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Introduction
The advent of high-throughput DNA sequencing (HTS) in 
the last decade provides high resolution quantification of indi-
vidual DNA molecules at the nucleotide level. One can literally 
count the occurrence of molecules in a biological specimen and 
determine each molecule’s exact sequence. The utility of meas-
uring complex biological systems with HTS drives the expan-
sion of DNA sequence archives. For example, the National 
Center for Biotechnology Information’s Sequence Read 
Archive (NCBI SRA) now contains more than 27 quadrillion 
base pairs (≈27 petabytes) from more than 4.4 million experi-
ments.1 Given advances in DNA sequencing technology and 
falling price points, the exponential trend of data accumulation 
is not likely to end any time soon.

One application of HTS is the quantification of RNA mol-
ecules by deep sequencing after conversion of RNA into 
cDNA, a technique termed RNA-Seq. Evidence suggests that 
sampling 20 to 25 million RNA molecules with RNA-Seq 
provides sufficient resolution to capture medium to highly 
expressed genes, whereas even deeper sequencing to 100 to 200 
million reads is likely to detect rare RNA transcripts.2 The 
depth of sequencing performed on a sample is often a function 
of a researcher’s sequencing budget which is a real constraint to 
the quantification of rare molecules. However, as the cost of 
HTS technology continues to decline, it should be possible to 
sequence deeper for almost any RNA-Seq application. For 

example, the Illumina Genome Analyzer released in 2006 was 
capable of generating 1 gigabase of sequence data, whereas the 
NextSeq platform in 2017 can produce 120 gigabases (400 
million reads) in a single run.3 The more bases a sequencer can 
read, the deeper a researcher can peer into the molecular land-
scape of a biological system.

Even if HTS becomes cheap enough for routine deep 
sequencing of rare transcripts, the larger datasets will still need 
to be processed with bioinformatics workflows. Currently, a 
typical RNA-Seq workflow ingests data in FASTQ format, 
cleans it by trimming unwanted reads, aligns to a reference 
genome, and quantifies the alignments as RNA transcript 
counts.4 Transcript counts from multiple biological samples 
can be combined into a gene expression matrix (GEM),5 where 
the matrix value GEMi,j is the normalized count (eg, Fragments 
Per Kilobase of transcript per Million mapped reads; FPKM)6,7 
of transcript i in sample j. Among other downstream applica-
tions of the GEM is to identify differentially expressed genes8 
and generate gene co-expression networks.9-11

The advent of higher molecular resolution into biological 
systems via improved HTS technology must be coupled with 
computational advances that can process more and more DNA 
sequence data. Deep HTS datasets can quickly fill up storage 
systems, and transferring datasets between workflow execution 
CPUs can saturate network bandwidth within and between 
data centers. Furthermore, actual storage space requirements 
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are several times greater than the size of a single dataset due to 
the large intermediate files created during the workflow. Thus, 
it will become increasingly important to consider storage and 
transfer costs into an experiment as dataset generation costs 
decline.

One way to reduce both storage and network input/output 
(I/O) costs is to process a reduced amount of DNA sequence 
data instead of moving the full dataset into a workflow. If the 
researcher decides that there is sufficient sequencing depth in 
the subsample, then there would be no need to pay the cost of 
moving and processing the full dataset. In this study, we explore 
the effect of transferring and processing partial RNA-Seq 
datasets using transcript detection as a simple metric. In a proof 
of concept, we show that our method significantly reduces the 
total transfer time of a dataset. We predict that partial analysis 
of datasets will become an important trade-off as researchers 
sequence deeper into biological samples.

Materials and Methods
To intelligently transfer partial datasets, we require a metric to 
measure and select a cutoff point and the means to transfer 
partial files. We chose to run full RNA-Seq workflows on par-
tial datasets, select a cutoff point based on the number of 
detected transcripts per million mapped reads, and transfer 
partial datasets over the Internet between cloud computing 
sites.

In subsequent sections, this article uses the term DNA 
records or records to mean “the smallest unit of DNA sequence 
data that can be transferred and processed indivisibly.” In the 
context of the FASTQ files used as experimental input, a 
record would mean the 4 adjacent lines in an uncompressed 
file containing the sequence identifier, bases, duplicate 
sequence identifier, and quality scores.12 The results in this 
article were generated from paired-end reads, and for this 
reason, a logical record includes the corresponding forward 
and reverse reads.

Experimental setup

To clean the FASTQ files, we used Trimmomatic 0.36.13 To 
align the reads, we used HISAT2 2.0.5.14 To sort the SAM file, 
we used SAMtools 1.3.1.15 To map the alignments, we used 
StringTie 1.3.1c.16 During read alignment, novel splice junc-
tion discovery was disabled and only abundances of known ref-
erence transcripts were quantified. To load the counts and plot 
the results, we used R 3.3.2,17 Ballgown 2.6.0,18 ggplot2 2.2.1,19 
plyr 1.8.4,20 and reshape2 1.4.2.21

Dataset transfers were performed between clouds in 2 loca-
tions. The node in the CloudLab (http://www.cloudlab.us/) 
cluster at Clemson University had 2 Intel E5-2683 v3 14-core 
CPUs, 256 GB of ECC RAM, two 1 TB SATA 3G hard disk 
drives, and a dual-port 10 Gigabit Ethernet adapter.22 The 
node in the Chameleon (http://www.chameleoncloud.org/) 

cluster at the University of Chicago had 2 Intel E5-2650 v3 
10-core CPUs, 64 GB of ECC RAM, 16 2 TB 12 Gb/s SAS 
hard disk drives, and a 10 Gigabit Ethernet adapter.23 The 
software used to perform the transfers was FDT 0.25.1 with 
the OpenJDK 1.8.0 Java VM running on CentOS 7.4.1708.

Input data

To test the concept of partial dataset processing, we selected 3 
human input datasets and 1 pig dataset of varied sequencing 
depth (ie, DNA sequence records): the human datasets hypoxia 
(45-55 million records; read length 100), bladder (85-87 mil-
lion records; read length 76), and nisc2 (189-259 million 
records; read length 101), and the pig dataset oncopig (55-85 
million records; read length 100). All datasets were generated 
using Illumina HiSeq sequencing systems with paired-end 
reads.

Our first dataset which we refer to as bladder comes from 
the project at NCBI with accession PRJNA358425 and 
includes the runs with accessions SRR5124442, SRR5124443, 
SRR5124447, SRR5124452, SRR5124453, and 
SRR5124455.24 Our second dataset which we refer to as 
hypoxia comes from PRJEB14955 and includes ERR1551404, 
ERR1551405, ERR1551408, and ERR1551409.25 Our third 
dataset which we refer to as nisc2 comes from PRJNA231202 
and includes the 6 runs SRR1047863 to SRR1047865 and 
SRR1047869 to SRR1047871.26 Our last dataset which we 
refer to as oncopig comes from PRJEB8735 and includes the 7 
runs ERR777781 to ERR777787.27

Auxiliary input data include the FASTA adapter sequences 
for the Illumina TruSeq Library Prep Kit. For human runs, we 
use the Release 26 GRCh38.p10 genome sequence and com-
prehensive gene annotation for all regions from the Genome 
Reference Consortium.28 For pig runs, we use the sequence and 
annotations from Ensemble Release 91.29

Scientif ic workflow

Before the workflow begins, a FASTQ dataset file is subdi-
vided into a dataset partition factor (DPF) between 1% and 
100% of the possible sequence records. Next, Trimmomatic is 
used to remove adapter sequences and short reads. Then, 
HISAT2 is run on the trimmed FASTQ file along with the 
index generated previously using hisat2-build and a file con-
taining known splice sites. The output from HISAT2 is 
sorted with samtools sort and then processed using StringTie 
to generate counts in FPKM. We did not account for strand 
specificity.

The output from StringTie is loaded into R using the 
Ballgown package.18 For every run at every percent, the num-
ber of transcripts with FPKM greater than zero is calculated. 
The percent values are converted to records and the results are 
plotted.

http://www.cloudlab.us/
http://www.chameleoncloud.org/
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Transfer of partial datasets
At the source side in Clemson, the files are stored in a logical 
volume striped across both disk drives. The 12 FASTQ files 
from SRR1047863 to SRR1047865 and SRR1047869 to 
SRR1047871 were transferred using FDT (http://github.com/
fast-data-transfer/fdt) to the destination in Chicago. On the 
Chicago, side files were stored on a single drive in the 16-drive 
storage array. Both sides use XFS as the file system. The trans-
fer was repeated 5 times.

When the full files were transferred, it was possible to meas-
ure the number of detected transcripts at different numbers of 
records with multiple runs of the RNA-Seq workflow. The 
slope between successive measurements was calculated for each 
dataset and expressed as the number of detected transcripts per 
million records. An arbitrary cutoff of 100 detected transcripts 
per million records was selected, and the smallest processed 
record count greater than or equal to the cutoff was chosen for 
each dataset.

Given that cutoff point, fastq-dump was used to only dump 
the selected number of records from each SRA file. The result-
ing partial dataset was again transferred using FDT. These 
smaller files were transferred in the same manner as before 
with 5 repetitions.

Results
To simulate a partial RNA-Seq data transfer and processing, 
we reduced the original datasets from NCBI into 18 subsets of 
records at these depths: 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. For each 
subset of input data, we ran the RNA-Seq workflow described 
in the Scientif ic workflow section and then post-processed the 
StringTie output to generate our detection measurement 
defined as the number of transcripts with FPKM > 0. For 
every dataset in Figure 1, the number of detected transcripts 
increased with the record count. Within each dataset, there was 
variability between the runs, but the results tended to cluster 
together with a similar shape.

Figure 2 shows the timing results of full and partial transfers 
of the nisc2 dataset from Clemson to Chicago. First, the full 
dataset was transferred and the total transfer time was meas-
ured for 5 trials. Then, a subset of each file in the dataset was 
transferred 5 times. Both the full and partial datasets were 
transferred over the commodity Internet with the same con-
figuration settings. The total time to transfer all partial datasets 
was 75% of the time to transfer the full datasets (1.5 hours vs 2 
hours). These aggregate times are shown as the rightmost pair 
of bars in Figure 2.

Figure 1.  Detected transcripts by number of records for 4 datasets. Each point indicates the number of transcripts with FPKM > 0 measured at the given 

number of records. All runs were identically analyzed using the workflow of the Scientific workflow section. FASTQ files were sampled at 1% to 100% of 

the records of the original dataset. Dashed lines at the top of each plot indicate the theoretical maximum number of detected transcripts (217 857 for 

human and 49 558 for pig). Species for bladder, hypoxia, and nisc2 is Homo sapiens. Species for oncopig is Sus scrofa. FPKM indicates Fragments Per 

Kilobase of transcript per Million mapped reads.

http://github.com/fast-data-transfer/fdt
http://github.com/fast-data-transfer/fdt
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Discussion
A primary constraint when sequencing a sample is balancing 
sequence depth against cost. However, for the experimenter 
using data that have already been sequenced and stored in a 
central repository, the primary consideration will be the time 
and resources required to transfer and process the dataset. In 
our concept, the data mining experimenter has the option of 
processing only a subset of the original dataset, thereby reduc-
ing computational resources that are becomingly increasingly 
expensive as HTS dataset sizes swell into hundreds of millions 
of reads and analysis is increasingly performed in billable cloud 
compute environments.

A key issue is determining the smallest number of records 
required to produce the same scientific result as the full dataset, 
and we point to a simple saturation point as determined by 
transcript detection. Once a saturation point has been reached, 

one could pause and examine the results. If there is interesting 
signal, then there is nothing preventing the user from process-
ing more sequence records. However, if there is no signal, one 
could drop the experiment and move on to other datasets.

The primary output for our RNA-Seq workflow is count 
data measured in FPKM for each feature (gene or transcript) in 
each dataset. We would like to ensure that our partial dataset is 
able to detect all the features of interest in the full dataset. In 
our pilot use case, we define a feature is detected when the 
FPKM measurement for that feature is greater than zero. By 
continuously processing increasingly larger subsets, it should be 
possible to detect the threshold at which the number of fea-
tures with FPKM > 0 is constant; that is, when no new features 
are detected. However, in the results of Figure 1 across all 4 
datasets, we never saw transcript detection saturation as the 
number of records increased to the maximum. We note that we 
have tested this proof of principle with a single representative 
workflow.

Even with the nisc2 dataset having more than 258 million 
records, there was no saturation, suggesting that either 258 
million records is not enough or that some noise is being intro-
duced that is causing the count of detected transcripts to con-
tinuously increase. At the time of this writing, 258 million 
records are in the 99th percentile of public paired-end RNA-
Seq runs available at NCBI. It would be unreasonable to expect 
that any of the 99% of datasets in NCBI smaller than the one 
we tested would reach a point where the slope was flat. As there 
was no saturation seen in the nisc2 dataset, we chose a cutoff of 
100 detected transcripts per million mapped reads. Although 
our choice of cutoff was arbitrary, the cutoff points of 133 to 
181 million records correspond nicely to the predictions of the 
literature of 100 to 200 million reads.11 The choice of cutoff 
value will need to be one of the parameters decided by the 
experimenter.

It appears that the noise that causes the count of detected 
transcripts to continuously increase is confined to the low 
expression transcripts. As seen in Figure 3(A), the number of 
detected transcripts at different percent records transferred for 

Figure 2.  Transfer times of full and partial FASTQ files from nisc2. 

FASTQ files were transferred between Clemson and Chicago over the 

public Internet using FDT. The time to transfer a complete dataset is 

shown with the bars labeled “complete transfer.” The time to transfer a 

partial dataset satisfying the criteria in the transfer of partial datasets 

section is shown with the bars labeled “partial transfer.” Reported times 

within a group are the average of 5 trials. Error bars are too small to be 

visible. The x-axis gives the last 2 digits of the dataset name, where each 

dataset name begins with the string SRR10748. The rightmost pair of 

bars plots the sum total of the times for all datasets within both groups.

Figure 3.  Only low-level transcripts accumulate with more sequence records. (A) The number of genes that were detected at 6 FPKM expression 

thresholds are shown for the 6 nisc2 datasets at each percent transfer. (B) The amount of gene overlap at each transfer level is shown for a representative 

nisc2 dataset SRR1047863.
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the largest nisc2 dataset only increases if the detection thresh-
old is FPKM > 0. Ratcheting up the thresholds from >1 to 
>4 does not detect more transcripts. Furthermore, the same 
genes are being detected at each transfer (Figure 3(B)). These 
data suggest that if one is looking at even moderately tran-
scribed genes, these can be effectively captured at low numbers 
of sequence records.

In many cases, it may be possible to transfer much fewer 
than the 133 to 181 million records transferred in our nisc2 
experiment, because even though the slope of the number of 
detected transcripts in Figure 1 never flattens completely, for 
each dataset around 30 million records the slope of the number 
of detected transcripts decreases greatly. In Table 1, we estimate 
the number of transcripts that would have been detected at 
exactly 30 million records. These predictions for the number of 
detected transcripts are then compared with the actual number 
of detected transcripts in the full dataset, yielding a range of 
percent values which represent the predicted portion of tran-
scripts detected at 30 million records. The minimum value of 
71% for SRR1047863 in nisc2 means that even in the worst 
case, a much smaller cutoff of 30 million records would detect 
up to 71% of the transcripts detected in the full dataset. While 
we tested 4 RNA-Seq datasets and saw similar saturation 
behavior, it is likely that other datasets of variable quality (eg, 
low RNA quality, rRNA contamination, low quality genome 
assembly) might exhibit different sensitivities and saturation 
points. Thus, a saturation curve might need to be generated if 
the workflow and/or data are very different from the repre-
sentative workflow we examined.

At the time of this writing, the mean sequencing depth of 
public Illumina paired-end RNA-Seq runs was ≈16.5 million 
records. However, the mean size of all studies (ie, collections of 
related runs) was 374 million records. In performing certain 
types of analysis such as the search for differentially expressed 
genes, it will be necessary to transfer all of the datasets within 
a related study. Thus, even though the size of individual 

datasets may currently be small, the aggregate size of the whole 
study is large enough to benefit from an optimization of the 
data transfer method.

Likewise, while a 25% reduction in transfer time may not 
seem significant in the context of a single dataset, a similar 
reduction applied to all the datasets from an entire study may 
produce noticeable computational savings. As an example, the 
full study containing nisc2 consists of more than 3.8 billion 
records. At the previously measured throughput of 116 million 
bytes/s, the time to transfer the full study would decrease by 
1.25 hours from 5 to 3.75 hours. This reduction in transfer 
time frees up more network bandwidth and lessens the work-
flow resource requirements while still capturing transcriptional 
signals.

Conclusions
For our use case, partial data transfer reduced total transfer time 
by 25%. Processing smaller datasets given the same amount of 
time opens the possibility to processing more datasets. For 
example, more replicates could be incorporated into the experi-
ment leading to better confidence with lowly expressed genes.30 
In the end, it will be up to the individual experimenter to decide 
when signal is captured for their experiment.
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