
1Scientific Reports |         (2019) 9:14130  | https://doi.org/10.1038/s41598-019-50479-4

www.nature.com/scientificreports

Unbalanced Expression of ICOS and 
PD-1 in Patients with Neuromyelitis 
Optica Spectrum Disorder
Qun Xue1,2,3, Xiaoping Li1,2, Yanzheng Gu2,3, Xiaozhu Wang1, Mingyuan Wang4, Jingluan Tian1, 
Xiaoyu Duan1, Hanqing Gao1, Xiaopei Ji1, Xiaoming Yan1, Wanli Dong1, Qi Fang1,2 & 
Xueguang Zhang2,3

Neuromyelitis optica spectrum disorder (NMOSD) likely results from humoral immune abnormalities. 
The role that helper T cells play in the pathogenesis of this disease is not fully understood. To ascertain 
the clinical significance of two important costimulatory molecules required for T-cell activation in the 
peripheral blood of patients with NMOSD, we examined the expression levels of a membrane- and 
soluble-type inducible costimulatory molecule (ICOS), its ligand (ICOSL), programmed death-1 (PD-1),  
and its ligand (PD-L1) in the peripheral blood of 30 patients with NMOSD and compared these levels 
with those in patients with longitudinally extensive transverse myelitis (LETM), those with optic 
neuritis (ON), and healthy controls (HCs). Our results showed that the ICOS/ICOSL and PD-1/PD-L1 
pathways may play important roles in the early stages of NMOSD pathogenesis. ICOS and PD-1 are 
potential therapeutic targets and valuable biomarkers for the differential diagnosis of early-stage 
NMOSD.

Neuromyelitis optica spectrum disorder (NMOSD) refers to a class of demyelinating diseases of the central nerv-
ous system (CNS) characterized by longitudinally extensive transverse myelitis (LETM) and severe optic neuritis 
(ON). It generally occurs among young women and is associated with a high disability rate. Because of its asso-
ciation with the specific antibody aquaporin 4-IgG (AQP4-IgG), NMOSD was previously thought to be a CNS 
autoimmune disease primarily mediated by humoral immunity1,2. However, B cell depletion therapy does not 
alleviate the disease in all cases. In addition, the NMOSD pathological process cannot be completely explained 
by humoral immune abnormalities in antibody-negative patients with NMOSD. Recently, in-depth research con-
cerning NMOSD pathogenesis and disease models have shown it to be a neurological immune disease with the 
involvement of both T lymphocytes and B lymphocytes. Therefore, T lymphocyte immunity might play an impor-
tant role in the early stages of this disease3,4.

T cell activation requires the major histocompatibility complex (MHC)-peptide complex to provide an initial 
signal as well as a second signal delivered by costimulatory molecules. A lack of costimulatory signals can result 
in T cells that are unable to respond, as well as programmed cell death. The molecules that mediate costimulatory 
signals are called “costimulatory molecules”, and they are primarily divided into two superfamilies: the CD28/B7 
superfamily and the TNFR/TNF (tumor necrosis factor receptor/tumor necrosis factor) superfamily5–7. These 
superfamilies can be divided into positive and negative costimulatory molecules based on their immunomod-
ulatory effects. The inducible costimulatory molecule (ICOS) and its ligand (ICOSL) are important members 
of the CD28/B7 family. Recently, they have received extensive attention in peripheral immune tolerance and 
autoimmune injury research. However, the research concerning the role and mechanism of this pathway in the 
pathological process of NMOSD remains in its infancy. ICOS is induced in activated T cells. It promotes the for-
mation of germinal centers and effective interactions between T and B cells. Immunoglobulin isotype switching is 
attenuated in ICOS-deficient mice, and ICOS/ICOSL primarily transmits positive signals8. By contrast, the other 
pair of molecules, programmed death-1 (PD-1) and its ligand (PD-L1), are a pair of costimulatory molecules 
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recently identified as primarily involved in negative immune modulation. They play crucial roles in the progres-
sion of many diseases. PD-L1, also known as B7-H1, produces an inhibitory signal after binding to its receptor, 
inducing T cell apoptosis and inhibiting T cell activation and proliferation5,9, thereby negatively regulating the 
immune response and participating in the regulation of immune tolerance, responses to microbial infection, and 
tumor immune evasion10,11. In addition to their roles in immuno-oncology mechanisms, which have received 
broad attention, the roles of these costimulatory molecules in autoimmune diseases and the application of related 
monoclonal antibodies in the treatment of these diseases have increasingly become a hot research topic. Among 
these studies, the research on PD-1/PD-L1 in autoimmune diseases such as rheumatoid arthritis and psoriasis 
has achieved significant results12–14.

Even with the latest NMOSD diagnostic criteria, it remains difficult to differentiate aquaporin 4-IgG 
(AQP4-IgG)-negative patients with early-stage NMOSD from those with ON, LETM, or multiple sclerosis (MS). 
ICOS/ICOSL and PD-1/PDL-1 are important molecules that regulate T lymphocytes, and they might be asso-
ciated with pathological changes, such as immune microenvironment disorder, the dangerous upregulation of 
humoral immunity, and cellular immunity, in patients with NMOSD. Therefore, exploring their possible roles 
and mechanisms in NMOSD immunopathology is important for elucidating the pathological mechanism of this 
disease, its qualitative and timely diagnosis, and searching for new targets for therapeutic intervention.

The current study employed immunofluorescence labeling and flow cytometry to examine the expression 
levels of membrane type ICOS (mICOS), membrane type ICOSL (mICOSL), membrane type PD-1 (mPD-1), 
and membrane type PD-L1 (mPD-L1) on the surface of peripheral T cells, B cells, and monocytes cells in patients 
with NMOSD (NMOSD group) and compared these levels with those in patients with LETM (within 1 week of 
disease onset; the LETM group), patients with ON (within 1 week of disease onset; the ON group), and healthy 
controls (the HC group). Additionally, the levels of sICOS, sICOSL, sPD-1, and sPD-L1 in serum samples were 
examined using enzyme-linked immunosorbent assays (ELISAs) for each group. This study analyzed the immu-
nopathological effects of the ICOS/ICOSL and PD-1/PD-L1 pathways during the early stages of NMOSD and 
assessed the potential utility of these molecules as biomarkers for the auxiliary diagnosis of NMOSD.

Methods
Ethical statement.  Serum and peripheral blood samples were obtained from the participants after they 
provided informed consent based on the protocol approved by the local ethics committees of Soochow University 
and its First Affiliated Hospital (ethics approval number 2013-055). Informed consent was waived for the control 
volunteers.

Sample collection.  Patients were recruited from outpatient and inpatient populations treated at the 
Department of Neurology of the First Affiliated Hospital of Soochow University between April 2015 and 
December 2017, including 30 patients with NMOSD, 30 patients with LETM, and 16 patients with ON. Sixteen 
HC participants were recruited from the physical examination center of the First Affiliated Hospital of Suzhou 
University. All controls were healthy adults without histories of autoimmune diseases, infection, or allergies who 
had not received hormone or immunosuppressive agent treatments within 3 months prior to the study. According 
to the diagnostic and classification criteria revised by the International Panel for Neuromyelitis Optica Diagnosis 
(IPND) in 2015, patient diagnosis was confirmed based on typical clinical manifestations, serum AQP4-IgG test 
results, and imaging findings. Based on its definition, LETM refers to acute myelitis involving damage in three 
or more consecutive spinal segments. Patients with LETM who had negative serum AQP4-IgG test results and 
did not meet the NMOSD criteria were enrolled. Patients with ON were enrolled based on the diagnostic criteria 
proposed in the 2014 Consensus Guidelines for the Diagnosis and Treatment of ON. The enrolled patients with 
NMOSD, LETM, or ON were all newly diagnosed and had not been previously treated with immunosuppressive 
agents. Of the 30 patients diagnosed with NMOSD, 28 tested positive for AQP4-IgG, and two tested negative 
for AQP4-IgG. AQP4-IgG testing was performed for all patients and HCs using an ELISA kit (RSR, UK) and a 
cell-based assay (CBA) method performed by our group or Euroimmun CN, Inc.

A 4-mL volume of venous blood was collected from the HC, NMOSD, LETM, and ON groups using tubes 
containing ethylenediaminetetraacetic acid (EDTA) as an anticoagulant, followed by centrifugation at 1,000 × g 
for 20 minutes. The plasma in the upper layer was collected and stored at −80 °C until subsequent use.

Immunofluorescence labeling and flow cytometry.  Based on the user’s manuals for the reagents, i.e., 
the FITC-labeled mouse anti-human CD4 antibody (Beckman Coulter, CA), FITC-labeled mouse anti-human 
CD14 antibody (Biolegend, CA), FITC-labeled mouse anti-human CD19 antibody (Biolegend, CA), PE-labeled 
mouse anti-human ICOS antibody (eBioscience, CA), PE-labeled mouse anti-human ICOS-L antibody 
(Biolegend, CA), PerCP/Cy5.5 anti-human CD279 (PD-1; Biolegend, CA), PE-labeled mouse anti-human PD-L1 
antibody (Biolegend, CA), and PE/Cy7 anti-human CD185 (CXCR5) antibody (Biolegend, CA), each reagent 
was separately added to 50 μL of whole blood, followed by incubation in the dark for 30 minutes at room tem-
perature. To each tube, we added 200 μL of red blood cell lysis buffer (Beckman Coulter, CA), mixed the solu-
tions thoroughly through pipetting, and incubated them in a 37 °C water bath for 10 minutes for complete lysis 
followed by the addition of 1 mL of phosphate-buffered saline (PBS) to stop the lysis. The lysate was then centri-
fuged at 1,800 rpm for 5 minutes at room temperature, and the supernatant was discarded. Each tube was resus-
pended with 400 μL of PBS, mixed thoroughly through pipetting, and subjected to testing using a flow cytometer 
(Beckman, CA). These data were analyzed using FlowJo version 7.6.

ELISAs.  Serum samples were removed from the −80 °C freezer, thawed at room temperature, centrifuged 
at 15,000 × g for 5 minutes, and then allowed to stand until further use. The specific experimental procedure 
followed the manufacturer’s protocols for the quantitative ELISA kits regarding sICOS (Shanghai Yu Bo Biotech, 
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China), sICOSL (Suzhou Bright Scistar Biotechnology, China), sPD-1, sPD-L1 and Interleukin 21 (IL-21; all from 
Shanghai Kang Lang Biotechnology), and AQP4-IgG (RSR Limited, UK). We added 50 μL of patient serum and 
50 μL of biotinylated antibody-linked active enzyme to the corresponding wells (excluding the blank wells). The 
plate was then covered with a sealing membrane and incubated for 1–2 hours at room temperature. The liquid in 
the wells was discarded, and the plate was washed three times and dried. To each well, we added 100 μL of 3,3′, 
5,5′-tetramethylbenzidine (TMB) substrate solution and incubated the plates at room temperature for 30 minutes 
in the dark, without shaking, followed by the addition of 100 μL of stop solution to each well. The absorbance 
of each well at 450 nm was measured using a microplate reader (Multiskan MK3, Thermo, Germany). The con-
centration of AQP4-IgG was measured, and the AQP4-IgG results were validated through comparison with a 
cell-based analysis (CBA) and the indirect immunofluorescence (IIF) assay of Oumeng Diagnostics.

Statistical analyses.  Statistical analyses were performed using SPSS version 19.0. Normally distributed 
measurement data were expressed as means ± standard deviations (x ± s), and nonnormally distributed measure-
ment data were expressed as medians (interquartile range). The Wilcoxon rank sum test was used to compare the 
means between two samples with normally distributed data, and the Kruskal-Wallis H test was used to compare 
the means among multiple samples with nonnormally distributed data. Intergroup comparison was performed 
using the Wilcoxon rank sum test after a Bonferroni correction. Correlation tests were performed using Pearson’s 
correlation analysis. P < 0.05 was considered as significant.

Results
Table 1 shows detailed information regarding the sample. Table 1:

The upregulation of the expression of ICOS/ICOS-L and PD-1/PDL-1 in the immune cells of 
patients with NMOSD.  The membrane-type costimulatory molecules on the peripheral mononuclear cells 
were examined in the four study groups (HC, NMOSD, LETM, and ON) using immunofluorescence labeling and 
flow cytometry analyses. The results showed that the expression levels of ICOS and PD-1 in the peripheral CD4+ 
T lymphocytes of patients with NMOSD were significantly higher than those of the other three groups (P < 0.05; 
the specific values are shown in Fig. 1).

The expression levels of ICOSL and PD-L1 on the surfaces of the peripheral CD14+ monocytes and CD19+ 
B lymphocytes in patients with NMOSD were significantly higher than those in the other three groups (P < 0.05; 
the specific values are shown in Fig. 2).

The ICOS and PD-1 coexpression levels of the CD4+ T lymphocytes in the peripheral blood samples of 
patients with NMOSD were significantly higher than those in the other three groups (P < 0.05; the specific values 
are shown in Fig. 3).

The upregulation of the expression of follicular B helper T cells (Tfh cells) and the expression 
level of IL-21 in patients with NMOSD.  The coexpression levels of mCXCR5, mICOS, and mPD-1 on 
CD4+ T lymphocytes (Tfh cells) as well as the expression of IL-21 in the peripheral blood samples of patients 
with NMOSD were significantly higher than those in the other three groups (P < 0.05; the specific values are 
shown in Fig. 4).

The upregulation of sICOSL, sPD-1, and sPD-L1 and the downregulation of sICOS expression 
in patients with NMOSD.  In addition to being expressed as membrane-bound molecules on the surface 
of the cell membrane, ICOS and ICOSL exist in soluble forms. The expression levels of sICOS and sICOSL in the 
peripheral blood of each group were examined using ELISA. The results showed significantly increased sICOSL 
expression and decreased sICOS expression in the serum of patients with NMOSD compared with the other three 
groups (P < 0.05, Table 1).

PD-1 and PD-L1 also have soluble forms. We further examined the expression levels of sPD-1 and sPD-L1 
in the peripheral blood of each group. The results showed significantly elevated expression levels of sPD-1 and 
sPD-L1 in the peripheral blood of patients with NMOSD compared with the other three groups (P < 0.05, 
Table 2).

The sICOS/sICOSL ratio of the NMOSD group was lower than those in the LETM, ON, and HC groups 
(P < 0.05), but no significant differences were observed regarding the sPD-1/sPD-L1 ratio between the NMOSD 
group and the other three groups (P > 0.05).

HC NMOSD LETM ON

n = 16 n = 30 n = 30 n = 16

Age 37.95 ± 2.15 37.60 ± 3.83 46.78 ± 5.09 30.62 ± 5.72

Gender (Female/male) 8/8 18/12 16/14 8/8

ELISA-AQP4-IgG (U/L) 0.68 ± 0.12 23.09 ± 8.94 2.04 ± 1.73 1.73 ± 0.93

CBA-AQP4-IgG NA 1:32–1:1024 1:4–1:8 1:4–1:16

Positive/negative for AQP-4 IgG 0/16 28/2 0/30 0/16

EDSS 0 3.93 ± 2.18 5.02 ± 2.37 2.02 ± 0.50

Table 1.  Detailed information regarding the patient population.
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Discussion
With the discovery of AQP-4 IgG, the consensus regarding the pathogenesis of NMOSD has shifted from a strictly 
autoimmune condition to a CNS demyelination disease mediated primarily by humoral immunity. NMOSD is 
distinct from MS given the differences in their pathogeneses, clinical manifestations, imaging results, and prog-
noses. In-depth research on the pathogenic mechanisms has determined that AQP-4 IgG cannot fully explain 
the pathological process of NMOSD, primarily with regard to the following aspects: (1) AQP4-IgG infused into 
the peripheral blood of mice does not completely pass the blood-brain barrier and cannot cause disease in mice; 
however, following the destruction of the blood-brain barrier in experimental mice using the pertussis virus and 
lipopolysaccharide, infused AQP-4 IgG did not reproduce the disease condition. Therefore, AQP-4 IgG by itself 
likely does not have the ability to destroy the blood-brain barrier, and an infusion of AQP-4 IgG does not induce 
an immune response in the CNS. Under nonspecific conditions, AQP-4 IgG cannot fully exert its pathogenic 
effects in the CNS15–17. Hence, other inflammatory response mechanisms might be present in the pathogenesis of 
NMOSD, including those that destroy the blood-brain barrier and promote the pathogenic effects of AQP-4 IgG. 
(2) Clinically, some patients test negative for AQP-4 IgG, even though they have clinical symptoms of NMOSD. 
Wingerchuk et al.3 specifically listed the AQP4-IgG negative subtype in their published consensus guidelines for 
the NMOSD diagnostic criteria in 2015. (3) B cell depletion therapy does not clinically alleviate the disease con-
ditions in all patients, suggesting the presence of other immunological molecular mechanisms to be elucidated 
and humoral immune mechanisms such as the pathogenic antibody AQP4-IgG.

Through the collection of peripheral T cells from patients with NMOSD and healthy adults as well as via 
blocking of the surface allele of the AQP4 antigen, Varrin-Doyer et al.18 demonstrated that the T cells of patients 
with NMOSD differentiate into specific T cells under the coordinated actions of costimulatory molecules (e.g., 
CD80 and CD40) and cytokines (e.g., IL-6 and IL-17), thereby producing an inflammatory response in the CNS 
that causes the onset of NMOSD. This finding supports the theory that cellular immunity plays an essential role in 
the pathogenesis and progression of NMOSD. Based on this study, Zeka et al.19 used the same method to block the 
AQP4 antigen and further confirmed that specific T cells against different epitopes were reactivated after crossing 
the blood-brain barrier and exerted their pathogenic effects through the infiltration of the optic nerve, brain, and 
spinal cord. Specific T cells, together with NMO-IgG, can damage the large astrocytes located primarily in the 
gray matter of the spinal cord19. This specific activation of T cells serves as a necessary prerequisite for AQP-4 IgG 
to enter the CNS and exert its pathogenic effect during the early stages of NMOSD, and the related costimulatory 
molecules might play certain immunopathological roles in the pathological process of NMOSD20–23.

Recent research on costimulatory molecules has made rapid progress. The B7-CD28 family is the most 
well-studied family of costimulatory signaling molecules that have been recognized. Numerous studies have 
shown that aberrantly expressed costimulatory molecules participate in the pathological processes of multi-
ple autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, asthma, and kidney 
disease in different ways by mediating the abnormal activation of immune cells during different phases of the 

Figure 1.  The expression levels of ICOS and PD-1 on the surface of the peripheral CD4+ T cells in the 
peripheral blood of patients with NMOSD. The expression levels of ICOS and PD-1 in the peripheral CD4+ T 
cells of patients with and without NMOSD were detected via immunofluorescence labeling and flow cytometry. 
On the graphs (A,B) and histogram (C), the gray areas represent the negative control, and the red lines indicate 
the test results for the costimulatory molecules ICOS and PD-1. Note: HC, healthy control group; NMOSD, 
neuromyelitis optica spectrum disorder group; LETM, longitudinally extensive transverse myelitis group; ON, 
optic neuritis group; ICOS, inducible costimulatory molecule; PD-1, programmed death-1.
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immunopathological response24–28. Costimulatory molecules also play certain roles in organ transplantation, 
anti-infection response, and immuno-oncology29. According to their different immunomodulatory activities, 
this class of molecules can be divided into positive and negative costimulatory molecules, and their regulatory 
networks play an extremely important regulatory role in the effective initiation, modulatory effects, and timely 
termination of immune responses30. Signaling abnormalities related to these molecules often disrupt immune 
homeostasis in the body, resulting in disease development.

The ICOS/ICOSL signaling pathway provides a positive immune signal. Its pathologically enhanced expres-
sion leads to the disruption of immune regulation and self-tolerance. Its signaling can induce the secretion of 
cytokines related to Th1 and Th2, including IFN-γ, TNF-α, IL-4, IL-5, and IL-10. The ICOS/ICOSL pathway has a 
dominant effect on Th2 immune responses; it not only promotes the expression of cytokines related to Th2 polar-
ization but also acts on the Th2-associated transcription factors NFATcl and C-Maf5,6,8,31,32. The current study 
demonstrated that patients with NMOSD had significantly higher expression levels of membrane-type ICOS/
ICOSL and sICOSL in their peripheral blood than those in the LETM, ON, or HC groups; moreover, patients 
with NMOSD had a significantly lower concentration of sICOS than the other three groups. The sICOS/sICOSL 
ratio of the NMOSD group was significantly lower than those of the other three groups. The mean sICOSL level 
in the peripheral blood of patients with NMOSD was relatively overabundant. sICOSL is a functional molecule33 
that might provide more positive stimulatory signals to mICOS in T cells, overactivate T cells, and participate in 
the pathological process of NMOSD.

PD-1/PD-L1, which also belongs to the B7 family, provides a negative immunomodulatory signal. The bind-
ing of the PD-1 on T cells to the PD-L1 on antigen-presenting cells inhibits T-cell receptor (TCR)-mediated 
lymphocyte activation, differentiation, and proliferation as well as the production of cytokines (e.g., IL-2, IFN-γ, 
and IL-10), thereby causing cell cycle arrest in T cells. PD-1/PD-L1 interactions play important regulatory roles 
during the initial phases of the activation and expansion of autoreactive T cells and in the secondary immune 
responses of T cells; moreover, they inhibit B cell proliferation, differentiation, and Ig type conversion. Because 
of the broad expression profile of its ligand, PD-L1, PD-1 is likely a key regulatory component of lymphocyte 
activation in autoimmune diseases9,10. PD-1/PD-L1 interfere with the normal function of cellular immunity and 
contribute to tumor evasion34,35. Autoimmune disease studies have shown the upregulated expression of both 

Figure 2.  Expression levels of ICOSL and PD-L1 on the surfaces of CD14+ monocytes and CD19+ B cells 
in the peripheral blood of patients with NMOSD. The ICOSL expression on CD14+ monocytes (graph A), 
the PD-L1 expression on CD14+ monocytes (graph B), the ICOSL expression on CD19+ B cells (graph 
C), the PD-L1 expression on CD19+ B cells (graph D), and the expression levels of ICOSL and PD-L1 on 
CD14+ monocytes (histogram E) and CD19+ B cells (histogram F) in the peripheral blood of patients with 
and without NMOSD were detected through immunofluorescence labeling and flow cytometry. Gray areas 
represent the negative control, and the red lines indicate the test results of the costimulatory molecules ICOSL 
and PD-L1. Note: HC, healthy control group; NMOSD, neuromyelitis optica spectrum disorder group; LETM, 
longitudinally extensive transverse myelitis group; ON, optic neuritis group; ICOSL, inducible costimulatory 
ligand; PD-L1, programmed death 1-ligand.
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Figure 3.  The coexpression levels of ICOS and PD-1 on the surface of CD4+ T cells in the peripheral 
blood of patients with NMOSD. The expression levels of ICOS and PD-1 (graph A and scatterplots B and 
C) in the peripheral blood CD4+ T cells of patients with and without NMOSD were detected through 
immunofluorescence labeling and flow cytometry. The area within the frame represents the CD4+ T cells. Note: 
HC, healthy control group; NMOSD, neuromyelitis optica spectrum disorder group; LETM, longitudinally 
extensive transverse myelitis group; ON, optic neuritis group; ICOS, inducible costimulatory molecule; PD-1, 
programmed death-1.

Figure 4.  The expression levels of Tfh cells in the peripheral blood of patients with NMOSD. The expression 
levels of CXCR5, ICOS, and PD-1 (graph A and scatterplots A,B) in the peripheral blood CD4+ T cells of 
patients with and without NMOSD were detected through immunofluorescence labeling and flow cytometry. 
The area within the frame represents CD4+ T cells. (C) IL-21 expression levels of the patients from each 
group. Note: HC, healthy control group; NMOSD, neuromyelitis optica spectrum disorder group; LETM, 
longitudinally extensive transverse myelitis group; ON, optic neuritis group; CXCR5, C-X-C chemokine 
receptor type 5; ICOS, inducible costimulatory molecule; PD-1, programmed death-1; IL-21, interleukin-21.
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membrane-type and soluble forms of PD-1/PD-L1 during the early stages of the disease, but their expression 
levels return to normal during later and more stable stages of the disease36,37. The current study showed signifi-
cantly elevated expression levels of mPD-1 in CD4+ T cells and the ligand PD-L1 on the surfaces of the CD19+ 
B lymphocytes and CD14+ monocytes in the peripheral blood of patients with NMOSD during the early stages 
of the disease compared with the other three groups. These findings are similar to those previously reported 
regarding the upregulation in patients with rheumatoid arthritis. This similarity indicates that the disease was in 
an active phase, and the altered expression levels were correlated with the severity of the disease38. This correlation 
raises an important question: Why does PD-1/PD-L1 not function properly and transmit negative signals? We 
examined the soluble forms of PD-1 and PD-L1. Other studies have demonstrated that sPD-1 and sPD-L1 inhibit 
the PD-1/PD-L1 pathway and enhance the activity of T cells, which might benefit the early treatment of multiple 
diseases such as autoimmune hepatitis and childhood autoimmune arthritis12,39,40. In this study, the sPD-1 and 
sPD-L1 levels in the peripheral blood of patients with early-stage NMOSD were significantly higher than those 
of the other three groups. (1) This difference might somewhat interfere with the negative signal transduction of 
mPD-1/mPD-L1, destroying immunomodulation homeostasis41. The degree of glycosylation of these molecules 
remains unclear and deserves additional study. (2) The source of sPD-1/sPD-L1 in patients with NMOSD is not 
well understood. The specific elevations of sPD-1 and sPD-L1 are likely correlated with the increases in mPD-1 
and mPD-L1. The specific increase in these soluble molecules might be a compensatory mechanism in response 
to the overexpression of the membrane-type molecules. (3) sPD-L1 and sPD-1 were expressed at a similar ratio 
in the serum of patients after they increased, and no relative excess was found of either molecule in the blood. 
Although their concentrations were significantly higher than those of the other groups, the ligand-to-receptor 
ratio remained similar. Therefore, their increases had relatively small interference effects on membrane-type 
PD-1 or PD-L1, which contrasts with the apparent excess of sICOSL relative to sICOS, in which sICOSL holds 
a relatively dominant status and might have more opportunities to bind to the ICOS on T cell membranes. This 
imbalance between positive and negative signal expression might be an important mechanism in the patho-
logical process of NMOSD. The dynamic monitoring of the changes in the peripheral expression levels of the 
costimulatory molecules in patients and in vivo studies using animal models might help determine whether the 
imbalanced expression of positive and negative costimulatory molecules can be corrected by interfering with the 
ICOS/ICOSL and PD-1/PD-L1 signals.

In this study, the co-expression of the positive costimulatory molecule ICOS and the negative costimulatory 
molecule PD-1 was examined on the CD4+ T cell membrane for the first time in patients with a CNS immune 
disease. The results showed that the ratio of CD4+ ICOS+ PD-1+ T cells in the peripheral blood of patients with 
newly diagnosed early-stage NMOSD was significantly higher those in three other study groups. Considering 
the above test results for the soluble molecules and IL-21; the available literature regarding the secretion and 
co-expression of CXCR5, ICOS, and PD-1 by Tfh cells; and the expression of Tfh in patients with NMOSD4, we 
speculate that the abnormal increase of this subpopulation in the peripheral blood of patients with NMOSD 
probably transmits a positive signal to B cells, causing abnormal B cell activation and secretion of numerous path-
ogenic antibodies. This subpopulation of cells might have potential diagnostic value for the early differentiation of 
NMOSD from LETM and ON; however, it is necessary to further enlarge the sample size, determine the range of 
definitive values, and conduct long-term follow-up assessments to validate the consistency of its dynamic changes 
and disease progression.

In summary, this study represents the first systematic analysis of the expression of the positive costimula-
tory molecules ICOS/ICOSL and negative costimulatory molecules PD-1/PD-L1 in membrane types and soluble 
forms in the peripheral blood of patients with NMOSD during an early stage prior to treatment. The results 
showed that the expression levels of mICOS/mICOSL and mPD-1/mPD-L1 were significantly higher in patients 
with NMOSD at an early stage compared with the ON, LETM, or HC groups. The sICOS level in patients with 
NMOSD was significantly lower than those in the other groups, whereas the sICOSL and sPD-1/sPD-L1 levels 
were significantly higher than those in the other groups. Consequently, excessive sICOSL levels were present 
in the blood, and positive signals were relatively dominant. These findings suggest that the expression levels of 

Number sICOS (pg/mL) sICOSL (pg/mL) sPD-1 (pg/mL) sPDL-1 (pg/mL)

HC 16 18.33 (14.71) 6.26 (3.82) 34.06 (10.56) 40.20 (7.20)

NMOSD 30 8.80 (9.57)abc 14.97 (9.29)abc 58.69 (12.77)abc 50.05 (26.67)abc

LETM 30 17.09 (6.63) 9.01 (6.27) 39.58 (14.51) 36.31 (9.19)

ON 16 16.09 (6.00) 5.48 (4.70) 38.47 (11.53) 39.31 (2.98)

a
NMOSD 
group vs. 
HC group

t = 3.221, 
p = 0.001

t = 2.932, 
p = 0.003 t = 3.751, p < 0.001 t = 2.986, p = 0.003

b
NMOSD 
group vs. 
LETM 
group

t = 2.399, 
p = 0.016

t = 2.698 
p = 0.007 t = 2.665 p = 0.008 t = 3.385, p = 0.001

c
NMOSD 
group vs. 
ON group

t = 2.557, 
p = 0.009

t = 2.843, 
p = 0.003 t = 2.932, p = 0.003 t = 3.567, p < 0.001

Table 2.  Expression levels of the soluble costimulatory molecules sICOS, sICOSL, sPD-1, and sPD-L1 in the 
serum of patients with NMOSD (mean ± standard deviation). Note: sICOS, soluble ICOS; sICOSL, soluble 
ICOSL; sPD-1, soluble PD-1; sPD-L1, soluble PD-L1.
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costimulatory molecules maybe have clinical value for the early differential diagnosis of NMOSD from LETM 
or ON, especially among AQP4-IgG-negative patients with NMOSD. Furthermore, from the perspective of the 
pathogenesis mechanism, these two pairs of costimulatory molecules participate in the pathological process of 
NMOSD, and their imbalanced expression might be an important pathological mechanism of NMOSD. How 
these two pathways exert different immunopathological effects across separate stages of the disease, how to 
choose the appropriate timing and method to intervene via key molecules, and whether the treatment of NMOSD 
during different stages can produce desirable effects remain important future research directions that are worthy 
of further investigation.

Data Availability
All data generated or analyzed for this study are included in this published article (and its Supplementary Infor-
mation files). The datasets generated during and/or analyzed during the current study are not publicly available 
because the research team is requesting additional funding; however, they are available from the corresponding 
authors on reasonable request.
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