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Abstract: In this paper, we investigate analytical solutions of multi-time scale fractional stochastic
differential equations driven by fractional Brownian motions. We firstly decompose homogeneous
multi-time scale fractional stochastic differential equations driven by fractional Brownian motions into
independent differential subequations, and give their analytical solutions. Then, we use the variation
of constant parameters to obtain the solutions of nonhomogeneous multi-time scale fractional
stochastic differential equations driven by fractional Brownian motions. Finally, we give three
examples to demonstrate the applicability of our obtained results.
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1. Introduction

In the last few years, the interest of the scientific community towards fractional calculus has
experienced an exceptional boost, and so its applications can now be found in a great variety of
scientific fields—for example, anomalous diffusion [1–3], medicine [4], solute transport [5], random
and disordered media [6–8], information theory [9], electrical circuits [10], and so on. The reason for
the success of fractional calculus in modeling natural phenomena is that the operators are nonlocal,
which makes them suitable to describe the long memory or nonlocal effects characterizing most
physical phenomena.

Fractional stochastic differential equations (FSDEs) are an important class of differential equations.
They can model the dynamics of complex systems in finance [8,11–13], and in physical problems [14,15].
For example, in [8], the authors combined stochastic contact process and compound Poisson process to
construct a novel microscope complex price dynamics, in an attempt to reproduce and characterize the
complex dynamics of financial markets. In finance, fractional permutation entropy, sample entropy,
and fractional sample entropy play important roles. It is well-known that entropy is used to quantify
the complexity and uncertainty in financial time series and others. At the same time, the necessity
of a powerful technique for solving these new types of equations arose, becoming one of the main
research objects in the fields of theoretical and applied sciences. In the available literature, there exist
various methods for solving fractional stochastic differential equations, such as analytical methods
and numerical algorithms [16–31].

Analytical solutions of fractional partial equations are of fundamental importance in describing
and understanding physical phenomena, since all the parameters are expressed in the form of infinite
series, and therefore the influence of individual parameters on natural phenomena can be easily
examined. Additionally, the analytical solutions make it easy to study asymptotic behaviors of the
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solutions, which are usually difficult to obtain through numerical calculations. Besides, the analytical
solutions may serve as tools in assessing the computational performance and accuracy of numerical
solutions. Especially, for stochastic differential systems, analytical solutions may provide a useful
tool for assessing the influence of some parameters on statistical properties, permutation entropy,
fractional permutation entropy, sample entropy, and fractional sample entropy. It is well-known that
entropy theory is an important issue because it enables hydraulic and control engineers to quantify
uncertainties, determine risk and reliability, estimate parameters, model processes, and design more
robust and reliable hydraulic canals control systems.

To the authors’ knowledge, the analytical solutions of the FSDEs driven by fractional Brownian
motions (fBms) have not yet been reported in the literature. X.J. Wang et al. [32] considered the following
semilinear parabolic SPDEs in V, driven by an infinite dimensional fractional Brownian motion,

dX(t) + AX(t)dt = F(X(t))dt + ΦdBH(t), X(0) = x0, t ∈ [0, T], (1)

where F : V → V and Φ : V → V are deterministic mappings. Motivated by their work, we investigate
the analytical solution of the following multi-time scale fractional stochastic differential equation:

dY(t)
dt

+ Dα
t
(
a(t)Y(t) + p(t)

)
=
(
b(t)Y(t) + q(t)

)
+
(
σ(t)Y(t) + v(t)

)dBH(t)
dt

, Y(0) = y0, (2)

where b, p, σ, q, a, v ∈ C([0, T]), 0 < α ≤ 1, BH is a fractional Brownian motion defined on [0, T], and y0

is a real-valued random variable on a complete probability space (Ω,F ,P), and it is independent of
BH(t) for all t ∈ [0, T]. The detailed definitions of the Riemann–Liouville fractional derivative and the
fractional Laplacian operator and fBm are given in the next section (or see [33–37]).

The rest of this paper is organized as follows. In Section 2, we give some basic definitions of fBm
and fractional calculus, which will be used in the paper. In Section 3, we give the solution of multi-time
scale FSDEs driven by fBms. In Section 4, we give three examples to demonstrate the applicability of
the obtained results. In Section 5, we give conclusions.

2. Preliminaries

In this section, we give some basic definitions of fractional Brownian motion and fractional
calculus, which will be used throughout this paper. For details, one can refer to [37–40].

Let (Ω,F ,P) be a complete probability space, and [0, T] be a finite time interval.

Definition 1. A one-dimensional fractional Brownian motion BH = {BH(t), t ∈ [0, T]} of Hurst index
H ∈ (0, 1) on [0, T] is a continuous and centered Gaussian process on some probability space (Ω,F ,P) with
covariance function

E[BH(t)BH(s)] =
1
2
(t2H + s2H − |t− s|2H), t, s ∈ [0, T].

If H = 1
2 , then the corresponding fBm is the usual standard Brownian motion. If H > 1

2 , then the
process fBm exhibits a long-range dependence. In this paper, we always assume H ∈ ( 1

2 , 1).

Lemma 1. (Fractional Itô formula) [39] If X(t) satisfies that

dX(t) = u(t)dt + v(t)dBH(t), (3)

where u, v are given functions. Furthermore, let f ∈ C2(R), and assume that f ′(X) and f ′′(X) exist and are
continuous for X ∈ R. Then, it has

d f (X(t)) = ( f ′(X(t))u(t) + H f ′′(X(t))t2H−1v2(t))dt + f ′(X(t))v(t)dBH(t). (4)
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It is interesting to note that if H = 1
2 is formally substituted in Equation (4), then the well-known

Itô formula for classical Brownian motion is obtained.
In the following, we recall some definitions about fractional calculus and some special functions.

Definition 2. Let α > 0. Then, the Riemann–Liouville fractional integral of order α with respect to t is defined as

Iα
t f (t) =

1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, t > 0, (5)

where Γ(·) is the Gamma function.

Definition 3. Let f ∈ C([0, T]) and m− 1 < α ≤ m, where m ∈ N+. The Riemann–Liouville fractional
derivative of order α with respect to t is defined as

Dα
t f (t) =

1
Γ(m− α)

dm

dtm

∫ t

0
(t− τ)m−α−1 f (τ)dτ, t > 0. (6)

There exists the following relationship between the Riemann–Liouville fractional integral and the
Riemann–Liouville fractional derivative.

Property 1. Let m− 1 < α ≤ m, where m ∈ N+ [37]. Then the statements are true:

(Dα
t Iα

t f )(t) = f (t), (Iα
t Dα

t f )(t) = f (t)−
m

∑
k=1

(Im−α
t f )(m−k)(0+)
Γ(α− k + 1)

tα−k, t > 0. (7)

Definition 4. Suppose that the Laplacian (−4) has a complete set of orthonormal eigenfunctions ϕn

corresponding to eigenvalues λ2
n on a bounded region D; i.e., (−4)ϕn = λ2

n ϕn on D; B(ϕn) = 0 on
∂D, where B(ϕn) is one of the standard three homogeneous boundary conditions [33]. Let

G =

{
g =

∞

∑
n=1

cn ϕn, cn = 〈g, ϕn〉,
∞

∑
n=1
|cn|2|λn|α < ∞

}
, (8)

then for any g ∈ G, (−4)
α
2 is defined by

(−4)
α
2 g =

∞

∑
n=1

cnλα
n ϕn. (9)

Lemma 2. Suppose that the one-dimensional Laplacian (−4) defined with Dirichlet boundary conditions at
x = 0 and x = L has a complete set of orthonormal eigenfunctions ϕn corresponding to eigenvalues λ2

n on a
bounded region [0, L] [33]. If (−4)ϕn = λ2

n ϕn on [0, L], and ϕn(0) = ϕn(L) = 0, then, the eigenvalues are
given by λ2

n = n2π2

L2 , and the corresponding eigenfunctions are ϕn(x) = sin(nπx/L), n = 1, 2, . . ..

Definition 5. The two-parameter Mittag–Leffler function is defined by [37]

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α, β > 0. (10)

The one-parameter Mittag–Leffler function is defined by

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, α > 0. (11)
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In particular, when β = 1, the two-parameter Mittag–Leffler function coincides with the
one-parameter Mittag–Leffler function; i.e., Eα,1(z) = Eα(z).

Definition 6. A generalized Mittag–Leffler function is defined by [37]

Eα,m,l(z) =
∞

∑
k=0

ckzk, (12)

with

c0 = 1, ck =
k−1

∏
j=0

Γ(α(jm + 1))
Γ(α(jm + l + 1) + 1)

, (13)

where α > 0, m > 0, and α(jm + l) > 0.

In particular, when m = 1, there exists the following relationship between the generalized
Mittag–Leffler function and the two-parameter Mittag–Leffler function:

Eα,1,l(z) = Γ(αl + 1)Eα,αl+1(z). (14)

3. Solution Representation for FSDEs Driven by fBms

In this section, we first give an equivalent form of Equation (2) and then investigate its analytical
solution. Before giving its equivalent form, we provide some explanations about the Riemann–Liouville
fractional integral. In [29] (Definition 3.2 and Example 3.1), the authors gave that the integral with
respect to (dt)α defined as

∫ t

0
f (τ)(dτ)α = α

∫ t

0
(t− τ)α−1 f (τ)dτ, t > 0, (15)

where f ∈ C([0, T]) and 0 < α ≤ 1. Based on this definition, we can obtain the following relationship
between the Riemann–Liouville fractional integral and the integral with respect to (dt)α:

∫ t

0
f (τ)(dτ)α = αΓ(α)(Iα

t f )(t). t > 0, (16)

where f ∈ C([0, T]) and 0 < α ≤ 1.
One sees that Equation (2) is equivalent to the following integral equation:

Y(t) = y0 −
1

Γ(1− α)

∫ t

0
(t− τ)−α

(
a(τ)Y(τ) + p(τ)

)
dτ +

∫ t

0

(
b(τ)Y(τ) + q(τ)

)
dτ

+
∫ t

0

(
σ(τ)Y(τ) + v(τ)

)
dBH(τ). (17)

By (15), the above equation can be rewritten as:

Y(t) = y0 −
1

Γ(2− α)

∫ t

0

(
a(τ)Y(τ) + p(τ)

)
(dτ)1−α +

∫ t

0

(
b(τ)Y(τ) + q(τ)

)
dτ

+
∫ t

0

(
σ(τ)Y(τ) + v(τ)

)
dBH(τ). (18)

That is to say, Equation (2) is equivalent to the following equation:{
dY(t) = 1

Γ(2−α)

(
a(t)Y(t) + p(t)

)
(dt)1−α +

(
b(t)Y(t) + q(t)

)
dt +

(
σ(t)Y(t) + v(t)

)
dBH(t),

Y(0) = y0.
(19)
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Therefore, we only need to solve Equation (19). For obtaining the solution of Equation (19),
we first discuss the solution of the correspondent homogeneous case in the next subsection.

3.1. Solution Representation for Linear Homogeneous Case

The corresponding homogeneous differential equation can be written as:{
dY(t) = 1

Γ(2−α)
a(t)Y(t)(dt)1−α + b(t)Y(t)dt + σ(t)Y(t)dBH(t),

Y(0) = y0.
(20)

To obtain the solution of Equation (20), we decompose Equation (20) into three subequations:

dY f (t) =
1

Γ(2− α)
a(t)Y f (t)(dt)1−α, Y f (0) = y f

0 , (21)

dYd(t) = b(t)Yd(t)dt, Yd(0) = yd
0, (22)

dYs(t) = σ(t)Ys(t)dBH(t), Ys(0) = ys
0, (23)

where y f
0 , yd

0, ys
0 are constants which satisfy y f

0 yd
0ys

0 = y0. Obviously, we have

d(Y f YdYs) = YdYs(dY f ) + Y f Ys(dYd) + Y f Yd(dYs) (24)

= YdYs 1
Γ(2− α)

a(t)Y f (t)(dt)1−α + Y f Ysb(t)Yd(t)dt + Y f Ydσ(t)Ys(t)dBH(t) (25)

=
1

Γ(2− α)
a(t)Y(t)(dt)1−α + b(t)Y(t)dt + σ(t)Y(t)dBH(t). (26)

This implies that Y = Y f YdYs is the solution of Equation (20).
In the following, our aim is to solve Equations (21) and (23), because the solution of Equation (22)

is well-known. Firstly, we consider the solution of Equation (21).

Lemma 3. Let 0 < α < 1 and a ∈ C([0, T]). Then, the solution of Equation (21) is given by

Y f (t) =
∞

∑
i=0
Ri

ay f
0 , (27)

whereRa is an operator defined on C([0, T]):

(Ra ϕ)(t) =
1

Γ(1− α)

∫ t

0
(t− τ)−αa(τ)ϕ(τ)dτ, (28)

andR0
a is an identity operator, andRi

a denotes the i-times composition operator ofRa, i = 1, 2, . . ..

Proof. Note that Equation (21) is equivalent to the following integral equation:

Y(t) = y0 +
1

Γ(1− α)

∫ t

0
(t− τ)−αa(τ)Y(τ)dτ. (29)

Construct a successive approximate sequence {Y f
(k)} defined as:

Y f
(k+1)(t) = y0 +

1
Γ(1− α)

∫ t

0
(t− τ)−αa(τ)Y f

(k)(τ)dτ, k = 0, 1, 2, . . . , (30)
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where we choose Y f
(0)(t) ≡ y f

0 . Then, by induction on k, we can obtain

Y f
(k)(t) =

k

∑
i=0
Ri

ay f
0 , k = 0, 1, 2, . . . , (31)

where the operatorRa is defined in (28).

Next, we will show that the series
∞
∑

i=0
(Ri

ay f
0)(t) is uniformly convergent with respect to t ∈ [0, T].

Because a(t) ∈ C([0, T]), there exists M > 0 such that ‖a‖ ≤ M for any t ∈ [0, T]. Based on this
consideration, we have

∥∥(Ray f
0)(t)

∥∥ =

∥∥∥∥∥ y f
0

Γ(1− α)

∫ t

0
(t− τ)−αa(τ)dτ

∥∥∥∥∥ ≤ y f
0 Mt1−α

Γ(2− α)
. (32)

Furthermore, suppose that the following relationship

∥∥(Ri
ay f

0)(t)
∥∥ ≤ y f

0 Miti(1−α)

Γ(i(1− α) + 1)
(33)

holds for any fixed i ∈ N. Let us prove that the relationship (33) is also valid for i + 1. According to
the induction hypothesis, we get

∥∥(Ri+1
a y f

0)(t)‖ =
1

Γ(1− α)

∥∥∥∥∥
∫ t

0
(t− τ)−αa(τ)(Ri

ay f
0)(τ)dτ

∥∥∥∥∥ (34)

≤
y f

0 Mi+1

Γ(1− α)Γ(i(1− α) + 1)

∫ t

0
(t− τ)−ατi(1−α)dτ. (35)

Making use of a variable substitution τ = ωt, we have

∫ t

0
(t− τ)−ατi(1−α)dτ = t(i+1)(1−α)

∫ 1

0
(1−ω)−αωi(1−α)dω = t(i+1)(1−α) Γ(1− α)Γ(i(1− α) + 1)

Γ((i + 1)(1− α) + 1)
, (36)

where B(·, ·) is the Beta function defined as

B(z, w) =
∫ 1

0
(1− τ)z−1τw−1dτ, z, w > 0. (37)

Here we used the relationship between the Beta function and the Gamma function:

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
. (38)

So it has
∥∥(Ri+1

a y f
0)(t)

∥∥ ≤ y f
0 Mi+1t(i+1)(1−α)

Γ((i+1)(1−α)+1) . Hence, for any i ∈ N, we have

∥∥(Ri
ay f

0)(t)
∥∥ ≤ y f

0 Miti(1−α)

Γ(i(1− α) + 1)
. (39)

That is to say, the series
∞
∑

i=0
(Ri

ay f
0)(t) is uniformly convergent with respect to t ∈ [0, T], and the

sum function is the unique solution of Equation (21). This completes the proof of this lemma.

With respect to this lemma, we have the following remarks.
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Remark 1. In particular, if α = 0, then we have

(Ri
ay f

0)(t) =
y f

0
( ∫ t

0 a(τ)dτ
)i

i!
, i = 1, 2, . . . . (40)

Obviously, (40) is valid for i = 1. Suppose that (40) holds for any fixed i. Let us verify that (40) also holds
for i + 1. According to the induction hypothesis, we have

(Ri+1
a y f

0)(t) = y f
0

∫ t

0
a(τ)

(
∫ τ

0 a(s)ds)i

i!
dτ = y f

0

∫ t

0

(
∫ τ

0 a(s)ds)i

i!
d

( ∫ τ

0
a(s)ds

)
=

y f
0(
∫ t

0 a(τ)dτ)i+1

(i + 1)!
. (41)

So, (40) holds for any positive integer. Therefore, the solution of the following initial value problem

dY f (t)
dt

= a(t)Y f (t), Y f (0) = y f
0 (42)

is given by

Y f (t) = y f
0 exp

( ∫ t

0
a(τ)dτ

)
. (43)

This coincides with the classical result.

Remark 2. In [29], the author gave the solution of Equation (21) as

Y f (t) = y f
0 E1−α

(
(1− α)

∫ t

0
(t− τ)−αa(τ)dτ

)
. (44)

We think the representation of the solution of Equation (21) is wrong. For example, α = 1
2 , and a(t) = tβ,

it has ∫ t

0
(t− τ)−ατβdτ =

Γ(1− α)Γ(1 + β)

Γ(2− α + β)
t1−α+β. (45)

Therefore, according to the result in [29], the solution is

Y f (t) = y f
0 E 1

2

(
Γ( 3

2 )Γ(1 + β)

Γ( 3
2 + β)

t
1
2+β

)
. (46)

However, we find that Y f (t) defined in (46) is not the solution of Equation (21).
In fact, by using our obtained result in Lemma 3, the solution of Equation (21) is

Y f (t) =
∞

∑
i=0
Ri

ay f
0 = y f

0 E 1
2 ,1+2β,2β

(
t

1
2+β
)

, t ∈ [0, T]. (47)

Next, we consider the solution of Equation (23).

Lemma 4. Let 1
2 < H < 1 and σ ∈ C([0, T]). Then the solution of Equation (23) is

Ys(t) = ys
0 exp

(
− H

∫ t

0
τ2H−1σ2(τ)dτ +

∫ t

0
σ(τ)dBH(τ)

)
. (48)
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Proof. Let

Ys(t) = ys
0 exp

( ∫ t

0
p1(τ)dτ +

∫ t

0
p2(τ)dBH(τ)

)
(49)

be the solution of Equation (23). Then, it satisfies Equation (23); i.e.,

dYs(t) = ys
0σ(t) exp

( ∫ t

0
p1(τ)dτ +

∫ t

0
p2(τ)dBH(τ)

)
dBH(t). (50)

On the other hand, applying fractional Itô formula to Ys(t) in (49), we have

dYs(t) = x0 exp

( ∫ t

0
p1(τ)dτ +

∫ t

0
p2(τ)dBH(τ)

)(
p1(t) + Ht2H−1 p2

2(t)
)

dt + p2(t)dBH(t). (51)

Subtracting (50) from (51), we have

p2(t) = σ(t), p1(t) = −Ht2H−1σ2(t). (52)

Therefore, the solution of Equation (23) is

Ys(t) = ys
0 exp

(
− H

∫ t

0
τ2H−1σ2(τ)dτ +

∫ t

0
σ(τ)dBH(τ)

)
. (53)

The proof of this lemma is completed.

At this stage, we can establish the following theorem.

Theorem 1. Let a, b, σ ∈ C([0, T]), 0 < α < 1, and 1
2 < H < 1. Then, the solution of Equation (20) is given by

Y(t) = exp

( ∫ t

0

(
b(τ)− Hτ2H−1σ2(τ)

)
dτ +

∫ t

0
σ(τ)dBH(τ)

)
∞

∑
i=0
Ri

ay0, (54)

whereRa is defined as (28), andRi
a denotes the i-times composition operator ofRa.

We denote

Φ(t) = exp

( ∫ t

0
b(τ)dτ − H

∫ t

0
τ2H−1σ2(τ)dτ +

∫ t

0
σ(τ)dBH(τ)

)
∞

∑
i=0
Ri

a. (55)

One knows that Φ is the fundamental solution of Equation (20). In the following, we will show
that Φ is invertible on [0, T] in an algebraic sense.

Theorem 2. Let Φ be the fundamental solution of Equation (20). Then Φ is invertible on [0, T], and its inverse is

Φ−1 = exp

(
−
∫ t

0

(
b(τ)− Hτ2H−1σ2(τ)

)
dτ −

∫ t

0
σ(τ)dBH(τ)

)
∞

∑
i=0

(−1)iRi
a, (56)

whereRa is the operator defined as (28).
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Proof. From Theorem 1, one knows that the following equation

dZ(t) = − 1
Γ(2− α)

a(t)Z(t)(dt)1−α −
(
b(t)− 2Ht2H−1σ2(t)

)
Z(t)dt− σ(t)Z(t)dBH(t), Z(0) = z0 (57)

has a unique solution Z(t) = z0Ψ(t), where Ψ(t) is the fundamental solution of Equation (57) given by

Ψ(t) = exp

(
−
∫ t

0

(
b(τ)− Hτ2H−1σ2(τ)

)
dτ −

∫ t

0
σ(τ)dBH(τ)

)
∞

∑
i=0

(−1)iRi
a, (58)

and follows that

dΨ(t) = − 1
Γ(2− α)

a(t)Ψ(t)(dt)1−α −
(
b(t)− 2Ht2H−1σ2(t)

)
Ψ(t)dt− σ(t)Ψ(t)dBH(t). (59)

Additionally, since Φ satisfies that

dΦ(t) =
1

Γ(2− α)
a(t)Φ(t)(dt)1−α + b(t)Φ(t)dt + σ(t)Φ(t)dBH(t). (60)

Then, by the product rule, we have

d(ΦΨ) = Ψ(dΦ) + Φ(dΨ) + dΦdΨ = 0. (61)

This implies that ΦΨ ≡ constant on t ∈ [0, T]. On the other hand, we note that Φ(0)Ψ(0) = 1.
Thus, Φ(t)Ψ(t) ≡ 1 on t ∈ [0, T]. This implies that Φ is invertible on [0, T], and its inverse is Ψ.
The proof is completed.

3.2. Solution Representation for Linear Nonhomogeneous Case

In this subsection, we consider the solution of Equation (2). We use the variation of constants
parameters to find a particular solution Yp of Equation (2). For this purpose, we define a random function

Yp(t) = Φ(t)c(t), (62)

where c(t) is an unknown random function with c(0) = y0. Let us assume that Yp(t) is a solution of
Equation (2).

By the product rule to Yp, we have

dYp(t) = dΦ(t)c(t) + Φ(t)dc(t) + dΦ(t)dc(t). (63)

Additonally, since Φ is invertible, it has

dc(t) = Φ−1(dYp(t)− dΦ(t)c(t)− dΦ(t)dc(t)
)
. (64)

Furthermore, since Yp(t) is the solution of Equation (2) and Φ is the solution of Equation (20), we have

dc(t) = Φ−1(t)p(t)(dt)1−α + Φ−1(t)q(t)dt + Φ−1(t)v(t)dBH(t)−Φ−1dΦ(t)dc(t). (65)

Additionally, since

dΦ(t)dc(t) = 2Ht2H−1v(t)σ(t)dt. (66)

Therefore, we have

dc(t) = Φ−1(t)p(t)(dt)1−α + Φ−1(t)
(
q(t)− 2Ht2H−1v(t)σ(t)

)
dt + Φ−1(t)v(t)dBH(t), (67)
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and

c(t) = c(0) +
∫ t

0
Φ−1(τ)p(τ)(dτ)1−α +

∫ t

0
Φ−1(τ)

(
q(τ)− 2Hτ2H−1v(τ)σ(τ)

)
dτ

+
∫ t

0
Φ−1(τ)v(τ)dBH(τ). (68)

Thus, the solution Y(t) of Equation (2) is

Y(t) = Φ(t)y0 +
∫ t

0
Φ(t, τ)p(τ)(dτ)1−α +

∫ t

0
Φ(t, τ)

(
q(τ)− 2Hτ2H−1v(τ)σ(τ)

)
dτ

+
∫ t

0
Φ(t, τ)v(τ)dBH(τ), (69)

where Φ(t, τ) = Φ(t)Φ−1(τ), Φ and Φ−1 are defined as (55) and (56), respectively.
Based on the above analysis, we can establish the following theorem.

Theorem 3. Let a, p, q, v, σ ∈ C[0, T], 0 < α < 1 and 1
2 < H < 1. Then the solution of Equation (2) is given by

Y(t) = Φ(t)y0 +
∫ t

0
Φ(t, τ)p(τ)(dτ)1−α +

∫ t

0
Φ(t, τ)

(
q(τ)− 2Hτ2H−1v(τ)σ(τ)

)
dτ

+
∫ t

0
Φ(t, τ)v(τ)dBH(τ), (70)

where Φ(t, τ) = Φ(t)Φ−1(τ), Φ and Φ−1 are defined as (55) and (56), respectively.

4. Applications

In this section, we demonstrate some applications of our obtained results.

Example 1. In this example, we consider a a mathematical model that can simulate the prices of financial
instruments (e.g., stocks).

Let (Ω,F ,P) be a probability space, where Ω is called a sample space, F is a set of all events and possible
statements about the prices on the market, and P is the usual probability measure. The price of an asset Zt in
classical Black–Scholes model is assumed to follow Geometric Brownian motion given by

dZt =
(

µ +
1
2

σ2
)

Ztdt + σZtdWt, Z0 = z0, (71)

where Wt is the standard Brownian motion with respect toP , σ > 0 is the diffusion parameter, and µ ∈ R is the drift.
The classical Black–Scholes model was certainly a breakthrough in the option pricing apparatus, because in

the financial market, one needs to consider the influence of maturity time and the strike price on the financial
derivatives or other factors. For these reasons, the Black–Scholes model with subdiffusion term is assumed to
follow fractional Brownian motion given by [41]

dZt

dt
+ aDα

t Zt =
(

µ +
1
2

σ2
)

Zt + σZt
dBH(t)

dt
, Z0 = z0, (72)

where BH is the fractional Brownian motion with respect to P , H ∈ ( 1
2 , 1), a > 0 is the subdiffusion parameter,

σ > 0 is the diffusion parameter, and µ ∈ R is the drift.

For obtaining the solution of Equation (72), we divide three steps to solve it:
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Step 1: According to (19), Equation (72) is equivalent to the following integral equation:{
dZt =

a
Γ(2−α)

Zt(dt)1−α +
(
µ + 1

2 σ2)Ztdt + σZtdBH(t),
Z0 = z0.

(73)

So, we only need to solve (73). Furthermore, according to (21), (22), and (23), Zt can be expressed
as Zt = Z f

t Zd
t Zs

t , where Z f
t is the solution of the following equation:

dZ f
t =

a
Γ(2− α)

Z f
t (dt)1−α, Z f

0 = z f
0 , (74)

Zd
t is the solution of the following equation:

dZd
t =

(
µ +

1
2

σ2)Zd
t dt, Zd

0 = zd
0, (75)

and Zs
t is the solution of the following equation:

dZs
t = σZs

t dBH(t), Zs
0 = zs

0, (76)

and also z f
0 zd

0zs
0 = z0.

Step 2: Solve Equations (74)–(76), respectively. According to Lemma 3, the solution of
Equation (74) is Z f

t = z f
0 E1−α(at1−α). According to Lemma 4, the solution of Equation (76) is

Zs
t = zs

0 exp

(
− σ2t2H

2 + σBH(t)

)
.

Step 3: According to Theorem 1, Zt is given by

Zt = z0E1−α(at1−α) exp

(
− σ2t2H

2
+ σBH(t) +

(
µ +

1
2

σ2
)

t

)
. (77)

Example 2. Consider the following fractional stochastic partial differential equation

∂U(x, t)
∂t

+ Dα
t U(x, t) = −kp1(−4)

p1
2 U(x, t)− kp2(−4)

p2
2 U(x, t) + U(x, t)

dBH(t)
dt

, (78)

with the nonhomogeneous Dirichlet boundary conditions

U(0, t) = U(L, t) = 0, (79)

and the initial condition

U(x, 0) = φ(x), (80)

where (x, t) ∈ [0, L]× [0, T] (L and T are constants), 0 < α < 1, 0 < p1 ≤ 1, 1 < p2 ≤ 2, 1
2 < H < 1,

and ϕ(x) is a random function.

According to Lemma 2, the eigenvalues λ2
n (n = 1, 2, . . .) of the operator (−4) with the

homogeneous boundary conditions are λ2
n = n2π2/L2, and the corresponding eigenfunctions are

ϕn(x) = sin(nπx/L), n = 1, 2, . . .. Then we set

U(x, t) =
∞

∑
n=1

Un(t) sin(nπx/L). (81)
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Substituting (81) into (78) and (80) leads to the following equation:

dUn(t)
dt

+ Dα
t Un(t) = −kp1 λ

p1
n Un(t)− kp2 λ

p2
n Un(t) + Un(t)

dBH(t)
dt

, (82)

with the initial condition

Un(0) =
2
L

∫ L

0
φ(x) sin(nπx/L)dx. (83)

By Theorem 1, the solution of Equation (82) with the initial condition (83) is

Un(t) = Un(0) exp

((
− kp1 λ

p1
n − kp2 λ

p2
n

)
t− t2H

H
+ BH(t)

)
E1−α(t1−α). (84)

Therefore, the solution of Equation (78) with the boundary conditions (79) and the initial
condition (80) is

u(x, t) =
∞

∑
n=1

Un(0) exp

((
− kp1 λ

p1
n − kp2 λ

p2
n

)
t− t2H

H
+ BH(t)

)
E1−α(t1−α) sin(nπx/L). (85)

Example 3. Consider the following fractional stochastic partial differential equation

∂U(x, t)
∂t

+ Dα
t U(x, t) = −kp1(−4)

p1
2 U(x, t)− kp2(−4)

p2
2 U(x, t) + v(t)

dBH(t)
dt

+ f (x, t), (86)

with the nonhomogeneous Dirichlet boundary conditions

U(0, t) = U(L, t) = 0, (87)

and the initial condition

U(x, 0) = ψ(x), (88)

where (x, t) ∈ [0, L]× [0, T] (L and T are constants), 0 < α < 1, 0 < p1 ≤ 1, 1 < p2 ≤ 2, 1
2 < H < 1, and

ϕ(x) is a random function.

According to Lemma 2, the eigenvalues λ2
n (n = 1, 2, . . .) of the operator (−4) with the

homogeneous boundary conditions are λ2
n = n2π2/L2, and the corresponding eigenfunctions are

ϕn(x) = sin(nπx/L), n = 1, 2, . . .. Then we set

U(x, t) =
∞

∑
n=1

Un(t) sin(nπx/L), f (x, t) =
∞

∑
n=1

fn(t) sin(nπx/L). (89)

Substituting (89) into (86) and (88) leads to the following equation

dUn(t)
dt

+ Dα
t Un(t) = −kp1 λ

p1
n Un(t)− kp2 λ

p2
n Un(t) + v(t)

dBH(t)
dt

+ fn(t), (90)

with the initial condition

Un(0) =
2
L

∫ L

0
ψ(x) sin(nπx/L)dx. (91)
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By Theorem 3, the solution of Equation (86) with the initial condition (87) is

Un(t) = Φ(t)Un(0) +
∫ t

0
Φ(t, τ) fn(τ)(dτ)1−α +

∫ t

0
Φ(t, τ) fn(τ)dτ +

∫ t

0
Φ(t, τ)v(τ)dBH(τ), (92)

where

Φ(t) = exp

(
− (kp1 λ

p1
n + kp2 λ

p2
n )t

)
E1−α(t1−α), (93)

Φ−1(t) = exp

(
(kp1 λ

p1
n + kp2 λ

p2
n )t

)
E1−α(−t1−α), (94)

and Φ(t, τ) = Φ(t)Φ−1(τ). Therefore, the solution of Equation (86) with the boundary condition (87)
and the initial condition (88) is

U(x, t) =
∞

∑
n=1

Un(t) sin(nπx/L), (95)

where Un(t) is defined in (92).

5. Conclusions

In this paper, we gave analytical solutions of multi-time scale fractional stochastic differential
equations driven by fractional Brownian motions. We first decomposed the homogeneous multi-time
scale fractional stochastic differential equation driven by fractional Brownian motion into independent
differential subequations, and gave its analytical solution. Then, we used the variation of constants
parameters to obtain the solution of the nonhomogeneous multi-time scale fractional stochastic
differential equation driven by fractional Brownian motion. Finally, we demonstrated the applicability
of our obtained results in solving FSDEs.

FSPDEs are an important class of differential equations. In this paper, we combined our obtained
results about fractional stochastic ordinary differential equations and spectral representation technique
to give the analytical solutions of some FSPDEs. In the future, we will investigate entropy analyses
including permutation entropy, fractional permutation entropy, sample entropy, and fractional sample
entropy with the help of our obtained analytical solutions in some practical problems. On the
other hand, we plan to use the obtained analytical solutions of FSPDEs to assess the computational
performance and accuracy of their numerical solutions which we will develop.
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