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Abstract

Polyploidy is a widespread phenomenon throughout eukaryotes. Due to the coexistence of duplicated genomes, polyploids
offer unique challenges for estimating gene expression levels, which is essential for understanding the massive and various
forms of transcriptomic responses accompanying polyploidy. Although previous studies have explored the bioinformatics of
polyploid transcriptomic profiling, the causes and consequences of inaccurate quantification of transcripts from duplicated
gene copies have not been addressed. Using transcriptomic data from the cotton genus (Gossypium) as an example, we
present an analytical workflow to evaluate a variety of bioinformatic method choices at different stages of RNA-seq
analysis, from homoeolog expression quantification to downstream analysis used to infer key phenomena of polyploid
expression evolution. In general, EAGLE-RC and GSNAP-PolyCat outperform other quantification pipelines tested, and their
derived expression dataset best represents the expected homoeolog expression and co-expression divergence. The
performance of co-expression network analysis was less affected by homoeolog quantification than by network
construction methods, where weighted networks outperformed binary networks. By examining the extent and
consequences of homoeolog read ambiguity, we illuminate the potential artifacts that may affect our understanding of
duplicate gene expression, including an overestimation of homoeolog co-regulation and the incorrect inference of
subgenome asymmetry in network topology. Taken together, our work points to a set of reasonable practices that we hope
are broadly applicable to the evolutionary exploration of polyploids.
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Introduction
Comparative transcriptomics has become a widely employed
and powerful tool in plant evolutionary biology. Applications are
many and diverse, including evolutionary rate estimation [1–3],
reconstruction of species relationships [3–5] and the elucida-
tion of co-expression and regulatory changes in gene networks
[6, 7]. Next-generation sequencing has facilitated inexpensive
and efficient transcriptomic profiling for species whose lack
of existing genomic resources would have previously been an
obstacle. A landmark example is the recent publication of tran-
scriptomes from more than 1000 species of green plants, which
substantially improved available resources and facilitated com-
parative transcriptomics and phylogenetics among previously
underrepresented plants [8] (www.onekp.com). This success led
to the 10KP project (https://db.cngb.org/10kp/), which aims to
sequence 10 000 plant and protist genomes within the next
5 years to further advance our understanding of plant evolution
and diversity.

In the context of comparative transcriptomics, polyploid
genomes offer unique challenges due to the coexistence of
highly similar duplicated genes (homoeologs). Polyploidy in
plants is far more prevalent than once thought, acting histori-
cally and more recently to shape the genomes of all angiosperms
and most other groups of plants [8–11]. One realization that has
emerged in the last decade is that polyploidy is accompanied
by massive transcriptomic responses, as reviewed [12–14]. These
responses are many and varied, including biased homoeolog
expression, condition-specific differential homoeolog usage,
transgressive expression levels and expression level dominance.
Duplicated gene expression patterns are coordinated in ways
that are not fully understood and which depend on myriad
factors, including dosage effects, gene balance, interactions
among divergent cis- and trans-acting factors and various
topological aspects of gene networks [6, 15–18].

Research on polyploid transcriptomes is divided into two
broad categories with respect to the treatment of homoeologs:
those that evaluate individual homoeolog expression separately
and those that evaluate the aggregate expression of homoeologs.
The ability to consider homoeologs separately depends largely
upon the mode of origin (autopolyploid versus allopolyploid), the
number of subgenomes and the extent of sequence divergence
between homoeologs, as well as the genomic resources avail-
able. Distinguishing individual homoeolog expression levels is
difficult when sequence divergence between homoeologs is too
low, as often is the case with allopolyploids formed from recently
diverged diploid parents or in evolutionarily young autopoly-
ploids. When a reference genome or transcriptome is available
for a polyploid, quantitation of individual homoeolog expression
levels is possible if sequence divergence is sufficiently high, and
aggregated expression can be derived from the summation of
each homoeolog set. In many cases, reference genomes may
only be available for one or more model diploids. These diploid
genomes can be useful in analyses of duplicate gene expression
in polyploids, but they require additional steps to characterize
and partition homoeolog-specific reads. Regardless of the ploidy
level of the reference genome, short RNA-seq reads may be diffi-
cult to explicitly map to individual homoeologs due to their near-
duplicate nature (i.e. multi-mapped reads). That is, only a certain
proportion of reads (related to divergence between homoeolo-
gous genomes) will contain homoeolog distinguishing variants
(e.g. single-nucleotide polymorphisms [SNPs]). Only those reads
that can be unambiguously assigned to specific homoeologs can
be utilized for homoeolog transcript counting (Figure 1A).

As previously noted by Ilut et al. [19], the issue of ambiguous
read mapping is prevalent in plants due to their natural genomic
redundancy and is even more so for recent and/or higher-order
polyploids. Many intrinsic and extrinsic factors affect the ability
to partition homoeolog expression, including (1) the divergence
between subgenomes, in terms of frequency and distribution of
SNPs; (2) the number of subgenomes; (3) the sequencing strategy
(e.g. read length and paired- versus single-ended reads) for gen-
erating RNA-seq data; (4) the quality of reference genome(s) and
(5) the bioinformatic tools used for partitioning and/or quantify-
ing homoeolog-specific reads, including methods for allocating
ambiguous reads in general (such as RSEM [20] and Salmon [21])
and those specifically developed for polyploid systems (i.e. Poly-
Cat [22], PolyDog [23], SNiPloid [24], HyLiTE [25], HANDS/HAND2
[26, 27], HomoeoRoq [28] and EAGLE-RC [29, 30]).

Given these complexities inherent in working with polyploid
transcriptome data, the question arises as to how these factors
affect our ability to derive accurate polyploid gene expression
profiles. That is, how do the many issues noted above affect
read assignment and our inferences of gene expression and
co-expression characteristics? Here, we explore the causes and
consequences of read ambiguity in homoeologous differential
expression (DE) and co-expression networks using transcrip-
tome data from the cotton genus (Gossypium) as an example
(Figure 1B). Tetraploid cotton (represented here by Gossypium
hirsutum; AD1) originated from an allopolyploidization event
between an A-genome (Gossypium herbaceum- or Gossypium
arboreum-like) and a D-genome (Gossypium raimondii-like) diploid
species circa 1 to 2 million years ago (reviewed in [31]). Because
there is no gold standard for true expression levels of At and
Dt (t denotes subgenome) homoeologs in the polyploid AD1

transcriptomes, we generated in silico allopolyploid datasets
(AD) by combining reads from the A- and D-genome diploid
transcriptomes (see Methods). This approach allowed us to
evaluate the accuracy of ‘homoeolog’ expression against the
actual diploids reads used for generating in silico dataset.
Methodologically, we first evaluated a variety of bioinformatic
method choices at different stages of RNA-seq data analysis,
with the aim of generating insight into best practices that may
be broadly applicable to other polyploid systems.

Methods
All codes used in this study are available in GitHub https://github.
com/Wendellab/homoeologGeneExpression-Coexpression. The
R environment 3.5.0 was used for statistical analyses.

Data availability and preparation

For generating in silico allopolyploid cotton (AD) datasets,
matched RNA-seq data of the model diploid progenitors, i.e.
G. arboreum (A2) and G. raimondii (D5), were obtained, each
comprising 33 RNA-seq libraries under 12 sample conditions
(see Supplementary Table S1 available online at https://acade
mic.oup.com/bib). The seed dataset under the National Center
for Biotechnology Information (NCBI) BioProject PRJNA179447
consists of 11 libraries (four seed developmental stages each
with 2–3 biological replicates) for each diploid with 100 bp
single-end reads and an average of 14.8 million reads per
library. The flowering dataset under the NCBI BioProject
PRJNA529417 consists of 22 libraries (eight tissues each with
2–3 biological replicates for each diploid) that were constructed
with 300 bp insert size and sequenced with 150 bp paired-end
reads and an average of 13.8 million read pairs per library.

www.onekp.com
https://db.cngb.org/10kp/
https://github.com/Wendellab/homoeologGeneExpression-Coexpression
https://academic.oup.com/bib
https://academic.oup.com/bib


Homoeologous gene expression and co-expression network analyses and evolutionary inference in allopolyploids 1821

Figure 1. Challenges of homoeolog gene expression analysis. (A) Using the allotetraploid cotton species as an example, only a small portion of RNA-seq reads contain

diagnostic SNPs (i.e. homoeolog-specific reads) reflecting the parental origin of homoeologous genes. (B) An analytic workflow of RNA-seq analysis was applied to

evaluate the use of homoeolog-specific reads to study duplicated gene expression and co-expression networks. A ground-truth, in silico dataset of allopolyploid cotton

(AD) was generated from the parental diploid cotton A2 and D5 reads, which was analyzed using a variety of method choices.

Following adaptor and quality trimming via Sickle [v1.33]
[32], the matched A2 and D5 libraries (at each condition and
replicate) were adjusted to contain equivalent number of
filtered reads and subsequently combined to generate the
corresponding in silico allopolyploid (AD) datasets. For each pair
of AD homoeologous genes, the gene regions that should be
unambiguously assigned to subgenome (i.e. effective region),
given the distinguishable variant distribution (in SNP index or
variant candidate file [VCF] format) between homoeologs and
the specific sequencing strategy involved, were detected using
a custom script ‘detectEffectiveRegion.r.’ The proportion of each
gene sequence that belongs to an effective region was calculated
as %Eflen. We next introduced a metric of ‘Ambiguity’ for each
pair of homoeologous genes as calculated by 1-%Eflen, because
%Eflen is inversely correlated with the number of ambiguous
reads that cannot be assigned via direct variant evidence.

RNA-seq read mapping and homoeolog-specific
read partitioning

The following seven pipelines (see Supplementary Table S2
available online at https://academic.oup.com/bib) were each
independently applied to the diploid and AD polyploid datasets.
Although newer versions of these programs are continuously
being released, new versions whose fundamental mode of action
is similar should yield comparable results, which can be verified
through the testing presented here. Quantification of transcripts
was conducted at the gene level based on the annotation of
primary transcripts only.

GSNAP-PolyCat

This pipeline utilizes the SNP-tolerant capabilities of GSNAP
[v2016-08-16] [33] to map polyploid reads to a single diploid

progenitor genome (here, G. raimondii [34]). The SNP-tolerant
feature of GSNAP permits equivocal mapping of both A- and D-
diploid-derived reads based on a priori SNP information, which
may be extensive for some polyploid systems. Here, we used
a previously generated genome-diagnostic SNP index [22] for
mapping. The resulting alignments were sorted using SAMtools
[v1.9] [35] and subsequently partitioned into homoeolog-specific
reads using PolyCat [v1.3] [22]. Read counts were tabulated using
HTSeq [v0.9.1] [36].

HyLiTE

This software automates the process of read mapping, SNP
detection and read count partitioning in a single step [25]. Briefly,
HyLiTE [v.2.0.1] under Python 3 [v3.6.3] employs Bowtie2 [v2.3.4]
[37] to map both diploid and polyploid reads to the reference
gene models and sorts homoeologous reads based on the SNPs
detected from mapping the diploid reads. This pipeline was
separately tested using the D-genome G. raimondii [34] and the
A-genome G. arboreum [38] references. Because HyLiTE performs
‘on-the-fly’ homoeoSNP identification using only the data con-
tained within the analysis, read sorting is made possible for
species with limited resources; however, the homoeoSNPs iden-
tified by HyLiTE are limited to those contained within the dataset
under consideration even if additional information is available
in other datasets. The final step of the pipeline automatically
generates homoeolog-specific read count tables.

EAGLE-RC

In contrast to using a single subgenome or diploid progeni-
tor genome as reference, this pipeline applies a subgenome-
classification approach to assign reads to their origin based on

https://academic.oup.com/bib
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mapping statistics against each subgenome of the polyploid sys-
tem. Reads were mapped against G. raimondii [34] and G. arboreum
[38] reference genomes using STAR [v2.5.3a]. The variant candi-
date files with respect to each reference genome were generated
from reciprocal LAST [v869] (http://last.cbrc.jp/) alignments as
part of the EAGLE-RC pipeline. Based on these mapping results
and subgenome-discriminating variants, the basic EAGLE model
[29] was used to evaluate the likelihood of a read deriving from
one subgenome (as the reference) as the null hypothesis versus
deriving from the other subgenome as the alternative hypoth-
esis. EAGLE-RC [v1.1.1] next calculated the probability for reads
considering each subgenome as the reference and determined
the winning hypothesis for read classification.

RSEM

While not specifically developed for polyploids, RSEM [v1.3.0]
[20] and the following programs (i.e. Salmon [v0.9.1] [21] and
Kallisto [v0.44.0] [39]) were developed to address the general
issues of ambiguously mapped reads while also increasing map-
ping speed. RSEM automates read alignment to a set of reference
transcripts using Bowtie2 [v2.3.4] and subsequently estimates
feature counts using the EM algorithm, both at the gene and
isoform levels. As the presence of homoeologs is bioinformati-
cally similar to the presence of alleles of isoforms, RSEM may be
suitable for disentangling homoeologous reads and estimating
homoeolog abundance. We approximated the polyploid refer-
ence transcriptome by combining the G. raimondii transcrip-
tome and the predicted G. arboreum (A2) transcripts based on
the same SNP index used by GSNAP-PolyCat. That is, the G.
arboreum transcripts here are simply the G. raimondii transcripts
with homoeologous SNP sites replaced with G. arboreum-specific
SNPs.

Kallisto

This method belongs to a class of read aligners known as
‘pseudoaligners,’ which leverage k-mer information to detect
the transcripts that could have generated a given read without
specifically aligning the read [39]. Kallisto, like other pseu-
doaligners, generates a De Bruijn graph of the k-mers present in
a transcriptome to quickly assign reads based on intersecting
read and transcriptome k-mer metrics. Kallisto was run
under default parameters using the above-generated polyploid
reference transcriptome.

Salmon

This method employs a lightweight, quasi-mapping strategy [40]
similar to Kallisto and a two-phase estimation of expression.
This two-phase estimation uses two forms of Bayesian inference
[41, 42] to first estimate and then subsequently refine transcript-
level abundances [21]. Using this method, Salmon is able to esti-
mate abundance uncertainty due to ambiguously mapped reads,
which are common with homoeologs. Salmon [v0.9.1] was also
run with default parameters using the above-generated poly-
ploid reference transcriptome and the option ‘keepDuplicates’
for indexing the transcriptome. Estimated transcript abundance
is automatically returned by the program.

Bowtie2

To represent a standard transcriptome-based quantification
approach, polyploid reads were mapped against the same
polyploid reference transcriptome as above using Bowtie2
[v2.3.4] in—‘local’ mode to report one best alignment by

default. In order to retain only the uniquely mapped reads,
alignments were next filtered with a mapping quality of 10
using SAMtools [v0.9.1] [35]. Read counts were generated using
the alignment-based mode ‘Salmon quant’ from Salmon [v0.9.1].

Performance evaluation of estimating
homoeolog expression

For each set of bioinformatically partitioned reads, multiple
measures of performance were conducted. Because the true
assignment of each in silico polyploid (AD) read is known and
originates from only two sources (A2 and D5), assessing homoe-
olog assignment becomes a binary classification problem. When
considering the A-subgenome only, correct assignment of A2-
derived reads to At is considered a TP (true positive), whereas
incorrect assignment to Dt is a FN (false negative); correspond-
ingly, correct assignment of D5-derived reads to Dt is a TN
(true negative), and incorrect assignment to At is a FP (false
positive). Similarly, when considering the D-subgenome only,
correct assignment of D5-derived reads to Dt is a TP, whereas
incorrect assignment to At is a FN; correct assignment of A2-
derived reads to At is a TN and incorrect assignment to Dt
is a FP.

The prediction results of the binary classification can be
arrayed as a 2 × 2 confusion matrix, which summarizes the num-
bers of true/false positives/negatives (TP, FP, TN and FN) that can
be evaluated using information retrieval statistics [43], such as
Precision/Recall [44] and the Matthews correlation coefficient
(MCC) [45]. The general formulas of these statistics are as follows:

‘Precision’ = TP
TP + FP

,

‘Recall’ = TP
TP + FN

,

‘Accuracy’ = TP + TN
TP + TN + FP + FN

,

F1 = 2 × precision × recall
precision + recall

and

MCC = TP × TN − FP × FN
√(

TP + FP
)(

TP + FN
)(

TN + FP
)(

TN + FN
) .

Here, we report both the F1 and MCC scores, which provide a
generalized measure of accuracy; however, we note that MCC
may be preferred because it accounts for more of the confusion
matrix and is more balanced with respect to classes of very
different sizes [46].

We also note that the results of binary classification
measures for GSNAP-PolyCat and HyLiTE are somewhat
misrepresentative of those pipelines. Because GSNAP-PolyCat
and HyLiTE discard reads with no diagnostic SNPs, the number
of TPs and FNs will be distorted for these pipelines, i.e. reduced
and increased, respectively. In contrast, the remaining pipelines
(i.e. RSEM, Salmon and Kallisto) use statistical inference to
completely assign all reads to homoeologs. We therefore
define two additional measures that reflect these differences,
‘Efficiency’ and ‘Discrepancy.’ Here, the measure of ‘Efficiency’
is simply the number of reads assigned to homoeologs

http://last.cbrc.jp/
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Table 1. Nine classes of DC changes

Category Diploid correlation Polyploid correlation Description of DC pattern

P+/+ + + Both positive but different in r-value
P+/0 + 0 Loss of positive correlation
P+/− + − Inversion from positive to negative correlation
P0/+ 0 + Gain of positive correlation
P0/0 0 0 Neither significant but different in r-value
P0/− 0 − Gain of negative correlation
P−/+ − + Inversion from negative to positive correlation
P−/0 − 0 Loss of negative correlation
P−/− − − Both negative but different in r-value

(regardless of accuracy) divided by the total number of reads.
The overall difference between the obtained read count and
expected true read count for each class was measured by their
‘Discrepancy’

=
abs

(
obs − exp

)

exp
.

Gene expression analysis

The analysis of DE of genes was conducted using two meth-
ods, i.e. DESeq2 [v1.22.2] [47] and EBSeq [v1.22.1] [48]. DESeq2
takes a classical hypothesis testing approach to report nominal
P-values, whereas EBSeq accommodates the uncertainty inher-
ent in isoforms (here, homoeologs) using a Bayesian framework
to return posterior probabilities for DE. A false discovery rate
α < 0.05 was required to determine significant DE changes, which
was applied to the adjusted P-values of DESeq2 [49] and the
posterior probability (= 1 – α) of EBSeq. For each sample condition
(tissue type or developmental stage), the pairwise comparison of
At and Dt genes was conducted using both DESeq2 and EBSeq.
Common to all sample conditions, the homoeolog-specific DE
effect was analyzed with DESeq2 using a multifactor design
(∼ condition + homoeolog).

For evaluation, the DE analyses were conducted between (1)
the parental diploid read counts and (2) the subgenomic read
counts within the polyploid samples. Because these in silico
polyploid data were derived from combining diploid libraries, the
null hypothesis is that DE between inferred homoeologs should
match the DE observed between the diploid libraries for those
genes. We again treat this as a binary classification problem,
marking each gene as DE or non-DE and comparing the observed
number of DE genes in the polyploid libraries with the expected
number derived from the diploid data. The same statistical mea-
sures of performance (i.e. ‘Precision,’ ‘Recall,’ ‘Accuracy,’ F1 and
MCC) were calculated for each pipeline, as described above. The
receiver operating characteristic (ROC) curve and the area under
the ROC curve (AUC) were calculated for each and visualized
using the R package ROCR [v1.0–7] [50]. AUC scores reflect the
probability that a random classification is correct, ranging from
0.0 to 1.0 [51, 52].

Gene expression correlation analysis

Differential correlation (DC) analysis is commonly used to eval-
uate coordinated changes in gene expression, either indepen-
dent of or in the context of co-expression network analyses.
Both DC and network analyses require some form of variance-
stabilizing transformation of the raw data. Several methods of
normalization exist [53, 54], which have their own advantages

and nuances. Here two common methods were tested, i.e. RPKM
followed by log2 transformation and regularized logarithm (rlog)
transformation as implemented in DESeq2.

Using the R package DGCA [v1.0.2] [55], Pearson correlation
coefficients (r) and their corresponding P-values were calculated
for each pair of genes across all 33 samples, which were sub-
sequently classified as having a significant (P < 0.05) positive
correlation (+), a significant negative correlation (−) or not sig-
nificantly different from zero (0). The gene pairwise matrices
of r and corresponding correlation condition were each gener-
ated for the diploid (expected) and homoeologous (observed)
gene expression datasets. Fisher’s z-test [56] was used to iden-
tify significant changes between the expected and observed r
values.

Given that the orthologous gene pair between diploids
(expected) and the homoeologous gene pair in the polyploid
(observed) each exhibit three possible within-pair correlation
conditions (+, − or 0), together there are nine possible categories
to describe the pattern of DC (Table 1). Among those, three
categories (0/0, +/+ and −/−) indicate significant changes
in within-pair r values with no corresponding change in the
inference of correlation condition, whereas the other categories
encompass changes in correlation condition that indicate
misidentification of gene-to-gene correlations within the read
partitioned dataset. We assessed enrichment of each class for
each pipeline using a one-sided Fisher’s exact test (P < 0.05).

Finally, as previously described [15], we compiled a list of
genes that are overrepresented with the gene-to-gene paired DC
relationships (see above) to identify differentially co-expressed
genes (DC genes). Briefly, the probability P of any pair of genes
exhibiting a DC relationship is defined as the percent of DC pairs
detected among all possible gene pairs. For a gene observed in
k DC pairs among all possible pairs n, the probability of a ‘dif-
ferential co-expression gene’ follows the binomial distribution
model:

PDC = (n
k

) · pkqn−k

PDC was corrected by the BH method [49] and a cutoff of 0.05 was
used for identifying DC genes.

Co-expression network construction

Co-expression networks are a multidimensional representation
of the expression relationships among genes. Accordingly, con-
struction of co-expression networks uses similarity scores from
the pairwise gene expression profiles to generate an adjacency
matrix which reflects connections between genes (as nodes) in
the network [57]. Here, we used the Pearson correlation coeffi-
cients to calculate the matrix of similarity scores. Derived from
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this correlation matrix, the adjacency matrix was used as the
basis for a series of binary and weighted gene co-expression net-
works, which were generated for both the log2RPKM- and rlog-
transformed read count tables from each expression estimation
pipeline.

For constructing binary networks, a hard threshold was
applied to similarity scores to determine whether a pair of genes
should be connected in the network, resulting an adjacency
matrix containing only 0 and 1 values. Two types of hard
thresholds were tested, specifically rank-based and Fisher’s
Z-statistics [56]-based thresholds. A set of rank-based cutoffs
(5, 1, 0.5 and 0.1%) were applied to these similarity scores in
order to select the top-ranked connections as possible edges.
Following Fisher’s z-transformations to convert each Pearson
correlation coefficient to a Z-score, a set of cutoffs (i.e. 1.5,
2.0, 2.5 and 3.0) were used to retain correlations with Z-score
above the cutoff value as edges. The performance of network
construction was evaluated as a binary classification problem;
that is, because we expected to see the edges inferred from the
expected expression (diploid) retained in the polyploid network,
we were able to create a confusion matrix from the presence
or absence of edges compared to what was expected. The edge
classification was again evaluated with a ROC curve using the R
package ROCR [50]. Due to the large gene number in the network
(>60 000 genes), a 10% random sampling of genes was used for
computation with 10 iterations.

While binary networks have their own utility, weighted co-
expression networks are frequently used for reasons enumer-
ated elsewhere [58], including the ability to quantify network
connections. Weighted networks use soft thresholding to
assign connection strengths to gene pairs, thereby allowing the
adjacency matrix to present network connections quantitatively.
Using the R package weighted gene co-expression network
analysis (WGCNA) [v1.68] [59, 60], a set of soft thresholds (1,
12, 24) were applied for automatic network construction with
the blockwiseModules function and the following parameters:
corType = ‘Pearson,’ networkType = ‘signed,’ TOMType = ‘signed’
and minModuleSize = 100. The performance of each polyploid
network construction was evaluated against the reference
network generated using the diploid data. Preservation of the
reference network modules by AD dataset was calculated using
the WGCNA function modulePreservation with 200 permutations.
In general, modules with the derived preservation score
Zsummary > 10 are interpreted as strong preservation.

Network topology measures and functional
connectivity assessment

Node connectivity and functional connectivity (FC) are two met-
rics that may provide insight into the importance and/or func-
tion of a given gene in a network. Node connectivity (k) measures
the connectivity of any given node in the network, either by
counting the number of connected edges (for a binary network)
or summing the connected edge weights (for a weighted net-
work). FC uses the ‘guilt-by-association’ principle to measure
network quality under the assumption that genes with similar
functions should be connected in a well-constructed network.
A neighbor voting algorithm from the R package EGAD [v1.10.0]
[61] was used to classify genes into functional groups based on
the functionality of their connected genes (i.e. their neighbor-
hood). This package uses the known functional labels of genes
(e.g. Gene Ontology [GO] and Kyoto Encyclopedia of Genes and
Genomes [KEGG] annotations) and the voting algorithm as a

binary classifier to return true or false predictions for those func-
tional labels; the performance of the neighbor voting functional
assignment can then be assessed by an ROC curve. The derived
AUC characterizes the degree to which an input network topol-
ogy can predict the gene membership of a functional category,
which intuitively corresponds to the assessment of functional
connectivity. GO and KEGG terms were extracted from the v2.1
annotation of G. raimondii reference genome downloaded from
Phytozome (www.phytozome.net).

Results
Subgenome divergence and homoeolog read ambiguity:
the problem

As mentioned in the introduction, the issue of ambiguous read
mapping is prevalent in polyploids and in plants in general
because of means other than polyploidy that generate paralogs.
Accurately partitioning polyploid reads is bioinformatically chal-
lenging (Figure 1A), and the consequences of inaccurate par-
titioning are unknown. The proportion of ambiguous reads is
dependent both on subgenome divergence and the sequencing
strategy, and the subsequent treatment (i.e. removal or sta-
tistically based assignment) can affect the outcome of down-
stream analyses. Here, we evaluated the performance of seven
different pipelines (see Supplementary Table S2 available online
at https://academic.oup.com/bib) in assigning reads to poly-
ploid genomes and the effects of their treatment of ambiguous
reads on downstream analyses of duplicated gene expression
(Figure 1B). Accordingly, we introduced the metric of ‘Ambiguity’
for each pair of homoeologous genes, which corresponds to
the percentage of a gene region that cannot be distinguished
between homoeologs (see Methods). Ideally, if the homoeologous
sequences were sufficiently divergent and the sequencing reads
were long enough to consistently contain homoeolog distin-
guishable variants (e.g. SNPs), all reads could be assigned with
zero ‘Ambiguity’; however, these conditions are rarely met by
existing data.

In tetraploid Gossypium, where the average sequence
divergence (in coding regions) between homoeologs is approx-
imately 1.5% [22], only 5% of homoeologous gene pairs can
be unambiguously mapped (‘Ambiguity’ = 0) by 50 bp RNA-
seq reads, whereas over 90% can be unambiguously mapped
by 300 bp reads (Figure 2A). In the following analysis, we
binned homoeologous gene pairs into five increasing levels of
‘Ambiguity,’ i.e. 0, 0–0.05, 0.05–0.1, 0.1–0.2 and 0.2–1.0. These bins
were next used to relate the performance of read assignment
and other duplicated gene expression patterns to the level of
read ambiguity (Figure 2).

Artificial allopolyploid datasets permit assessment
of fidelity in homoeologous read assignment

We generated in silico allotetraploid (AD) datasets for multiple
sample conditions (tissues, developmental timepoints, etc.; see
Supplementary Table S1 available online at https://academic.ou
p.com/bib) as a ground-truth reference. For these, we combined
equal amounts of reads from two diploids, G. arboreum (A2) and
G. raimondii (D5), which represent the model diploid progeni-
tors for a clade of naturally occurring polyploids in Gossypium.
As these datasets are diploid-derived, the amount of A- and
D-derived reads in the AD datasets is known, and the ability of
each pipeline to accurately reconstruct this becomes testable.

www.phytozome.net
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 2. Homoeologous read ambiguity and consequences. (A) Given the specific sequencing read length (i.e. 50, 100, 200 and 300 bp), the homoeologous gene pairs

from Gossypium were binned by ‘Ambiguity’ into five groups: 0, 0–0.05, 0.05–0.1, 0.1–0.2 and 0.2–1.0, the first of which indicates complete read assignment via SNP

differentiation. The y-axis refers to the bin size of each gene group. These ‘Ambiguity’ bins were used to relate the performance of read assignment (B–E), DE (F), DC (G)

and the analysis of node connectivity k (H). Error bars represent the standard deviation.

Because the seven pipelines differ in how they treat ambigu-
ous reads, either discarding them (GSNAP-PolyCat, HyLiTE and
Bowtie2) or statistically partitioning them (EAGLE-RC, RSEM,
Salmon and Kallisto), we first evaluated the ‘Efficiency’ and
‘Discrepancy’ of read assignment. ‘Efficiency’ simply measures
the percentage of reads assigned, considering all the reads
versus those partitioned into each subgenome. As shown in
Table 2, RSEM, Salmon and Kallisto all achieved 100% read
assignment due to their underlying statistical inference of origin
for ambiguous reads; however, they tend to slightly overestimate
the number of At reads. EAGLE-RC assigned slightly fewer reads
(96.3% of the total) through competitive mapping to the A- and D-
subgenomes. Since Bowtie2, GSNAP-PolyCat and HyLiTE discard
ambiguous reads, their ‘Efficiency’ negatively correlates with
‘Ambiguity,’ as expected (Figure 2B), with less than 90% of total

reads partitioned into subgenome (Table 2). In contrast to RSEM,
Salmon and Kallisto, there appears to be a classification bias in
both GSNAP-PolyCat and HyLiTE that leads to more reads being
characterized as derived from the reference genome; this bias
is most significant for HyLiTE (Table 2; At 78.5% versus Dt 85.8%
based on D5 reference and At 82.7% versus Dt 80.3% based on
A2 reference; Student’s t-test P < 0.05). It is worth noting that an
average of 45% more reads per library, regardless of the diploid
origin, were mapped to the D5 than the A2 reference by HyLiTE,
indicating the higher quality of the D5 genome reference and
its gene models; hence, only the D5-based HyLiTE datasets were
included in the following analyses. Although EAGLE-RC uses
both references for mapping and quantification was restricted
to homoeologous gene pairs (excluding subgenome-unique
genes), a higher ‘Efficiency’ was obtained for Dt than At reads
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Table 2. Overall and subgenome assessment of homoeolog expression estimation

GSNAP-PolyCat HyLiTE EAGLE-RC RSEM Salmon Kallisto Bowtie2

Reference D 5 D 5 A 2 A 2 and D5 Polyploid AD

Efficiency 87.7 ± 1.5% 82.2 ± 0.7% 81.5 ± 0.7% 96.3 ± 0.8% 100.0% 100.0% 100.0% 84.9 ± 1.5%
At 86.7 ± 1.6% 78.5 ± 1.0% 82.7 ± 0.7% 95.5 ± 0.9% 101.0 ± 0.6% 101.6 ± 0.5% 101.5 ± 0.6% 84.6 ± 1.5%
Dt 88.6 ± 1.6% 85.8 ± 0.6% 80.3 ± 0.9% 97.1 ± 1.0% 99.1 ± 0.6% 98.5 ± 0.5% 98.6 ± 0.6% 85.1 ± 1.6%
Discrepancy 12.7 ± 1.5% 18.1 ± 0.8% 18.7 ± 0.8% 5.1 ± 0.8% 5.1 ± 0.6% 5.1 ± 0.6% 5.1 ± 0.6% 15.9 ± 1.5%
At 13.4 ± 1.6% 21.0 ± 1.1% 17.5 ± 0.8% 5.4 ± 0.9% 5.4 ± 0.6% 5.2 ± 0.6% 5.2 ± 0.6% 16.0 ± 1.5%
Dt 12.1 ± 1.5% 14.8 ± 0.6% 20.0 ± 0.9% 4.8 ± 0.8% 4.8 ± 0.6% 5.1 ± 0.6% 5.0 ± 0.6% 15.7 ± 1.5%
Precision – – – – – – – –
At 98.4 ± 0.1% 92.4 ± 0.3% 91.9 ± 0.4% 98.1 ± 0.1% 95.1 ± 0.2% 94.3 ± 0.2% 94.4 ± 0.2% 95.5 ± 0.1%
Dt 97.7 ± 0.5% 91.2 ± 0.6% 91.6 ± 0.5% 97.2 ± 0.5% 97.0 ± 0.5% 96.5 ± 0.4% 96.4 ± 0.4% 96.1 ± 0.5%
Recall – – – – – – – –
At 97.7 ± 0.5% 90.6 ± 0.6% 93.1 ± 0.4% 97.2 ± 0.4% 96.5 ± 0.5% 96.4 ± 0.4% 96.4 ± 0.4% 96.4 ± 0.5%
Dt 98.1 ± 0.1% 94.0 ± 0.3% 91.3 ± 0.4% 97.9 ± 0.1% 96.2 ± 0.2% 95.4 ± 0.2% 95.4 ± 0.2% 95.0 ± 0.1%
F1 score – – – – – – – –
At 98.7 ± 0.2% 92.2 ± 0.4% 92.9 ± 0.3% 98.1 ± 0.2% 97.2 ± 0.3% 96.8 ± 0.2% 96.9 ± 0.2% 97.0 ± 0.3%
Dt 98.7 ± 0.2% 93.1 ± 0.4% 92.1 ± 0.3% 98.0 ± 0.2% 97.2 ± 0.3% 96.7 ± 0.2% 96.7 ± 0.2% 96.9 ± 0.3%
Accuracy∗ 98.2 ± 0.2% 93.7 ± 0.7% 93.6 ± 0.3% 97.7 ± 0.2% 96.3 ± 0.3% 95.7 ± 0.2% 95.8 ± 0.2% 96.2 ± 0.2%
MCC∗ 96.8 ± 0.5% 84.5 ± 0.7% 84.2 ± 0.7% 95.8 ± 0.4% 95.5 ± 0.5% 94.7 ± 0.4% 94.8 ± 0.4% 94.2 ± 0.5%

Note: The best performance for each metric is marked in bold text.
∗Same values for At and Dt reads.

(82.7% versus 80.3%, respectively). This result may also reflect
differences in assembly and annotation quality between the
reference genomes. We also evaluated the ‘Discrepancy’ for
each pipeline, which measures the absolute difference between
the obtained homoeolog read counts and the expected counts;
this measure is affected by both the assignment ‘Efficiency’
and binary classification measures (see Methods). Due to the
high ‘Efficiency’ guaranteed by the algorithms of EAGLE-RC,
RSEM, Salmon and Kallisto, these pipelines exhibit the lowest
‘Discrepancy’ (5.1%; Table 2), while the highest ‘Discrepancy’ was
found in HyLiTE (18.1% and 18.7%), followed by 15.9% in Bowtie2
and 12.7% in GSNAP-PolyCat. In general, ‘Discrepancy’ from
the actual read numbers increases as the level of ‘Ambiguity’
increases (Figure 2C), as expected; however, EAGLE-RC performs
robustly across ‘Ambiguity’ bins.

While ‘Efficiency’ and ‘Discrepancy’ provide generic mea-
sures of read partitioning based on the numbers expected, they
do not account for whether each read is accurately assigned.
Therefore, the results of each pipeline were arrayed in a 2 × 2
confusion matrix (i.e. TP, FN, etc.; [43]), and the performance
of the pipeline was evaluated using the information retrieval
metrics of ‘Precision,’ ‘Recall,’ ‘Accuracy,’ F1 score and MCC.
In the context of information retrieval (as implemented here),
‘Precision’ measures how many of the reads assigned to a given
subgenome (A or D) were correctly identified, ‘Recall’ measures
how many of each subgenome were retrieved from the mixed
population (relative to expectations), and ‘Accuracy’ measures
how well each pipeline correctly identifies one subgenome while
excluding the other; the measures F1 and MCC account for more
of the confusion matrix and attempt to generalize the results
into a single score of performance (see Methods for details). The
results in Table 2 show that that GSNAP-PolyCat and EAGLE-RC
generally performed better in all information retrieval metrics,
meaning that they recovered more relevant reads for each
subgenome while excluding reads from the other subgenome.
The four generic alignment-based approaches (i.e. Bowtie2,
RSEM, Salmon and Kallisto) showed comparable performance to
each other, with only a slight reduction in all scores relative to
GSNAP-PolyCat. Only HyLiTE stands out as performing relatively

poor compared to the other pipelines; however, it is noteworthy
that the other pipelines (except EAGLE-RC) all utilized the same
SNP information (1 251 736 coding region SNPs) derived from rich
genomic resequencing data [23], whereas HyLiTE conducted
on-the-fly SNP calling from the input parental diploid RNA-
seq datasets (754 670 and 871 224 coding region SNPs based on
A2 and D5 references, respectively). This most likely explains
the relatively poor performance of HyLiTE, as tested here. The
high performance of EAGLE-RC is likely due to the use of both
mapping statistics and subgenomic variants (630 309 670 and
630 313 coding region SNPs based on A2 and D5 references,
respectively). Interestingly, as shown in Figure 2D and E, EAGLE-
RC, GSNAP-PolyCat and HyLiTE exhibit relatively consistent
performance across ‘Ambiguity’ bins, indicating that their
accuracy (as measured by ‘Accuracy’ and MCC) is largely static,
irrespective of homoeolog divergence. Bowtie2, RSEM, Salmon
and Kallisto, however, perform nearly as well as GSNAP-PolyCat
when the expected amount of homoeologous ambiguity is
low, but quickly descend when ‘Ambiguity’ goes above 20%
(Figure 2D and E).

The inference of homoeolog expression divergence is
affected by the choice of expression estimating pipeline

Expression divergence of homoeologs, both relative to one
another and to their progenitor genomes, is a major compo-
nent of polyploid research. Allopolyploidy reunites formerly
diverged genes (and their regulatory context) into a common
nucleus while simultaneously generating massive redundancy.
Consequently, observed transcriptomic changes are myriad
(reviewed in [13]) and include homoeolog expression bias
(reviewed by [12, 13]) and functional divergence [62–65]. Since our
ability to accurately describe expression changes depends upon
our ability to accurately represent expression, we evaluated
the extent to which each pipeline accurately represented DE
between homoeologs. That is, the homoeolog DE results derived
from each pipeline inferred AD dataset were compared to
the expected DE results between the diploid orthologs from
which the AD datasets were derived. While many methods
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Figure 3. Performance evaluation of DE analysis between homoeologous genes.

exist for comparing DE among samples, we selected two of the
most popular methods, namely, DESeq2 and EBSeq, to compare
both stringency and accuracy in general and in the context of
the different pipelines. That is, following each quantification
pipeline, the same expected and observed read count tables
were supplied to DEseq2 and EBSeq analyses.

Overall, DESeq2 detected an average of 16% more significant
changes in expression than EBSeq (see Supplementary Table S3
available online at https://academic.oup.com/bib; paired Stu-
dent’s t-test P < 0.05), suggesting that by default, the latter
is more stringent. Across the 12 sample conditions, pairwise
homoeolog expression divergence was detected between 8%
and 44% of the homoeologous gene pairs (28 401 pairs by EAGLE-
RC and 37 223 pairs by other pipelines), without significant
differences between the observed and expected datasets (see
Supplementary Table S3 available online at https://academi
c.oup.com/bib; analysis of variance (ANOVA) formula: DE =
pipeline + DE method + dataset; pipeline P < 0.001, DE method

P < 0.001 and dataset P = 0. 23); however, the homoeolog
expression divergence common to all sample conditions was
significantly underestimated from the observed than expected
datasets (51% versus 53%; paired Student’s t-test P < 0.05).
As shown in Figure 3, a relatively high level of DE ‘Accuracy’
(above 80%) was consistently inferred. Regardless of which DE
method was used, the expression datasets generated by GSNAP-
PolyCat and EAGLE-RC outperformed those by other pipelines
(Salmon/Kallisto/Bowtie2 > HyLiTE/RSEM) in identifying the true
expression divergence between homoeologs. While DESeq2
appeared to perform better than EBSeq according to the
measures of ‘Precision,’ ‘Recall,’ F1 and MCC, the AUC scores
suggested that EBSeq is more robust than DESeq2 to separate
binary classes (Figure 3), particularly for genes exhibiting high
‘Ambiguity’ (Figure 2F). For both methods, their AUCs were
negatively correlated with ‘Ambiguity,’ reflecting the strong
dependence of DE analysis on the extent of homoeolog sequence
divergence (Figure 2F).

https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 4. Inference changes in co-expression relationships between homoeologs. For each of the 14 combinations of homoeolog expression estimation pipelines and

data transformation methods (row), the number of DC changes between observed and expected datasets is shown for each DC category (column). Cell color indicates

the magnitude of significant overrepresentation based on -log10(P-value) of Fisher’s exact test (i.e. P = 0.05 is converted to 1.3). For example, the number in category

P0/+ of the bottom row indicates that 306 homoeolog pairs showed DC changes from no significant correlation (0) to significantly positive correlation (+) due to the

estimation error from the Salmon pipeline followed by log2RPKM transformation.

Co-expression relationships between homoeologs were
measured using Pearson correlation coefficient across multiple
sample conditions. Approximately 1–5% of homoeolog pairs
(210–227 out of 28 401 pairs by EAGLE-RC and 418–1834 out of
37 223 pairs by other pipelines) exhibited significant changes
due to incorrect read assignment. As shown in Figure 4, EAGLE-
RC introduced the smallest numbers of DC changes, followed
by GSNAP-PolyCat and HyLiTE, which outperformed Bowtie2,
RSEM, Salmon and Kallisto. Artifactually induced DC was most
prominent in those homoeologous gene pairs exhibiting higher
‘Ambiguity’ (Figure 2G), with the highest bin (i.e. 0.2–1) exhibiting
a nearly 4-fold increase in DC than other bins for RSEM, Salmon
and Kallisto. Among the nine categories of DC changes (Figure 4,
columns), the class of 0/+ was most significantly enriched
for RSEM, Kallisto, Salmon and Bowtie2. This suggests that
the majority of DC changes due to read partitioning errors
lead to gains in correlation, generally changing our inferences
from no significant correlations (0) to significantly positive
correlations (+). Together with the observation of generally
fewer DE genes common to all sample conditions, these
results indicate that read partitioning methods could lead to
an overestimation of co-regulation between homoeologous
genes due to incorrect homoeolog expression estimation,
consequently restricting our ability to infer expression diver-
gence and/or possible functional divergence of duplicated
genes. Notably, these patterns were consistent for both the
rlog and log2RPKM data transformation methods. In addition
to DC between homoeologous gene pairs, we also conducted
identification and classification of DC patterns for all possible
gene pairs (see Supplementary Table S4 available online at

https://academic.oup.com/bib), resulting in 0.3–1.5% global
pairwise DC changes, which affected 3.5–15.2% of total genes
(i.e. DC genes enriched with DC pairs) in their co-expression
relationships.

Robust construction of gene co-expression networks by
the rank-based binary method and WGCNA

Gene co-expression networks are commonly used to summarize
the multidimensionality of gene expression data into clusters
of genes with putatively related functions (i.e. modules). In the
context of polyploidy, co-expression networks can be used to
assess the functional relatedness among genes and homoeologs,
reveal changes in homoeolog usage and characterize the genetic
interplay between subgenomes [6]. We use both weighted and
unweighted networks to assess the influence of variation in read
partitioning on our inferences of co-expression.

Constructing unweighted co-expression networks requires
a binary classifier (or hard threshold) to decide whether there
exists a connection (i.e. an edge) between each pair of genes. As
shown in Figure 5A, different rank-based thresholds (5, 1, 0.5 or
0.1% of top-ranked correlations become edges) yielded robust
classification of the expected edges (based on diploid expres-
sion) with AUC scores close to 1. In contrast, the performance of
Z-statistics-based thresholds (i.e. significant correlations with Z-
score above 1.5, 2.0, 2.5 or 3.0 become edges) was more variable
(AUC of 0.8–1) depending on the stringency of the Z-thresholds.
These results indicated that the rank-based method is more
robust here than Z-statistics to infer binary gene co-expression
network.

https://academic.oup.com/bib
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Figure 5. Performance of binary co-expression network construction. (A) Boxplot of AUC scores were shown using different homoeolog estimation pipelines (color) and

binary thresholds (x-axis). (B) Taking the Z-score threshold of 3, for example, AUC scores were compared among subnetworks: Overall, all edges considered; At, edges

within the A-genome subnetwork; Dt, edges within the D-genome subnetwork; At-Dt, edges connecting genes across A- and D-subnetworks.

In addition to the network construction methods (ANOVA
formula: AUC = construction + pipeline + transformation;
construction P < 2e-16), the choice of read estimation pipeline
also matters (P = 1.58e-08) with the performance of RSEM and
EAGLE-RC significantly falling behind others (Tukey’s HSD test
P < 0.05); no significant difference was found between the rlog
and log2RPKM transformation (ANOVA P = 0.615). The lower
performance of EAGLE-RC networks seems counterintuitive
given its superiority in the previous evaluation; however,
transcript quantification for EAGLE-RC was limited to only those
homoeologous gene pairs that were annotated in both genomes,
resulting in circa 9000 fewer genes assayed due to annotation
differences between the reference genomes. Thus, the derived
homoeologous gene networks could be susceptible to scaling
errors between subgenomes due to data exclusion. Interestingly,
while not unexpected, edge inference within the D-genome
subnetwork is significantly more robust than edges within the
A-genome subnetwork or those across subnetworks (Figure 5B;
ANOVA and Tukey’s HSD test P < 0.05). This observation likely
reflects quality differences in the mapping reference, i.e. the
high-quality D-genome reference versus the inferred or actual
A-genome sequences (see Methods).

In WGCNA networks, the quantitative strength of net-
work connections is considered to maximize information
captured in the network. The topological preservation tests
of expected modules (based on diploid expression) exhibited
high preservation (Zsummary > 10) for almost all modules (see
Supplemental Figure S1A available online at https://academi
c.oup.com/bib), regardless of soft threshold (i.e. 1, 12 or 24; see
Methods), homoeolog read estimation pipeline and method
of normalization. This result suggests that WGCNA-based
inference of gene modular structure is rather robust.

In addition to the separate topological evaluation above
(binary networks by edge inference AUC and WGCNA networks
by module preservation), node connectivity (k) and network

functional connectivity (FC) were calculated for each binary and
weighted co-expression network constructed. Each AD network
constructed was evaluated against the expected (diploid-based)
network. Pearson correlation coefficients between the expected
and observed networks suggest that both k and FC were rather
consistent across different homoeolog expression estimation
pipelines (ANOVA formula: correlation = construction + pipeline
+ transformation; construction P > 0.05), whereas the method
of network construction could strongly influence topology
(P < 2e-16; see Supplementary Figure S1B–D available online at
https://academic.oup.com/bib). Notably, normalization method
affected k (P < 2e-16; log2RPKM outperforms rlog) but not FC
(P = 0.08). As shown in Supplementary Figure S1B–D, available
online at https://academic.oup.com/bib, both rank-based binary
construction and weighted gene network construction methods
equally outperformed all but the least strict Z-statistics methods.
The accurate inference of k (measured by correlation between
observed and expected data; Figure 2H) is negatively correlated
with ‘Ambiguity,’ albeit weakly. This diminished relationship is
expected as the network property of each gene is intrinsically
determined by all the other genes, thereby obscuring the impact
of ambiguity per gene.

In addition, the measure of FC can be used to statistically
evaluate the functional significance of network topology [61].
According to the guilt-by-association’ principle [66], genes
with similar functional properties tend to interact or be
clustered together in biological networks. Thus, higher FC
indicates more reasonable network topology. As shown in
Supplementary Figure S2, available online at https://academi
c.oup.com/bib, the highest FC scores were observed for WGCNA
networks (AUC = 0.64–0.72), followed by the ranked-based binary
networks (0.54–0.67) and the Z-statistics-based binary networks
(0.50–0.55), respectively. This may suggest that the WGCNA
network construction was able to capture more function and/or
biologically relevant information.

https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 6. Different inferences of subnetwork topology. The network density of A-subnetwork and D-subnetwork and interconnections between A- and D-subnetworks

were shown for both the expected and observed data from the GSNAP-PolyCat (A–C) and EAGLE-RC (E–G) estimation with log2RPKM normalization. (A and E) Rank-based

binary network with top 1% connections; (B and F) Z-statistics binary network with connections above Z-score of 2; (C and G) WGCNA network with the power of 12.

Overall, the performance of co-expression network analysis
was more affected by network construction methods than by
read ambiguity and partitioning methods. In general, either
log2RPKM or rlog combined with WGCNA produced the best
results for these data, regardless of read assignment method.

Bioinformatic choices can strongly affect the
interpretation of duplicated gene network topology

In the context of polyploid gene network, it is of particular inter-
est to compare subnetwork properties within each subgenome
and between subgenomes. Taking the GSNAP-PolyCat and
EAGLE-RC datasets followed by log2RPKM normalization as
examples (Figure 6), both rank-based and WGCNA networks
revealed the highest density (mean connections) of the
A-subnetwork, followed by that of the D-subnetwork and then
of the interconnections between A- and D-subgenomes. In
contrast, similar levels of A- and D-subnetwork density were
revealed in the Z-statistics-based networks (Figure 6B and F).
These results led to opposite conclusions regarding the
potential topological asymmetry between two subgenomes.
According to the performance assessment above, we believe
that the conclusion derived from WGCNA and rank-based
binary networks is more reliable; that is, the At genes are
more interconnected than are the Dt genes, reflecting the
difference in gene regulation between the two subgenomes
(i.e. the A2 and D5 diploids used generate synthetic AD). In
addition, all networks agreed on the much lower density of

inter-subgenome connections than that of within-subgenome
connections, indicating that a gene is much more likely to be
connected with genes from the same subgenome than with
genes from the other subgenome. For other combinations of
homoeolog expression estimation, transformation and network
construction methods, the measures of subnetwork density are
shown in Supplementary Table S5, available online at https://a
cademic.oup.com/bib, where WGCNA and rank-based generally
support the conclusion of higher density in At versus Dt
subnetworks, in contrast to the Z-statistics-based networks.

Discussion
The duplicated nature of polyploid genomes poses unique
challenges for bioinformatics. Presently, we are witnessing an
explosion of interest in better understanding these challenges
and developing appropriate methodologies and tools for
polyploids, for applications as diverse as genome sequence
assembly [67], genotyping [68, 69], haplotype phasing [70, 71],
population-based trait analysis [72], phylogenetic inference
[73, 74] and transcriptomic-based analyses [75, 76] such as de
novo transcriptome assembly [77] and transcript quantification
[30]. Quantification of homoeolog expression is particularly
interesting, given the various patterns of duplicate gene
expression possible in polyploid species (reviewed in [12]), the
interactions among homoeologs in a gene network context [6,
14] and the phenomenon of unbalanced homoeolog expression
bias together with its potential long-term consequences for

https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 7. A decision-making diagram to choose the appropriate bioinformatic resources for estimating homoeolog expression levels. When a reference genome or

transcriptome is available for the polyploid species, quantification of individual homoeologs is straightforward using the traditional aligners such as TopHat, or the

problem of read ambiguity by applying probabilistic estimation methods, pseudo-aligners or subgenome-classification approaches is considered. The latter also applies

to the scenario when subgenome references are available from all the diploid progenitors. When the reference is only available for one diploid progenitor, software has

been developed for partitioning and quantifying homoeolog-specific reads given the genetic variants such as SNPs between homoeologous sequences. Maroon-colored

software, such as RSEM and EAGLE-RC, statistically assigns the subgenome origin for ambiguously mapped reads; blue-colored software such as PolyCat utilizes only

unambiguously mapped reads for estimation. The polyploid systems for which they were originally developed are noted in parentheses.

fractionation [78–80]. A number of previous studies have
explored the bioinformatics of homoeolog expression profiling
[30, 75–77]; however, both the fundamental issue of read
ambiguity and the downstream inferences regarding polyploid
expression evolution have not been addressed. Here we
present a comprehensive analytic workflow to demonstrate the
challenges and pitfalls of these analyses (Figure 1), as well as
how they are influenced by the extent of read ambiguity in the
dataset and how that ambiguity is handled in understanding
homoeolog expression and co-expression patterns (Figure 2).

Duplication and deficiency: when redundancy
renders reads unresolved

In addition to the redundant nature of polyploid genomes, there
are a number of biological and technical causes for ambiguous
read mapping, including transcripts that are expressed at low
levels, sequence homology, small-scale gene duplications and
errors in sequencing and annotation. While we can control some
of these factors through experimental design (i.e. read length,
paired-end sequencing, etc.), the nature of the biological sys-
tem and the amount/distribution of subgenome divergence, as
measured by ‘Ambiguity,’ will influence the ability to accurately
assign reads to homoeologs. Although our analysis is limited
to the example data from Gossypium, the metric of ‘Ambiguity’
can be applied to any other real-world or simulated polyploid
systems. For systems that have less divergent subgenomes than

Gossypium, the ‘Ambiguity’ values are expected to be higher, and
longer read lengths will be required to improve the ability to
accurately assign reads. Knowing the range of ‘Ambiguity’ for any
specific polyploid system or for a list of genes of interest, we can
foresee the use of Figure 2 to query how such a range affects the
performance of bioinformatic inferences regarding homoeolog
read estimation (B–E) and polyploid expression evolution (F–H).

Among tools that have been devised to estimate homoeolog
expression levels under different conditions (e.g. the availability
and type of the reference genome; Figure 7), numerous methods
exist for handling the subset of reads that are not uniquely
assignable, typically either discarding these reads (as in GSNAP-
PolyCat and HyLiTE) or statistically assigning the reads (e.g.
RSEM, Kallisto and Salmon). Among the seven pipelines evalu-
ated in this study (see Supplementary Table S2 available online
at https://academic.oup.com/bib), most performed relatively
well, achieving >90% success for information retrieval metrics
(Table 2). Notably, EAGLE-RC and GSNAP- PolyCat exhibited the
best scores for most metrics, representing the subgenome-
classification and single-reference-based read partitioning
methods for homoeolog expression quantification (Figure 7),
respectively. In a previous study, Kuo et al. [30] showed that
EAGLE-RC outperforms other methods including STAR, LAST,
Kallisto and HomoeoRoq to precisely estimate homoeolog
expression in both tetraploid Arabidopsis kamchatica and
hexaploid wheat. This category of the subgenome-classification
approaches, including EAGLE-RC, HomoeoRoq and PolyDog,
requires read mapping against the genome reference of each

https://academic.oup.com/bib
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subgenome separately (similar to RSEM, Kallisto and Salmon,
which require individual transcriptome references) in order to
determine the better supported homoeolog origin for reads,
followed by homoeolog identification. Application of these
has an added layer of complexity, as the reference quality
and annotation methods often differ between the separately
generated parental reference genomes and/or between diploid
and polyploid genomes. In addition to these reference-based dif-
ferences, ortholog and/or homoeolog identification determined
by other software (e.g. OrthoFinder or similar) is required before
accurate comparisons can be made. Here, for example, due to
the assembly and annotation differences between the A2 and D5

references, EAGLE-RC assayed about 25% fewer homoeolog gene
pairs than did the other pipelines.

Contrary to the high performance of GSNAP-PolyCat, another
single-reference-based read partitioning method—HyLiTE—
exhibited the least performance in homoeolog quantification,
even worse than the Bowtie2 method counting only uniquely
mapped reads. This poor performance of HyLiTE can be
attributed to the limited amount of SNP information directly
generated from the input RNA-seq datasets, while a more
comprehensive set of SNP information based on extensive
resequencing data was utilized by pipelines including GSNAP-
PolyCat, RSEM, Kallisto, Salmon and Bowtie2. Among these
latter pipelines, while it is tempting to attribute the improved
performance of GSNAP-PolyCat to its partitioning algorithm that
discards ambiguous reads, the performance of Bowtie2, which
also discards ambiguous reads by considering only uniquely
mapped reads, was not better than RSEM, Salmon or Kallisto
that statically assign the subgenome origin to ambiguous reads.
When ‘Ambiguity’ was low, all pipelines performed similarly
well; however, those that statistically assign ambiguous reads
(RSEM, Salmon, Kallisto) perform significantly worse for those
genes with ‘Ambiguity’ above 20%. This may be due to the noise
in the underlying statistics as the relative number of unique
reads drops compared to those that will be statistically assigned;
that is, any error in statistical inference will be amplified as the
number of ambiguous reads begins to outweigh the number of
unique reads. This is an important observation for polyploid
systems whose subgenomes are more recently diverged. That
is, methods which statistically assign ambiguous reads should
be used with caution when the divergence between parental
genomes is low. For those genomes, GSNAP-PolyCat and HyLiTE
will provide a more reliable representation of relative homoeolog
read counts, with GSNAP-PolyCat outperforming HyLiTE when a
priori homoeoSNP information is available.

The use of one reference sequence is also not without
challenges. For example, GSNAP-PolyCat and HyLiTE both
appeared to partition more reads than expected to the reference
genome used, whereas RSEM, Kallisto and Salmon statistically
characterized more reads as A-derived while the reference
transcriptome was built on the D-reference gene models.
The cause of this discrepancy is unknown, but may include
technical differences (e.g. algorithm design) or biological sources
of error, such as uncharacterized copy number variation
and diploid/subgenome-unique genes. These errors have
the potential to influence subsequent conclusions, such as
co-expression network characteristics (e.g. the more robust
inference of D- versus A-subnetwork topology observed here).
These caveats notwithstanding, our results here demonstrate
that a single reference genome can reasonably be used where
resources are limited. We do, however, envision approaches
using the entire polyploid genome or representative diploid
genomes will be useful for hybrid and polyploid systems where

quality differences among progenitor reference genomes are
negligible and where similar annotation methods are used for
each.

While we did not specifically test the consequences of dimin-
ishing read depth on the accuracy of read assignment, it is
reasonable to assume an inverse relationship between the num-
ber of reads per sample and ‘Ambiguity.’ The datasets used
here contained relatively high coverage of the transcriptome,
averaging approximately 26.6 million reads per library with low
ambiguity for most pipelines. Reducing the number of reads
per library either will decrease the overall number of reads
assigned (for pipelines that discard reads) or will reduce the
signal for pipelines that statistically partition reads. Therefore,
it is generally advisable to scale the depth of sequencing with
ploidy when partitioning homoeolog expression to account for
the additional gene space.

Consequences of inaccurate quantification
for inferences of polyploid evolution

Beyond the narrow issue of evaluation of homoeolog quan-
tification, our interest lies in identifying a reasonable set of
methods to address biological and evolutionary questions
concerning polyploidy. DE is commonly among the first
transcriptomic analyses performed, providing a generalized look
at the extent of expression divergence. For polyploid species,
the relative expression of each subgenome is of particular
interest, which may provide insights into homoeolog bias,
expression level dominance, cis–trans resolution, putative sub-/
neo-functionalization of homoeologs and other phenomena
[14]. In general, GSNAP-PolyCat and EAGLE-RC best represented
the expected DE between homoeologs, followed closely by
Kallisto and Salmon (Figure 3). The standout, RSEM, performed
significantly more poorly than the rest despite its intended
application to isoform quantification; we therefore advise
caution when using RSEM for duplicate gene analyses. With
respect to DE inference, both DESeq2 and EBSeq resulted in
reasonable performance metrics, with the choice likely being
the stringency level and parameters preferred.

In contrast to the general robustness of the DE results,
homoeolog read ambiguity and the choice of quantification
pipelines strongly influence our interpretation of co-expression
relationships among genes. In particular, we are interested
in detecting coordination among homoeologous genes in
polyploids. The most significant error evident is the false
detection of positive correlations where none exists. Notably,
following the best-performing EAGLE-RC, those methods that
discard reads (i.e. GSNAP-PolyCat, HyLiTE and Bowtie2) far
outperformed the other methods, particularly for those genes
with higher ‘Ambiguity.’ These results were consistent for the
two normalization methods tried, i.e. rlog and log2RPKM, and
may indicate a general preference for discarding ambiguous
reads when the biological question depends on an accurate
assessment of differential co-expression.

The inference of co-expression network topology, on the
other hand, was generally less sensitive to the quantification
method, but rather was dependent on method of network con-
struction. This is probably because the multivariate nature of
co-expression relationships mitigates the influence of individ-
ual and random quantification errors. Intuitively, however, the
inferred topology of a subnetwork containing low ‘Ambiguity’
genes should be more reliable than a subnetwork containing
higher ‘Ambiguity’ genes. In order to compare network topolo-
gies between subgenomes, choosing the appropriate network
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construction method becomes critical; otherwise incorrect and
even opposite conclusions may be reached (Figure 6). For exam-
ple, both rank-based binary and WGCNA reconstructions of the
present datasets suggest that the A-subnetwork is more tightly
interconnected than the D-subnetwork, whereas the less reli-
able Z-statistic-based binary networks suggest they are equally
interconnected.

Conclusions
In this study, we present an analytical workflow from homoe-
olog expression quantification to a series of downstream anal-
ysis to infer key phenomena of polyploid expression evolution.
By examining the extent and consequences of read ambiguity,
we demonstrated the potential artifacts that may affect our
understanding of duplicate gene expression, such as an over-
estimation of homoeolog co-regulation and the incorrect infer-
ence of subgenome asymmetry in network topology. Such errors
may be reduced by mitigating technical factors that influence
ambiguity, i.e. sequencing strategy and fundamental resources
(i.e. genomes and/or resequencing). While the focus here is
on analyses of tetraploids, many of the pipelines suitable for
tetraploid analyses can be used for higher-order polyploids, with
additional caveats regarding multidimensional read ambiguity
and differences in phylogenetic distance among subgenomes.
Although the collection of scenarios and methods tested in this
study is not comprehensive and may be superseded by those yet
to be developed, our work introduces the metric of ‘Ambiguity’
and designates a set of reasonable practices applicable to other
polyploid systems.

Key Points
• We present an analytical workflow to evaluate a

variety of bioinformatic method choices at different
stages of polyploid RNA-seq analysis, from homoe-
olog expression quantification to downstream analy-
sis used to infer key phenomena of polyploid expres-
sion evolution.

• We used transcriptomic data from the cotton genus
(Gossypium) as an example to examine the extent and
consequences of homoeolog read ambiguity.

• Our results show that EAGLE-RC and GSNAP-PolyCat
outperform other quantification pipelines tested, and
their derived expression datasets best represent the
expected results in downstream analyses of DE and
co-expression network analysis.

• We illuminate the potential artifacts that may affect
our understanding of duplicate gene expression,
including an overestimation of homoeolog co-
regulation and the incorrect inference of subgenome
asymmetry in network topology.

• Overall, our work points to a set of reasonable prac-
tices that are broadly applicable to the evolutionary
exploration of polyploids.

Supplementary data

Supplementary data are available online at https://academi
c.oup.com/bib.
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