a colored box (hinges) is drawn between the 1st 

and 3rd quartiles (interquartile range, IQR). The whiskers correspond to no further than 1.5 

× IQR from the hinge and outliers are omitted. All bar plots for phenotype analysis were 

generated and displayed in Prism, which display mean values as centers and the standard 

deviation as error bars. All included microscopy images are representative.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Exercise-obesity single-cell atlas in two white adipose depots and skeletal 

muscle

• Exercise and obesity have opposite effects on ECM and circadian rhythmicity 

genes in MSCs

• Within- and multi-tissue crosstalk in exercise and obesity centered around 

MSCs

• Genes with large exercise effects in MSCs correlate with human metabolic 

traits
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Figure 1. Study overview, highlighted results, and phenotypic responses
(A) Overview of the mouse study and tissue profiling.

(B) Summary of highlighted results. ECM, extracellular matrix.

(C–F) Body weight (C), running distance (D), caloric intake (E), and glucose tolerance test 

(GTT) result (F) in the four intervention groups.

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by two-way ANOVA followed by 

Tukey multiple comparison tests. Data are represented as mean ± SEM. AUC, area under 

curve; n.s., not significant. (A) and (B) were created with BioRender.com.

See also Figure S1.
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Figure 2. Tissue-level transcriptomic responses
(A–C) Genes (heatmap) and pathways (bar plot) that are significantly differentially 

expressed and enriched across three comparisons: “obesity,” “training,” and “rescue” in 

scWAT (A), vWAT (B), and SkM (C). The gene heatmap is colored by log2 fold change. 

The pathway bar plot is colored by pathway direction in the three comparisons (red/pink, 

upregulated; blue/purple, downregulated). x axis of the bar plot shows −log10 p value with 

rescue/training pathways being positive and obesity being negative. DEG, differentially 

expressed gene.

(D) Gene networks across selected DEGs from the three tissues that encode interacting 

proteins, clustered by protein-protein interactions with each cluster named by the most 

significantly enriched pathway. The cluster is colored by DEG direction with exercise 

training.
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sed., sedentary; train, exercise training; std, standard diet.

See also Figures S1 and S2 and Table S1.
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Figure 3. Single-cell atlas and mesenchymal stem cell state characterization
(A) Single-cell atlas of 204,883 cells across three tissues and four intervention groups. The 

tSNE plot is colored by cell type (warm colors, non-immune cell types; cold colors, immune 

cell types).

(B and C) Single-cell atlas colored by tissue (B) and intervention group (C).

(D) Re-clustering of ASCs in scWAT (left) and vWAT (right), colored by CytoTRACE-

predicted differentiation stage (orange, less differentiated; gray, more differentiated). Ridge 

plots of individual ASC states are colored similarly.
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(E) Clustering of top ASC state-specific regulons (transcription factor with the number of 

regulated genes as a separate heatmap column) in scWAT (left) and vWAT (right). Shared 

regulons across the two depots are colored in blue. The heatmap is scaled by column.

(F) Re-clustering of FAPs in SkM, colored by CytoTRACE-predicted differentiation stage 

(orange, less differentiated; gray, more differentiated). Ridge plots of individual FAP states 

are colored similarly.

(G) FACS dot blot showing the sorting gates for Sca1+ and Sca1− FAPs from mouse triceps 

and gastrocnemius, with the percentages of the two populations labeled.

(H) RNA staining of Pdgfra and Ly6a in triceps and gastrocnemius muscle.

(I) Immunohistochemistry staining for PDGFRA, SCA-1, and LAMA4 (a marker for muscle 

fibers) in gastrocnemius muscle.

(J and K) Top pathways (J) and regulons (K) enriched in Sca1+ and Sca1− FAPs. The 

pathway heatmap is colored by −log10 p value. The regulon heatmap is colored by activity 

score.

See also Figure S3 Tables S2 and S3.
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Figure 4. Single-cell-level proportion and transcriptomic responses across the three tissues
(A–C) Sample-specific proportions of cell types across the four intervention groups in 

scWAT (A), vWAT (B), and SkM (C) after bulk RNA-seq data deconvolution. The boxplots 

are defined as Q1 − 1.5*IQR, Q1, median, Q3, and Q3 + 1.5*IQR.

(D and E) Histology of scWAT (D) and vWAT (E) across three intervention groups, with 

bar plots below showing adipocyte diameter and adipose tissue weight changes across 

intervention groups.
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(F–H) The number of cell-state-specific DEGs (heatmap) that are upregulated (red) or 

downregulated (blue) in our three comparisons in scWAT (F), vWAT (G), and SkM (H).

(I–K) Pathways (bar plot) that are significantly enriched in cell-state-specific DEGs across 

the three comparisons in scWAT (I), vWAT (J), and SkM (K). x axis of the bar plot shows 

−log10 p value with rescue/training pathways being positive and obesity being negative. 

The bars are colored by pathway direction in the three comparisons (red/pink, upregulated; 

blue/purple, downregulated).

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by Wilcoxon rank-sum test (A–C) or 

by two-way ANOVA followed by Tukey multiple comparison tests (D and E).

Data are represented as mean ± SEM (D and E).

See also Figure S4 Tables S2 and S4.

Yang et al. Page 34

Cell Metab. Author manuscript; available in PMC 2022 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Within- and cross-tissue communication at cell-state level
(A) Within-tissue ligand-receptor networks across the three tissues and three comparisons. 

Cell states (nodes) are shaped by tissue (diamond, scWAT; circle, vWAT; square, SkM) 

and sized by outdegree. Ligand-receptor interactions (edges) are directed, from ligand to 

receptor, and colored by effect direction (pink, upregulated; blue, downregulated).

(B) The number of differentially interactive ligand-receptor pairs that are up- and 

downregulated across the three tissues and three comparisons at the cell-state level. Each 
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bar is colored by whether the ligand or the receptor is from an immune or non-immune cell 

state.

(C and E) Cross-tissue ligand-receptor networks between a pair of tissues and in diet (C) or 

training (E) comparisons. The nodes and edges are formatted as in (A).

(D and F) The number of differentially interactive ligand-receptor pairs that are up- and 

downregulated between a pair of tissues and in diet (D) or training

(F) comparisons at the cell-state level. The bars are colored as in (B).

See also Figure S5 Table S5.
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Figure 6. Two exercise-regulated genes (DBP and CDKN1A) in mice and humans
(A) Overlap of up- and downregulated genes by exercise training under standard or HFD 

across the three tissues in mice.

(B and C) Dbp (B) and CDKN1A (C) expression across the three tissues and four 

intervention groups. Cell types with the most changes are labeled in the top panel.

(D and E) DBP and CDKN1A association with BMI (D) and HOMA-IR (E) in scWAT of 

METSIM subjects. Genes (dots in upper plots) and subjects (dots in lower plots) are plotted.

(F) Association of two SNPs (rs762624 and rs2395655) in CDKN1A with anthropometric 

and metabolic traits in UK Biobank. The meta-analyzed PheWAS summary statistics 

(BETAs with standard errors, p < 1–3) are shown. The filled circles are significant after 

correction (p < 1–5). PheWAS, phenome-wide association study; BP, blood pressure; AR, 

automated reading.
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See also Figure S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-CD45 Biolegend 103133; RRID: AB_10899570

anti-CD34 Biolegend 128609; RRID: AB_10899570

anti-CD140a Biolegend 135911; RRID: AB_10899570

anti-SCA1 Biolegend 122511; RRID: AB_10899570

anti-SCA1 Thermo Fisher Scientific 710952; RRID: AB_2609699

anti-PDGFRA Origene TA807645

anti-LAMA4 R&D Systems AF3837; RRID: AB_2249744

Chemicals, peptides, and recombinant proteins

Isoflurane Piramal Healthcare 60307-120

Gill 3 Hematoxylin Richard Allan Scientific 72604

Eosin Y Richard Allan Scientific 71311

Cytox green Invitrogen S34860

Critical commercial assays

Direct-zol RNA MiniPrep Zymo Research R2050

Advantage 2 Polymerase Mix TaKaRa Bio 639201

Adipose tissue dissociation kit Miltenyi Biotec 130-105-808

Skeletal muscle tissue dissociation kit Miltenyi Biotec 130-098-305

Chromium Single Cell 3’ RNA reagent kit v3 10X Genomics 1000075

Dead cell removal MS column Miltenyi Biotec 130-042-201

Dead cell removal kit Miltenyi Biotec 130-090-101

miRNeasy micro kit Qiagen 217084

RNAscope LS Multiplex Reagent Kit Advanced Cell Diagnostics 322800

Deposited data

Mouse scWAT, vWAT and SkM exercise-obesity bulk RNA-
seq data

This paper GEO: GSE183239

Mouse scWAT, vWAT and SkM exercise-obesity single-cell 
RNA-seq data

This paper GEO: GSE183288

Raw data This paper Data S1

Experimental models: Organisms/strains

C57BL/6 N mice Charles River Laboratories N/A

Oligonucleotides

See bulk mRNA sequencing section for oligos and primers N/A N/A

Pdgfra-F: AGAGTTACACGTTTGAGCTGTC; Pdgfra-R: 
GTCCCTCCACGGTACTCCT

Integrated DNA Technologies N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Ly6a-F: AGGAGGCAGCAGTTATTGTGG; Ly6a-R: 
CGTTGACCTTAGTACCCAGGA

Integrated DNA Technologies N/A

Dpt-F: TGGATGGGTGAATCTTAACCGC; Dpt-R: 
TCAGAGCCTTCCTTCTTGCTA

Integrated DNA Technologies N/A

Apoe-F: CTGACAGGATGCCTAGCCG; Apoe-R: 
CGCAGGTAATCCCAGAAGC

Integrated DNA Technologies N/A

Mm-Ly6a-C3 Advanced Cell Diagnostics 427578-C3

Mm-Pdgfra-C4 Advanced Cell Diagnostics 480668-C4

Software and algorithms

CellProfiler 3.0 (McQuin et al., 2018) http://cellprofiler.org

Salmon 0.14.2 (Patro et al., 2017) https://salmon.readthedocs.io/en/latest/
salmon.html

CIBERSORTx (Newman et al., 2019) https://cibersortx.stanford.edu/

Cell Ranger software v4.0.0 10X Genomics https://support.10xgenomics.com/single-
cell-gene-expression/software/pipelines/
latest/what-is-cell-ranger

CellPhoneDB (Efremova et al., 2020) https://github.com/ventolab/CellphoneDB

Cytoscape (Shannon et al., 2003) https://cytoscape.org/

R 4.0.4 See quantification and 
statistical analysis section for R 
packages used

https://www.r-project.org/about.html

STAR v2.5.2b (Dobin et al., 2013) https://github.com/alexdobin/STAR

Kallisto (Bray et al., 2016) https://pachterlab.github.io/kallisto/about

FastQTL (Ongen et al., 2016) https://github.com/francois-a/fastqtl

Metascape (Zhou et al., 2019) https://metascape.org/gp/index.html#/main/
step1

Prism v9 GraphPad Software http://www.graphpad.com

Other

10% kcal fat LabDiet PharmaServ 9F5020

60% kcal fat LabDiet PharmaServ 9F5020

24 cm running wheel NalGene N/A
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