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1  | INTRODUC TION

Inclusive fitness is an individual-level quantity identified by Hamilton 
(1964), which he showed, under some assumptions, to increase due 
to the action of natural selection. Hamilton genetical pointed out 
that adult offspring number is affected not just by the actions of an 
individual but by those of the individuals it interacts with. He ob-
served that measuring those effects involves averaging over possi-
ble distributions of genotypes, which in turn involves knowing gene 
frequencies in the population, neither of which are simple or readily 

available calculations (Hamilton, 1964). Accordingly, he turned to an 
alternative metric, “inclusive fitness,” which involves taking the per-
spective of the focal individual and its effects on others (as opposed 
to others’ effects on it).

Hamilton (1964) provided a verbal definition for inclusive fitness 
as follows: the sum of an individual's adult number of offspring after 
it has been “stripped of all components which can be considered as 
due to the individual's social environment,” and a weighted sum of the 
“quantities of harm and benefit which the individual himself causes” 
to the offspring numbers of others. The weightings are degrees of 
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Abstract
Inclusive fitness is a concept widely utilized by social biologists as the quantity or-
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been criticized on the (uncontested) grounds that other quantities, such as offspring 
number, predict gene frequency changes accurately in a wider range of mathemati-
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indeed maximized in these models. We also show how to understand mathematically, 
and at an individual level, the definition of inclusive fitness, in an explicit population 
genetic model in which exact additivity is not assumed. We hope that in articulat-
ing these modeling assumptions and providing formal support for inclusive fitness 
maximization, we help bridge the gap between empiricists and theoreticians, which 
in some ways has been widening, demonstrating to mathematicians why biologists 
are content to use inclusive fitness, and offering one way to utilize inclusive fitness in 
general models of social behavior.
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relatedness. Relatedness is a measure of genetic similarity between 
two individuals (r = 1 for identical twins, r = 0 for random population 
member, including possibility of self in finite populations). The exact 
definitions of the fitness effects and of relatedness differ in differ-
ent formal treatments. For nearly 40 years, at least within behav-
ioral and evolutionary ecology, most field and laboratory workers 
have treated inclusive fitness as the quantity that organisms appear 
designed to maximize, and tailored their studies and experiments 
accordingly (summarized in, e.g., Davies et  al.,  2012; Westneat & 
Fox, 2010). However, Hamilton's verbal definition lacks mathemati-
cal precision, and in Section 4.2 below we provide such precision for 
a particular model. This is important for reconciling relatively infor-
mal inclusive fitness arguments with full population genetic models.

Further, since at least 1978 (Cavalli-Sforza & Feldman, 1978), the 
concept of inclusive fitness has been controversial, criticized most 
notably for assuming additivity of fitness effects. The type of ad-
ditivity we discuss here refers to how the effects of different social 
actions combine to affect one individual's offspring number. The 
well-known challenge for inclusive fitness is that under nonaddi-
tivity, changes in gene frequency are no longer wholly attributable 
to a focal genotype. Since at least 1979 authors have pointed out 
that, in such scenarios, mean offspring number does a better job at 
predicting gene frequency change (Grafen, 1979). Unfortunately for 
biologists, mean offspring number is not a useful maximand in prac-
tice, either in terms of empirical applicability or explanatory power 
(discussed in detail by Levin & Grafen, 2019). Therefore, the problem 
of nonadditivity remains a relevant challenge for empirical biology.

A potential solution to the problem of nonadditivity is weak se-
lection. Weak selection can arise either because the contributions 
to fitness of a mutation are relatively small (“w-weak selection”) 
or because the mutant is not far from the wild-type in phenotype 
space (on average, “�-weak selection”). There is a wide consensus 
that under weak selection organisms at equilibrium act as if max-
imizing their inclusive fitness (Gardner et  al.,  2011; Grafen,  2006; 
Lehmann et al., 2015, 2016; Lehmann & Rousset, 2014; Okasha & 
Martens,  2016b; Taylor,  2017). While this goes some way toward 
satisfying biologists hoping to use inclusive fitness, two signifi-
cant challenges remain. First, the difficulty of capturing Hamilton's 
inclusive fitness in models has forced many mathematical biolo-
gists to use replacements for the correct inclusive fitness, such as 
“simple-weighted sum” inclusive fitness, or neighbor-modulated fit-
ness, in their tests for maximization (Lehmann et al., 2015; Okasha & 
Martens, 2016b). This makes the results for inclusive fitness maximi-
zation, positive or negative, difficult to interpret biologically. Second, 
it is not immediately clear how widely we expect weak selection to 
hold. If the conditions needed for inclusive fitness maximization are 
rare in practice, this would be unfortunate news for empiricists, as 
no practically useful alternative maximand has been offered (Levin 
& Grafen, 2019).

Our aim here, then, is to resolve both problems, providing formal 
support for extending the range of inclusive fitness's applicability. 
We do this through two steps. First, we invoke an assumption that 
we expect to be reasonable and usually close to holding across a wide 

range of biological scenarios, and which recovers a form of weak se-
lection. This is the assumption that the strategy set (set of possible 
phenotypes) contains all probabilistic mixtures of all pairs of strat-
egies. Second, we illustrate a new method for capturing Hamilton's 
(1964) verbal definition of inclusive fitness in a mathematical model 
testing for fitness maximization, which is to replace Hamilton's com-
parison with the nonsocial situation with a comparison with the 
resident phenotype, thus taking an ESS-like approach. Using these 
two steps, we show that inclusive fitness is indeed maximized under 
probabilistic mixing in two particular models. This provides formal 
support for biologically meaningful extension of the range of appli-
cability of inclusive fitness, and a mathematical method for utilizing 
Hamilton's inclusive fitness in maximization modeling.

We proceed as follows. First, we illustrate the two steps in greater 
detail, providing verbal arguments for the importance of probabilis-
tic mixing and correctly capturing inclusive fitness. Second, we turn 
to two recent models by Okasha and Martens (2016b) and Lehmann 
et  al.  (2015) does which developed sophisticated techniques for 
studying inclusive fitness maximization. These two models are of 
particular interest because they study fitness maximization at the 
individual level in an encouraging way, and yet do not find inclusive 
fitness maximization where biologists would hope they might. We 
reanalyze these models, showing that our suggested new assump-
tion of probabilistic mixtures and suggested new expression for 
inclusive fitness recover inclusive fitness maximization in both set-
tings. Finally, we discuss the relevance of these findings to recent 
work on fitness maximization more generally, further implications 
of our analysis for calculating inclusive fitness, and how empirical 
biologists might utilize the results.

2  | PROBABILISTIC MIXING AND 
INCLUSIVE FITNESS

Here, we verbally articulate two steps which recover inclusive fit-
ness maximization in a wide range of scenarios. These points are 
illustrated mathematically in the subsequent sections, in which we 
instantiate the points in specific models.

2.1 | Probabilistic mixing and weak selection

Our first point is that when the strategy set (set of possible phe-
notypes) contains all probabilistic mixtures of all pairs of strategies, 
weak selection arises near an equilibrium, and therefore, inclusive 
fitness should be maximized. To understand this point, it is useful to 
make a distinction between phenotypic and genetic additivity, in the 
following senses. Phenotypic additivity is determined by the game 
matrix that would be constructed by biologists studying interac-
tions, which they interpret as a game, who can observe the actions 
performed in the game and the payoffs from the game but not the 
genotypes. Genetic additivity among a set of genotypes is deter-
mined by whether the fitnesses of individuals can be written as an 
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additive function of the genotypes of the interactants. Weak selec-
tion arises when an analysis restricts itself to a genetically additive 
subset of genotypes.

We argue that under probabilistic mixing, phenotypic nonaddi-
tivity is compatible with genetic additivity. This arises because, while 
deviant behaviors can have large effects, they are expressed rarely. 
The verbal argument has been made elsewhere (Queller, 1996; Levin 
and Grafen, 2019 and Grafen, 1979, final paragraph on p. 906), but 
we repeat it here for clarity. For example, consider the case where 
strategies are not discrete but continuous, where a player can 
choose to cooperate on a fraction �of occasions. Now, a variant 
strategy plays Cooperate on a fraction � + � of occasions, where 
𝛿 ≪ 1. In other words, it plays Cooperate instead of Defect on one 
occasion out of many, and the probability that it is the same occasion 
its related partner also plays Cooperate is very low (Grafen, 1979). 
Thus, under biologically relevant scenarios, phenotypic nonadditiv-
ity is compatible with genetic additivity (although a formal treatment 
has thus far been lacking).

2.2 | Measuring inclusive fitness

We also make two significant points about the definition of inclusive 
fitness. One is simply to emphasize the distinction between inclusive 
fitness and neighbor-modulated fitness. Inclusive fitness requires a 
careful isolation of the effects of actor, whereas neighbor-modulated 
fitness is simply a measure of mean offspring number. These differ-
ences are important in practice for biologists and cannot simply be 
used interchangeably (Levin & Grafen, 2019).

However, they are often treated as synonymous in the techni-
cal literature, in part because neighbor-modulated fitness is easier 
to use in mathematical models testing for maximization. For ex-
ample, Lehmann et  al.  (2015) and Lehmann et  al.  (2016) discuss 
inclusive fitness maximization in different formal contexts, when 
the quantity they work with is neighbor-modulated fitness. In their 
setting, while the mutant's frequency remains at zero, the average 
of one equals the average of the other. However, in general, they 
are not equal, and Hamilton (1964)'s diluting factor shows there is 
a difference. Their results then, while valuable for mathematical 
biologists, are difficult to interpret for biologists interested in uti-
lizing inclusive fitness.

The second point is to make a helpful correction to Hamilton 
(1964)'s verbal definition of inclusive fitness. Costs and benefits 
are defined as differences from what would be expected in the 
nonsocial case, and this has proved a difficulty in interpretation. 
We suggest that the verbal definition is more useful, and more in 
keeping with Hamilton's mathematical definition, if the compari-
son is instead made with the incumbent behavior (in an ESS-like 
analysis that tests for rare mutants against an incumbent) or, more 
generally, is made with the average behavior (which will therefore 
vary with gene frequencies). This suggestion makes the verbal 
definition easier to apply and, as we shall see, does support inclu-
sive fitness maximization.

We now turn to two recent models (Lehmann et  al.,  2015; 
Okasha & Martens, 2016b), in an attempt to formalize these points 
and provide support for the use of inclusive fitness as a biological 
maximand. These two papers continue the encouraging trend to-
ward an explicit mathematical treatment of inclusive fitness maxi-
mization. Although they fail to find it, and instead show that mean 
offspring number (in the guise of neighbor-modulated fitness, the 
calculation Hamilton termed “unwieldy”) is maximized, we are able 
to utilize their mathematical advances to bolster the use of inclu-
sive fitness by biologists.

3  | A SIMPLE T WO -PL AYER GAME

Okasha and Martens (2016b) analyze a version of the Hawk-Dove 
game played between relatives (they focus on the simpler coop-
eration game, but we keep the discussion general here as the con-
clusions hold for both). Their goal was to look with mathematical 
precision at the question of whether inclusive fitness appears to 
be maximized by individuals at equilibrium. Our first point is that 
neither of the two fitness functions they define corresponds to 
Hamilton's inclusive fitness, and we show what the third function 
is below. Our second point is that, when we allow all probabilistic 
mixtures of Okasha and Martens’ strategies also to be strategies, this 
third function is indeed maximized.

3.1 | Do they consider inclusive fitness?

Okasha and Martens’ (2016b) first utility function, which they refer 
to as inclusive fitness, is.

where r is relatedness, and V(i,j) is an individual's payoff when play-
ing strategy i against a partner who plays j. It is immediately apparent 
that this is not inclusive fitness, but something more akin to simple-
weighted sum fitness (Grafen, 1982). It measures the actor's whole 
payoff plus r times its partner's whole payoff and, therefore, does 
not partition offspring number by causation. They find that this util-
ity function is not maximized, which is not surprising, as it is not in-
clusive fitness.

Their second utility function, which they call “Grafen, 1979,” is 
expressed as follows:

This payoff function, identified by Grafen (1979), is simply mean 
number of offspring, and, as expected, Okasha and Martens (2016b) 
find that that the strategy with the highest value increases in fre-
quency, and establish links between evolutionary dynamics and as-if 
maximization. Clearly, neither of these utility functions is inclusive 
fitness as defined by Hamilton (1964).

(1)U (i, j) = V (i, j) + rV (j, i) ,

(2)U (i, j) = rV (i, i) + (1 − r)V (i, j) .
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3.2 | What is the correct expression for inclusive 
fitness?

In order to ask whether inclusive fitness is maximized, we must write 
a third utility function, which sums the effect on personal payoff of 
expressing the strategy and the relatedness weighted difference to 
partner's payoff as a result of actor expressing the strategy, accord-
ing to Hamilton's, 1964 definition. To do this, we write k as a default, 
“nonsocial” strategy and, therefore, can express inclusive fitness of 
an individual playing i against a partner playing j in a population (the 
“nonsocial strategy”) playing k, as the sum of the nonsocial payoff 
against itself, the deviation from the play of i rather than k against j, 
and relatedness times the effect on the partner of the play of i rather 
than k:

This formula would be useful if required for connecting to gene 
frequencies using the Price equation at any frequency (Grafen, 2006), 
but with the probabilistic mixing assumption for invasion of an in-
cumbent, we regard the partner as also playing the incumbent strat-
egy, so j = k and we obtain

3.3 | Is inclusive fitness maximized under 
probabilistic mixing?

The problem of nonadditivity remains. Consider the simple two-
player cooperation game with discrete strategies, analyzed above, 
where each player can choose to play either Cooperate or Defect. 
Relatedness, r, is the measure of genetic similarity between play-
ers discussed above. In a simple two-player game like this, r also 
measures assortation between strategies. If we imagine a mutant 
in the population that played Cooperate instead of Defect, increas-
ing r increases the likelihood that its partner's strategy will also be 
Cooperate, and inclusive fitness fails to take this alteration in the 
partner's behavior into account. When fitness effects depend on 
the partner's genotype, as in the case of nonadditivity, this oversight 
matters.

However, when we assume probabilistic mixing, for reasons 
outlined above and elsewhere (Grafen, 1979; Levin & Grafen, 2019; 
Queller, 1996), we can recover inclusive fitness maximization. Grafen 
(1979, p.907) has already shown that, when we allow for probabilistic 
mixing of strategies, inclusive fitness correctly predicts the direc-
tion of gene frequency change in the simple game above, and this 
resolves the problem identified by Okasha and Martens (2016b). In 
12, we provide a proof for this simple cooperation game, recover-
ing the links between as-if inclusive fitness maximization and gene 
frequency change.

In summary, Okasha and Martens’ (2016b) “inclusive fitness” 
function is not inclusive fitness. The natural expression for inclusive 
fitness arising from Hamilton's (1964) definition and our suggested 

amendments is our Equation (4). Under probabilistic mixing, this cor-
rect inclusive fitness is indeed maximized at equilibrium by each in-
dividual, regarding the incumbent strategy as fixed.

4  | A GENER AL INFINITE ISL AND MODEL

The game analyzed above is a simple two-player game. In some ways, 
this is very general, because it allows us to make few assumptions 
about life cycle or population structure (namely that the chance of 
meeting an identical strategy depends only on r and p, which are 
both independent). However, it is a restricted sort of interaction, 
in which r is a parameter rather than an endogenous feature of the 
model. We now turn to a recent rigorous population genetic analysis, 
which is in some ways more general, and which makes similar claims 
to Okasha and Martens (2016).

Lehmann et al.  (2015) consider an infinite island model of hap-
loid individuals on patches of a fixed size. An individual's fitness is a 
function of its own strategy and the profile of strategies to be found 
among its neighbors, where we will need to refer to their general 
space results, but for the moment focus on the case where the strat-
egy set is confined to real numbers. There is assumed to be no class 
structure, and there is permutation invariance of fitness as a function 
of the nonself elements of the profile of neighbor strategies (which 
rules out associating with relatives more than associating with ran-
dom members of the group). Individuals are asexual, and offspring 
migrate with some positive probability. Generations may be discrete 
or overlapping, but adults do not migrate. Otherwise, no assump-
tions are made about fecundity, survival, or competition. This allows 
for any type of games to be played on the patches and any type of 
strategies to be employed. Thus, despite the highly specific popu-
lation structure, the model is otherwise quite general. Accordingly, 
any conclusions drawn from the model about the maximization of 
inclusive fitness are of interest.

The approach is then as follows. Consider a mutant individual 
and the conditions that must hold for this mutant strategy to invade 
the population. In an infinite island model, any mutant will either 
ultimately go extinct or go to fixation in the population. Thus, we 
can identify the uninvadability condition for a strategy. The question 
then becomes whether we can construct an individually defined pay-
off that depends on the individual's own strategy and also on that of 
its fellow group members, and identify the payoff with a form of bio-
logical fitness, such that strategies that maximize the expected value 
of this payoff against a population almost all playing its own strategy, 
with group membership determined by the population structure, are 
also the strategies that satisfy the uninvadibility criterion.

4.1 | Do they consider inclusive fitness?

Lehmann et  al.  (2015) define three such candidate utility func-
tions, but our first point will be that none of them corresponds to 
Hamilton's verbal definition of inclusive fitness with our interpretive 

(3)V (k, k) + (V (i, j) − V (k, j)) + r (V (j, i) − V (j, k)) .

(4)U (i, j) = V (i, j) + r (V (j, i) − V (j, j)) .
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principle, a fourth function that we exhibit below. Our second point 
is that, once we allow probabilistic mixtures of Lehmann et al.'s strat-
egies also to be strategies, this fourth function is indeed maximized 
at equilibrium. Some of Lehmann et al.'s arguments apply to gen-
eral strategy sets, and these already include probabilistic mixtures. 
When we come to the parts that focus on simple real number strate-
gies, we will need to extend the domain of fitness and other func-
tions accordingly.

First, Lehmann et al. (2015) identify the utility function uA, which 
they refer to as inclusive fitness:

w
(
xi, x−i, 1x

)
 is the offspring number of an focal individual, i, ex-

pressing strategy xi in a patch where the strategies of the indi-
viduals other than i are represented as x−i, where, recalling that 
the mutant is at zero frequency, the distribution of the whole 
population (1x) is assumed to be monomorphic for x and r (x, x) is 
relatedness (with x being the average strategy in the population). 
It is immediately apparent then that uA is not inclusive fitness, but 
instead a version of “simple-weighted sum” fitness (Grafen, 1982). 
It measures an individual's personal offspring number plus a 
weighted sum of the offspring of all its social interactants and 
therefore fails to isolate the actor's effects, as Hamilton (1964) 
intended.

Lehmann et al. (2015) then turn to a second utility function, uB, 
which they refer to as “average personal fitness,”

where Pk is the subset of hypothetical neighbor strategy profiles 
such that k − 1 neighbors have a strategy identical to the focal indi-
vidual, and qk is the probability of that profile (Lehmann et al., 2015). 
uB is a version of neighbor-modulated fitness (i.e., simply mean off-
spring number), as it counts an individual's offspring number in-
corporating the effects of its social partners. Note, of course, that 
Okasha and Martens’ “Grafen, 1979” payoff (our Equation 2) is the 
simple two-player game version of Lehmann et al.'s uB (our Equation 
6), as both are mean offspring number. Lehmann et al. consider a 
third function, uC, which we do not reproduce here as it is simply 
neighbor-modulated fitness under a special assumption about the 
link between offspring number and material payoffs.

Lehmann et al. find a much closer fit between the uninvad-
ability conditions from the dynamic model and the first and sec-
ond order conditions for “as-if” maximization by individuals for uB 
than uA (Lehmann et al., 2015). This is not surprising, as we expect 
this to hold for mean offspring number, and it parallels Okasha 
and Martens’ finding about Grafen, 1979. However, none of these 
functions is inclusive fitness as Hamilton (1964) outlined, and 
therefore, their analysis cannot satisfactorily interrogate inclusive 
fitness maximization.

4.2 | What is the correct expression for individual-
level inclusive fitness?

Instead, we require a fourth function, which we will call uIF. In line 
with Hamilton (1964), to obtain uIF, we must sum three components: 
baseline asocial fitness, the difference to personal fitness as a result 
of the strategy, and relatedness weighted difference to social part-
ners’ fitnesses as a result of the strategy. We define the inclusive fit-
ness of a player with the focal strategy, in a group with an arbitrary 
distribution of other strategies, but in a population in which almost all 
individuals play an incumbent strategy x. This follows the individual-
level philosophy as outlined by Lehmann et  al.  (2016). We will go 
on to convert that expression to investigate the invader-incumbent 
case, following Lehmann et al.  (2015). Recalling our principle, from 
the previous example, of adopting the incumbent as the nonsocial 
strategy for inclusive fitness purposes, inclusive fitness is made up of 
the following parts:

•	 Baseline asocial fitness in the population as a whole – the average 
for an x-player, so

where x N−1 indicates that all other group members play x,

•	 The difference to own personal fitness as a result of being a 
y-strategist rather than an x-strategist, in which others play an ar-
bitrary (N−1)-tuple of strategies x−i:

•	 The difference to others’ personal fitnesses as a result of the 
focal individual being a y-strategist rather than an x-strategist, 
weighted by relatedness:

where ŵ differs from w in that the second argument of ŵ describes 
the strategies of the whole group, and not of the group apart 
from i. Formally, w

(
x, z, 1x

)
= ŵ

(
x, zx, 1x

)
, and we regard ŵ as being 

undefined if the first argument is not also an element in the group 
strategies. r (y, x) is relatedness from the perspective of a y player 
in a population of resident x players. xj for j ≠ i are the elements 
of x−i.

Putting all this together, we can write the inclusive fitness of an 
individual playing y, in a group x−i, with population incumbent x as 
follows:

(5)uA
(
xi, x−i, 1x

)
=w

(
xi, x−i, 1x

)
+ r (x, x)

∑
j≠i

w
(
xj, x−j, 1x

)
.

(6)uB
(
xi, x−i, 1x

)
=

N∑
k=1

∑
x̃−i ∈ Pk(x−i)

w
(
xi, x̃−i, 1x

)
qk (x, x) ,

w
(
x, xN− 1, 1x

)
,

+w
(
y, x−i, 1x

)
− w

(
x, x−i, 1x

)
.

+r (y, x)
∑
j≠i

(
ŵ
(
xj, x−iy, 1x

)
− ŵ

(
xj, x−ix, 1x

))
,

(7)

w
(
x, xN−1, 1x

)

+ w
(
y, x−i, 1x

)
−w

(
x, x−i, 1x

)

+ r (y, x)
∑
j≠i

(
ŵ
(
xj, x−iy, 1x

)
− ŵ

(
xj, x−ix, 1x

))
.
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If using this expression to understand gene frequencies in gen-
eral, we would average this expression over the distribution of x−i 
that the population structure implies. If instead we are testing for 
invasion of a population playing x by a rare mutant playing y, all in-
dividuals would be playing x ory, and this would allow us to write 
x−i = y(k− 1)x(N− k) for a group with kmutants altogether, and aver-
age over the different values of k with their probabilities qk (y, x) 
in Lehmann et al.'s notation. Going further, under the probabilistic 
mixing assumption, as already discussed in relation to the Okasha 
and Martens model, we would evaluate inclusive fitness substitut-
ing x(N−1) for x−i, that is, we would assume that the neighbors were 
all playing the incumbent strategy whether they were genetically 
mutant or genetically incumbent. This simplifies Equation (7) and 
allows us to define inclusive fitness under probabilistic mixing for 
invasion-incumbent purposes as

This simple form is a way of applying additive ideas to phenotyp-
ically nonadditive situations and recovers much of the simplicity of 
the additive case.

4.3 | Is inclusive fitness maximized under 
probabilistic mixing?

In Section 2.3, we offered a verbal argument for the biological im-
portance of probabilistic mixing. Here, we formalize this argument 
by extending Lehmann et al.'s (2015) model to allow for probablistic 
mixing of strategies and analyze the first and second order condi-
tions for evolutionary uninvadability and maximization of inclusive 
fitness (uIF). We do this by considering a mutant strategy ỹ, in which 
a mutant displays the deviant behavior with some small probability, 
�, and otherwise, with probability (1 − �), behaves like a resident (x), 
which we can write in a natural notation as ỹ = (1 − �) x + �y

Formally, our probabilistic mixing assumption is that if y and z are 
elements of our strategy set X, then so is every probabilistic mixture 
of y and z. Thus, let � (y, z, e) be the strategy that plays z with chance 
1 − � and y with chance �. So far, we have been using results of 
Lehmann et al.'s that apply to general strategy sets. When we move 
to look at first and second order conditions, we follow them in mov-
ing to one-dimensional (real) strategies, except that we need to ex-
tend the domain of some functions to include probabilistic mixtures.

Because w is an expected number of offspring anyway, it is rea-
sonable to extend w by writing

and a similar expansion applies to each of the other probabilisti-
cally mixed arguments that may appear in x−i, allowing us to unpack 
w
(
y, x−i, 1x

)
 into a convex combination of the values of w defined for 

scalar strategies.

We proceed to ask whether evolutionary uninvadability = util-
ity maximization, by checking whether the first and second order 
conditions for uninvadability and utility maximization are the same. 
Following Lehmann et al. (2015, equation (3), which applies to arbi-
trary strategy sets), we write the lineage fitness of the mutant as:

where W is the lineage fitness of the mutant, w is the personal fitness 
of the mutant expressing ỹ in a patch with k − 1 other mutants and 
N − k residents displaying x, in a population otherwise monomorphic 
for x. qk is the probability that the neighbor profile of the focal mu-
tant will consist of k − 1 other mutants. For x to be uninvadable, it 
must be that x ∈ argmaxyW (y, x), that is, x must be the best invader 
against itself and so must achieve a local maximum of W (y, x)

In the appendix, we find the first order condition for uninvad-
ability under our probabilistic mixing condition (based on the first 
partial derivative of W) to equal the first order condition for utility 
maximization (based on the first partial derivative of uIF), and the 
same for the second order conditions. Therefore as a result of gene 
frequency dynamics, at equilibrium, organisms appear as if trying 
to maximize inclusive fitness. Due to the wide latitude afforded by 
the approach, this result holds some generality for inclusive fitness 
maximization.

In summary, Lehmann et al. (2015) does did not analyze inclusive 
fitness as defined by Hamilton (1964). We derive the natural expres-
sion above in Equation (8). We show in the appendix that under prob-
abilistic mixing, the correct inclusive fitness is indeed maximized.

We expect our result to hold for other recent analyses which 
have identified mean offspring number as a successful maximand 
(e.g., Allen & Nowak,  2015), if we adopt our newly articulated 
modeling approach of regarding the incumbent as Hamilton's 
“nonsocial” case, and of allowing all probabilistic mixtures of el-
ements in the original strategy set. An interesting future step 
would be to try to extend our result to more general population 
structures. Our articulation of these additional conditions will, we 
hope, help mathematicians and biologists understand each other 
better in future.

5  | DISCUSSION

Inclusive fitness has formed the bedrock of a vast body of empiri-
cal literature (for an entry into that literature, see: Foster (2009); 
Davies et al. (2012), and for an attempt to quantify such successes 
Abbot et  al.  (2011), Tables 1 and 2). However, it has long been 
criticized for its assumptions, most notably additivity of fitness ef-
fects, and its failure in such scenarios to predict gene frequency 
change as well as mean offspring number (sometimes referred to 
as “neighbor-modulated fitness”). Recent papers have apparently 
lent support to such claims (though this may not have been their 

(8)
uIF (y, x)= w

(
y, x(N−1), 1x

)

+ (N−1) r (y, x)
[
w
(
x, x(N−2)y, 1x

)
−w

(
x, x(N−1), 1x

)]
.

(9)w
(
� (y, z, �) , x−i, 1x

)
= (1 − �)w

(
z, x−i, 1x

)
+ �w

(
y, x−i, 1x

)
,

(10)W ( ỹ, x ) =

N�
k=1

⎛
⎜⎜⎝
N−1

k−1

⎞
⎟⎟⎠
qk ( ỹ, x )w

�
ỹ, ỹ(k− 1)x(N− k), 1x

�
,
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goal) with general mathematical models (Lehmann et  al.,  2015; 
Okasha & Martens,  2016b). However, we have shown that such 
models fail to correctly capture inclusive fitness, and that when 
the correct expression is used, under the assumption of proba-
bilistic mixtures of phenotypes inclusive fitness maximization is 
recovered.

5.1 | Inclusive fitness maximization

The precise mathematical definition of inclusive fitness depends 
on the specific settings. However, in defining it precisely in specific 
cases, here we have aimed to help mathematical biologists find the 
precise definition in their own setting. Rousset (2004, pages 194–
195) has a useful discussion of how the idea of fitness maximization 
can be understood mathematically, concluding that it should be un-
derstood in an ESS-like way, considering the success of a rare mutant 
against an incumbent. This is in line with the approach advocated by 
Dawkins (1976, 1980). This implies that the fitness function must de-
pend not only on the individual's strategy, but also on the incumbent 
strategy. The stable incumbent is one that is the best-spreading mu-
tant against itself, and the calculation of best-spreading may rely on 
reproductive values in structured populations. It is useful if the defi-
nition of inclusive fitness also connects to gene frequency change at 
nonrare frequencies, as in Grafen (2006).

There are a number of papers that have considered inclusive 
fitness maximization whose work we have not addressed ex-
plicitly here, but which readers may be interested in referring to 
for broader considerations of biological maximization. Hamilton 
(1964) explicitly discusses the optimization of inclusive fitness, 
but this is a verbal remark drawing a parallel with the Fundamental 
Theorem of Natural Selection, in which Fisher (1930) also had no 
formal treatment of maximization. A number of papers similarly 
have discussions on the basis of calculations about changes in 
gene frequency. A recent important development is the consid-
eration of inclusive fitness maximization at the population level 
by Lehmann et al. (2016), but here we have been concerned with 
mathematically explicit studies of inclusive fitness maximization at 
the level of the individual (Levin & Grafen, 2019, discuss in detail 
why this matters).

The first paper to do this was Grafen (2006), but his highly tech-
nical conditions, although perhaps required in a model without dy-
namic sufficiency, have not so far met with approval or been further 
developed. Second, Lehmann and Rousset (2014) fitness showed in 
a simple model that inclusive fitness was maximized under additiv-
ity of phenotypic effects on offspring number but not otherwise. 
Thus, we have focused on Lehmann et  al.  (2015) and Okasha and 
Martens (2016b), as these are the only papers we know of to explic-
itly analyze inclusive fitness maximization at the individual level. We 
note that in the case of Lehmann et al., the failure to find inclusive 
fitness maximization was not their main conclusion. Thus, our aim 
is not to say that these analyses are wrong or not useful—quite the 
opposite. Instead, we simply note that both papers appear to offer 

disappointing conclusions for users of inclusive fitness, and hitch-
hike on their very useful technical developments to offer further 
useful biological results.

In doing so, we are following a recent resolution offered by Birch 
(2017a,b), who argues that the critics (e.g., Allen & Nowak,  2016; 
Nowak et  al.,  2010; van Veelen et  al.,  2017) are right to point to 
technical difficulties in establishing that inclusive fitness is well-
defined or that natural selection leads to “as-if maximization,” in a 
fully general theoretical model. However, Birch argues that, within 
certain assumptions, notably additivity of fitness effects, inclusive 
fitness is close enough to being “right” to justify its use as organiz-
ing framework for understanding social behavior. We strengthen 
Birch's resolution by extending the range of scenarios in which inclu-
sive fitness can be applied. The significance of articulating modeling 
assumptions lies in the process by which biological ideas become 
transferred into mathematics. If biologists fail to explain clearly 
enough what they are doing, then the machinery of mathematics is 
capable of yielding unbiological answers that are hard for biologists 
to interpret or respond to. In controversies caused by failure of com-
munication, biologists can be grateful for the work of philosophers 
in acting as intermediaries (Birch, 2017a; Okasha & Martens, 2016a).

We hope to have provided a way to utilize this understanding to 
correctly capture Hamilton's inclusive fitness in such models. The 
technical mathematical requirements of building rigorous popula-
tion genetic models are considerable. They often require focusing 
on quite detailed special cases that are in themselves quite complex, 
or on abstract mathematical concepts representing the limits of the 
proof, which are quite complex, and often require adopting a very 
precise mathematical mode of reasoning. It is not surprising that 
linking back to general concepts in less technically demanding areas 
of biology often seems to prove difficult. In extending these models 
and formalizing our verbal arguments, we hope to make it easier for 
future modelers to make links to the general and verbally expressed 
conceptual theory when they build precise mathematical population 
genetic models.

5.2 | Probabilistic mixing

The biological significance of the “probabilistic mixtures” assump-
tions is important to understand. Some of what follows is at the 
moment our own intuition, and obtaining mathematical proofs of 
precise versions would be extremely useful. First, uncontroversially, 
it will usually be conceivable that the assumption is true in any par-
ticular example and cannot be ruled out. Second, we conjecture that 
the possible deviations from the assumption will not tilt the biology 
in any particular direction, and thus, we can consider the equilibrium 
under the probabilistic mixtures assumption as a central case. The 
fact that this central case applies without knowledge of the genetics 
across such a wide range of possibilities is very important in regard-
ing social biology as possible without detailed genetic knowledge.

The probabilistic mixing approach also provides a particular an-
swer to a little-discussed extra problem raised by nonlinearity. When 
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we ask for the effect of an actor on recipients, should we ask for that 
effect on the basis that the recipients are (a) incumbents (b) mutants 
or (c) some probabilistic mixture depending on population structure 
and relatedness in particular? Under linearity, these all give the same 
answer. Eshel (2018), for example, assumes we should assume the 
recipients are mutants, presumably on the grounds that it is the 
mutant recipients that will further spread the mutant allele, but his 
model and our rationale for it depend on haploidy.

However, one consequence of probabilistic mixing is that inclu-
sive fitness should be calculated on the assumption that the recipi-
ents are incumbents, and we regard this as biologically appropriate. 
If mutations really were unconditional, then some mixture would be 
preferable. But most behavior is conditional, and chance events lead 
individuals into expressions of different parts of a complex pheno-
type, so we should not expect to see a correlation of behaviors be-
tween related interactants. This chimes with our aim in the Okasha 
and Martens (2016) example to separate the two effects of related-
ness, retaining the part that an actor “cares about” the recipient's 
offspring number, but ignoring the possibility that the recipient's 
behavior will tend to be more like the actor's than the population av-
erage. This suppression of the second effect provides a unique inclu-
sive fitness, while the alternative is to have a complicated expression 
that depends on genetic details such as ploidy, penetrance, and domi-
nance, as well as how often the genetic potential for deviant behavior 
is actually expressed because the appropriate environmental condi-
tions happen to arise. This simplification may reduce the difference 
between the gene-centered and individual-centered approaches dis-
cussed by Lehmann et al. (2015) and Lehmann et al. (2016). Thus, an 
important question that can be asked of any inclusive fitness formu-
lation under nonlinearity is “what is assumed about the phenotype of 
the recipients?” We do recognize that in this paper we have focussed 
only on haploidy and that further challenges are likely to arise in ap-
plying our general philosophy to diploid or mixed-ploidy models.

Finally, when the assumption is not true, and the phenotype 
that would be the equilibrium under that assumption is not avail-
able as true-breeding under the actual phenotype set, the possible 
outcomes are as follows. The simplest possibility is that the popula-
tion evolves to the phenotypically closest population to the one that 
would evolve if the assumption were true: that will often be an inter-
nal equilibrium with genetic variation. Maynard Smith (1981, 1982) 
made the general point about ESSs and population genetics, and we 
expect it to be true of inclusive fitness too. Uyenoyama and Feldman 
(1982) is just one example of population genetic models finding close 
results with internal equilibria. Sometimes, if the requisite average 
behavior cannot be achieved under the available genetic variation, 
there may be scope for intransitivity and for continual flux in gene 
frequencies. These rough guesses represent food for future theo-
retical thought and indicate how the equilibrium behavior under the 
probabilistic mixing assumption may turn out to be useful in under-
standing a system when that assumption is false.

We expect that the importance of probabilistic mixtures of phe-
notypes may extend to more general scenarios in which the genetic 
component of the variability in how individuals act on any given 

occasion is proportionally low (which implies the �-weak selection 
of Wild & Traulsen, 2007), because it removes the assortation effect 
of r . We expect this scenario to be the norm for populations near 
equilibria (or, more precisely, near a point at which a monomorphic 
population is uninvadeable by any one of set of mutations that code 
for all nearby phenotypes), where it is usually reasonable to suppose 
we study organisms (Birch, 2017a,b; Fisher, 1930; Grafen, 1985).

6  | CONCLUSION

Empirical successes provide some assurance that the working hy-
pothesis of inclusive fitness is by and large satisfactory. Here, we 
hope to have lent some formal support for such assurance. Further, 
we hope that our paper will present future modelers with a math-
ematical articulation of biologists’ intuitions about inclusive fitness 
under additivity and show how it can be extended on mild assump-
tions to provide useful guidance in more general situations.
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APPENDIX 1

OK A SHA AND MARTENS
Okasha and Martens (2016b) analyze the simple cooperation game described in the text, in which an altruist donates b to its partner at a cost 
c, and when two cooperators are paired, they each receive an additional benefit, d. With initial strategy set {C,D}, there are four payoffs that 
we write formally as

We now invoke our probabilistic mixing assumption to allow strategies of the form � (�) to represent playing D with probability 1 − � and C 
with probability �. Then, we extend the payoff function for mixes in terms of the original values as follows,

To find an equilibrium strategy in the extended set, we seek a probability, 0 < 𝜋 < 1 such that

Differentiating with respect to � and solving for � when � = � produces a well-known result for an internal extremum (Grafen, 1979; Hines 
and Maynard Smith, 1979) in new notation that

and note this is a maximum of payoffs if d < 0 but a minimum if d > 0. Thus, a mixed equilibrium relies on d < 0, when there is a range of 
rb − c values from 0 to − (1 + r) d over which an internal mixture is stable. If rb − c is negative, cooperation is absent from the equilibrium, 
while if it is above this range then all individuals cooperate. When d > 0 and rb − c is between − (1 + r) d and 0, there are two local equilibria 
at the extremes, and again lower and higher values of rb − c produce all Defect and all Cooperate, respectively.

This example has shown how payoff functions for scalar strategies need to be extended to probabilistic mixtures to implement the proba-
bilistic mixing assumption. Inclusive fitness in this case is defined for a strategy � (�) in a population playing � by adding the payoff to s � (�) 
against a � incumbent, and adding r times the difference it makes to a � incumbent that the actor is playing � not �, as follows,

where in the second line the first main bracket shows the payoff to � (�) against itself, and the cofactor of (� − �) shows the inclusive fitness 
effect of one player deviating from � toward Cooperate against a population playing �. The rb − c term is the familiar effect from additive mod-
els. Nonadditivity appears by regarding the effect of d as contributing d to self (with relatedness of 1) and d to the partner (with relatedness r),  
hence the factor 1 + r. The factor � appears because this is the chance that the nonadditive gain will be made when the population plays �. 
Thus, the inclusive fitness makes complete sense. It has a turning point at an internal value of � only if the cofactor of � − � equals zero, which 
is a maximum only if d is negative, because then increasing � above � results in a decrease in the player's fitness. The cofactor of � − � equaling 
zero immediately yields the solution for � ∗ given above on dynamic grounds.

Thus, an inclusive fitness analysis, using our probabilistic mixing assumption and using the incumbent in place of Hamilton's “nonsocial” 
phenotype, yields a very satisfying analysis and interpretation of this two-player game played between relatives. The probabilistic mixing as-
sumption has the consequence that for inclusive fitness purposes we regard the partner as playing the incumbent strategy. Thus, this model 
supports the idea that we can consider organisms, at equilibrium, to appear as though maximizing their inclusive fitness (Okasha, 2018; Okasha 
& Martens, 2016b). The calculations effectively repeat those of Grafen (1979), but we articulate the arguments more fully.

(A1)
⎛
⎜⎜⎝
V (D,D) V (D,C)

V (C,D) V (C,C)

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝
0 b

−c b−c+d

⎞
⎟⎟⎠
.

(A2)V (� (� ) ,� (� ) ) = (1 − � ) (1 − � )V (D,D ) + (1 − � )�V (D,C ) + � (1 − � )V (C,D ) + ��V (C,C ) .

V (� (�) ,� (�)) ≤ V (� (�) ,� (�)) for all � ∈
[
0, 1

]
.

(A3)� ∗ = −
rb − c

(1 + r )d
,

(A4)UIF (�,�) = V (� (�) ,� (�)) + r (V (� (�) ,� (�)) − V (� (�) ,� (�))) =
(
� (b − c) + �2d

)
+ (� − �) (rb − c + � (1 + r) d) ,
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APPENDIX 2

LEHMANN E T AL .
Following Lehmann et al. (2015), and the assumptions outlined in our main text, we consider an infinite island model of haploid individuals on 
patches of size N. We extend Lehmann et al.’s (2015) analysis, and consider a mutant strategy ỹ, in which a mutant displays the deviant behavior 
with some small probability, �, and otherwise, with probability (1 − �), behaves like a resident (x): ỹ = (1 − �) x + �y

First order conditions
We can rewrite Equation (10), by the definition of q and p from Lehmann et al. (2015), as,

where pk is the probability that a randomly drawn mutant has k − 1 other lineage members in its patch. A strategy x is uninvadable if, given x, 
ỹ = x is a local maximum of W (ỹ, x).

In a slight abuse of notation, we will write partial derivatives of functions of ỹ with respect to y and suppress the functional dependence 
ỹ (y) . When we come to unpack this expression for W, pk, and w, which we do when we require x and y to be single real numbers for com-
putational purposes, we will face and resolve the question of how these functions are extended when we allow their first argument to be a 
probabilistic combination of real numbers rather than a single real number. For the first example W, the definition of W for a general space from 
Lehmann et al. (their Equation 3) suffices for one stage of unpacking:

The first term is equal to 0 because at y = x we can factor out the fitness term, and 
∑N

k=1

�

�y
pk (ỹ, x) = � (1) = 0

Turning to the second term, we unpack w by regarding it as a an average over the different realizations of ỹ, and so now allow for a total k 
mutants and an independent chance, �, of each of them displaying the deviant behavior. This gives:

where h is the number of mutants displaying the deviant behavior. We can express the binomial as,

Eliminating higher order terms of � gives:

We now adopt the notational convention of Lehmann et al. (2015, page 1862) that w
(
y, x−1, 1x

)
 should be regarded as having N + 1 argu-

ments for the purpose of differentiation. Thus, we can take a partial derivative of up to the N + 1th argument (though only actually use up to N).  
This allows us to take the derivative of one individuals offspring number with respect to the behavior of other single members of the group. 
By permutation invariance, and following Lehmann et al. (2015) in denoting wj as the derivative of w with respect to its jth argument, we get:

(A5)W (ỹ, x) =

N∑
k=1

pk (ỹ, x)w
(
ỹ, ỹ(k− 1)x(N− k), 1x

)
,
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⎟⎟⎠
�h (1 − � ) k− h ≈

⎛
⎜⎜⎜⎜⎝

(1−k�+O(�2)) h=0

k�+O(�2) h=1

O(�2) h≥2

.

(A9)�W (ỹ, x)

�y
|y=x =

N∑
k=1

pk (ỹ, x)
�

�y

[
(1 − k�)w

(
x, x (N− 1 ) , 1x

)
+ k�

(
1

k
w (y, x (N− 1 ) , 1x ) +

k − 1

k
w (x, x (N− 2 ) y, 1x )

)]
|y=x + O

(
�2
)
.

(A10)
�W (ỹ, x)

�y
|y=x = �

(
N∑

k=1

pk (ỹ, x) (k − 1)wN

(
x, x(N− 1)y, 1x

))
+ �

(
N∑

k=1

pk (ỹ, x)w1

(
y, x(N− 2), 1x

)) |y=x.
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And from the definition of relatedness following Lehmann et al. (2015), r (ỹ, x) =
∑N

k=1

pk( ỹ,x)(k− 1)

(N− 1)
 we obtain a first order condition of:

Second order condition
The second order condition is given by the second derivative:

The first term of the RHS of the equation equals 0 because at y = x we can factor out the fitness term, and 
∑N

k=1

�2

�y2
pk (ỹ, x) = �2 (1) = 0

Turning to the second term, we already have the partial derivative of w (above) as: �kwj

(
y, x(N− 1), 1x

)
. We unpack by using the definition of 

pk from Lehmann et al. (Lehmann et al. (2015, box 2) and write:

where tk (ỹ, x) is the number of demographic periods (“sojourn time”) for which the lineage consists of k individuals. To get an expression for �
�y
tk (ỹ, x),  

we use the matrix, Q, from which tk is derived, as defined in the Supplementary Material of Lehmann et al. (2015, equation A1)). Q is a matrix whose 
i, jth entry is the probability a patch with j mutants becomes a patch with i mutants in the next demographic period. To obtain the formula, we 
need a symbol Ri−f,j−h,h (y, x) for the probability that the j − h nondeviant mutants contribute i − f individuals to the next time step. The probability 
of going from j to i  mutants is then

where h represents the number out of a total j mutants that display the behavior y, and �jh is the probability that a group with j mutants will 
have h individuals displaying the behavior. The Q matrices capture individuals contributed by the deviant displaying mutants, and the R matrices 
capture mutant individuals contributed by mutants acting as residents.

Now, we apply our assumptions that only a small fraction � of mutants display and that the chances of displaying are all independent. This 
gives us

(A11)

�W (ỹ, x)

�y
|y=x = �

(
w1

(
x, x(N− 1), 1x

)
+ (N − 1)

N∑
k=1

pk (x, x) (k − 1)

(N − 1)
wN

(
x, x(N− 1), 1x

))
= �

[
w1

(
x, x(N− 1), 1x

)
+ (N − 1) r (x, x)wN

(
x, x(N− 1), 1x

)]
= 0.

(A12)

�2W (ỹ, x)

�y2
|y=x

=

N∑
k=1

�2

�y2
pk (ỹ, x)w

(
ỹ, y(k−1)x(N−k), 1x

) |y=x

+2

N∑
k=1

�

�y
pk (ỹ, x)

�

�y
w
(
ỹ, y(k−1)x(N−k), 1x

) |y=x

+

N∑
k=1

pk (ỹ, x)
�2

�y2
w
(
ỹ, y(k−1)x(N−k), 1x

) |y=x.

(A13)�

�y
pk (ỹ, x) =

�

�y

ktk (ỹ, x)∑
N
h= 1

hth (ỹ, x)
=

�

�y
ktk (ỹ, x)

�∑
N
h= 1

hth (ỹ, x)
�
− ktk (ỹ, x)

�

�y

∑
N
h= 1

hth (ỹ, x)

�∑
N
h= 1

hth (ỹ, x)
�2 ,

(A14)

Qij (ỹ, x)=� j0Qij (x, x)

+

j−1∑
h=1

� jh

(
1−

N∑
k=1

Qk,h(y, x)+Ri(j−h)h (y, x)

)

+

j−1∑
h=1

�jh

i−1∑
f=1

(
Qf,h (y, x)+R(i−f)(j−h)h (y, x)

)

+

j−1∑
h=1

�jh

(
Qi,h (y, x)+1−

N∑
k=1

Rk(j−h)h (y, x)

)

+� jjQij (y, x) ,

(A15)
� jh =

⎛
⎜⎜⎝
i

h

⎞
⎟⎟⎠
�h (1 − � ) j− h ≈

⎛
⎜⎜⎜⎜⎝

�
1− j�+O(�2)

�
h=0

j�+O(�2) h=1

O(�2) h≥2

.
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Substituting and eliminating higher orders of �, we find:

Let A, B and C be N × N matrices of the form

respectively. Let J be the N × N matrix with the vector j as the diagonal and otherwise zeroes, l be the N × N matrix of ones, and R1 be the 
matrix with entries Rk,j,1 (representing the probability a patch with j nondeviant mutants, in the presence of l deviant mutant, becomes a patch 
with k mutants). Then, we can write Q as:

Now, tk (ỹ, x) is taken from the first column of (I − Q (ỹ, x)) − 1. From the binomial theorem for matrices (Arias et al., 1990),

where �=1+A (Q (y, x)B)−1+
(
AR1 (y, x)

)
C. Thus, writing T (ỹ, x) as the matrix (I − Q (ỹ, x)) that contains as its first column the vector of  

tk's, we write:

It follows from our assumption that x and y are real numbers that the derivatives above are bounded except at a countable number of points, 
and thus, the above expression is of order �. Since the tk's are taken from Equation A20, the derivative of tk with respect to y is of order �, which 
means that Equation A14 is of order �, and thus line 3 of equal A13 is of order �2. This gives:

Following the same steps as above (equations A8–A12), we can write the second order condition as:

Expected utility maximization
Turning to our expected utility function, uIF defined in equation (8), we can rewrite it with the focal strategy of ỹ as

(A16)Qij ( ỹ, x ) = Qij (x, x ) + j�

(
−Qij (x, x ) + 1 −

N∑
f= i+1

Qf,1 (y, x ) + 1 −

N∑
k= i+1

Rk(j−1)1 (y, x )

)
.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1… 1

0 0 1… 1

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0… 1

0 0 0… 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1… 1

0 0 0… 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0… 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0… 0

0 0 1… 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0… 1

0 0 0… 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A17)Q (ỹ, x) = Q (x, x) + �
(
−Q (x, x) + 1 − A (Q (y, x)B) + 1 −

(
AR1 (y, x)

)
C
)
J.

(A18)(I−Q (ỹ, x))
−1

=(I−Q (x, x))−1−� (I−Q (x, x))−1 ((Q (x, x)−�) J) (I−Q (x, x))−1+o
(
�2
)
,

(A19)�

�y
T (ỹ, x) = −�

(
T (x, x)

�

�y

((
A (Q (y, x)B) +

(
AR1 (y, x)

)
C
)
J
)
(T (x, x))

)
.

(A20)�2W (ỹ, x)

�y2
|y=x =

N∑
k=1

pk (ỹ, x)
�2

�y2
w
(
ỹ, y(k− 1)x(N− k), 1x

) |y=x.

(A21)

𝜕2W ( ỹ, x )

𝜕y2
|y=x =

N∑
k=1

pk ( ỹ, x )
𝜕2

𝜕y2

[
(1 − k𝜀)w

(
x, x(N− 1), 1x

)
+ k𝜀

(
1

k
w
(
y, x(N− 1), 1x

)
+

k − 1

k
w
(
x, x(N− 2)y, 1x

))]
|y=x = 𝜀

[
w11

(
x, x(N− 1), 1x

)
+ (N − 1) r (x, x)wNN

(
x, x(N− 1), 1x

)]
< 0.

(A22)uIF (ỹ, x) = w
(
ỹ, x(N− 1)1,x

)
+ (N − 1) r (ỹ, x)

[
w
(
x, x(N− 2) ỹ, 1x

)
− w

(
x, x(N− 2)x, 1x

)]
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and, as equations (A14–A20) show that we can replace r (ỹ, x) with r (x, x), as part of eliminating terms of higher order of �, this leads to first 
order condition at y = x of

and second order condition of

which match the uninvadability conditions in Equations (A12) and (A22).
Thus, the first and second order conditions for uninvadability and utility maximization are identical when our inclusive fitness is used as 

utility.

w1

(
x, x(N− 1), 1x

)
+ (N − 1) r (x, x)wN

(
x, x(N− 1), 1x

)
= 0,

w11

(
x, x(N− 1), 1x

)
+ (N − 1) r (x, x)wNN

(
x, x(N− 1), 1x

)
< 0,


