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Comparative DNA methylomic analyses
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biomarkers of insulin resistance in
monocytes from virally suppressed HIV-
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Abstract

Background: Compared to healthy individuals, those with stably repressed HIV experience a higher risk of developing
insulin resistance, a hallmark of pre-diabetes and a major determinant for cardiometabolic diseases. Although epigenetic
processes, including in particular DNA methylation, appear to be dysregulated in individuals with insulin resistance, little is
known about where these occur in the genomes of immune cells and the origins of these alterations in HIV-infected
individuals. Here, we examined the genome-wide DNA methylation states of monocytes in HIV-infected individuals (n = 37)
with varying levels of insulin sensitivity measured by the homeostatic model assessment of insulin resistance (HOMA-IR).

Results: By profiling DNA methylation at single-nucleotide resolution using the Illumina Infinium HumanMethylation450
BeadChip in monocytes from insulin-resistant (IR; HOMA-IR ≥ 2.0; n = 14) and insulin-sensitive (IS; HOMA-IR < 2.0; n = 23)
individuals, we identified 123 CpGs with significantly different DNA methylation levels. These CpGs were enriched at genes
involved in pathways relating to glucose metabolism, immune activation, and insulin-relevant signaling, with the majority
(86.2%) being hypomethylated in IR relative to IS individuals. Using a stepwise multiple logistic regression analysis, we
observed 4 CpGs (cg27655935, cg02000426, cg10184328, and cg23085143) whose methylation levels independently predicted
the insulin-resistant state at a higher confidence than that of clinical risk factors typically associated with insulin resistance
(i.e., fasting glucose, 120-min oral glucose tolerance test, Framingham Risk Score, and Total to HDL cholesterol ratio).
Interestingly, 79 of the 123 CpGs (64%) exhibited remarkably similar levels of methylation as that of hematopoietic stem cells
(HSC) in monocytes from IR individuals, implicating epigenetic defects in myeloid differentiation as a possible origin for the
methylation landscape underlying the insulin resistance phenotype. In support of this, gene ontology analysis of these 79
CpGs revealed overrepresentation of these CpGs at genes relevant to HSC function, including involvement in stem cell
pluripotency, differentiation, and Wnt signaling pathways.
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Conclusion: Altogether, our data suggests a possible role for DNA methylation in regulating monocyte activity that may
associate with the insulin-resistant phenotype. The methylomic landscape of insulin resistance in monocytes could originate
from epigenetic dysregulation during HSC differentiation through the myeloid lineage. Understanding the factors involved
with changes in the myeloid trajectory may provide further insight into the development of insulin resistance. Furthermore,
regulation of specific genes that were implicated in our analysis reveal possible targets for modulating immune activity to
ameliorate insulin resistance.

Keywords: Monocyte, Insulin resistance, Diabetes, DNA methylation, Epigenetics, Inflammation, Immune
response, Cardiometabolic disease, HIV

Introduction
Cardiometabolic disorders, including type 2 diabetes melli-
tus (T2D) and cardiovascular disease, are among the most
prevalent and debilitating diseases in the US and world-
wide. Notably, despite stable antiretroviral therapy (ART),
individuals infected with HIV are at a higher risk than non-
infected individuals for developing chronic non-infectious
illness traditionally associated with older age including car-
diometabolic diseases [1] and cognitive dysfunction [2],
reminiscent of aging-associated inflammation, or “inflamm-
aging.” Prior studies have suggested that inflammation may
cause this increase in non-AIDS mortality and morbidity
[3, 4]. Higher levels of interleukin-6 (IL-6), C-reactive pro-
tein (CRP), D-dimer, solubleCD163 (a monocyte activation
marker), and type 1 interferon (IFN)-α responses were ob-
served in HIV patients on ART compared to non-infected
individuals from the general population [5–7]. In addition,
HIV-infected individuals are at a significantly higher risk of
developing insulin resistance [8, 9], a hallmark of pre-
diabetes and a major determinant for the onset of T2D [10,
11]. Evidence is emerging for the role of inflammation in
the pathogenesis of insulin resistance [12]. TNF-α was ob-
served to be increased in adipose tissue and correlated with
insulin resistance; ablating TNF-α was shown to decrease
insulin resistance in animal models [13]. Although inflam-
mation and insulin resistance are key risk factors in cardio-
metabolic diseases [14], irrespective of HIV infection status,
the regulation of immune cell activity underlying cardio-
metabolic disease risk remains incompletely understood.
Evidence is emerging for the role of epigenetic pro-

cesses, particularly DNA methylation, in inflammation
and insulin resistance [15]. Inflammation has been shown
to be associated with global DNA hypermethylation in
peripheral blood mononuclear cells (PBMCs) [16] and
with insulin resistance, independent of other risk factors
for T2D [17]. Interestingly, differential DNA methylation
at specific genomic loci in PBMCs exhibited changes at
genes related to immune function and inflammatory path-
ways, which are associated with biomarkers of inflamma-
tion [18]. A prospective study examining PBMCs from
T2D patients and matched non-diabetics observed DNA
methylation differences at a few loci that were associated

with T2D risk [19]. Another study found that DNA
methylation variable positions preceded T2D diagnosis
[20]. Some of these local changes in DNA methylation
that are associated with inflammation appeared to be re-
versible by surgical treatments of obesity, which restored
insulin sensitivity [21]. Thus far, most studies have exam-
ined DNA methylation differences in T2D almost exclu-
sively in insulin-sensitive organs, including pancreatic
islets, skeletal muscle, and hepatic tissue [22]. Elucidating
DNA methylation differences in peripheral inflammatory
cells whose states may be altered in individuals at risk for
developing cardiometabolic diseases, i.e., insulin resistant,
was therefore of interest. To our knowledge, only one
study has sought to determine the epigenetic signature of
insulin resistance; however, this was observed in adipose
tissue and bulk populations of PBMCs [23]. The hetero-
geneity in cell type composition of PBMCs makes it diffi-
cult to attribute the methylation changes to a particular
cell type that may underlie inflammation and insulin re-
sistance phenotypes.
Monocytes play a central role in both acute and

chronic inflammation, forming one of the first lines of
defense against pathogens through phagocytosis, antigen
presentation, and cytokine production. In one study,
nutritionally induced reversal in the inflammatory states
of monocytes from T2D patients was observed [24], sug-
gesting monocyte function and related inflammation
may be under epigenetic regulation. Monocytes develop
initially in the bone marrow, emigrate into peripheral
blood where they provide routine immunosurveillance,
responding to infection/inflammation, and migrate into
tissues where they differentiate into macrophages [25].
Monocytes display proinflammatory features, secreting
various inflammatory cytokines (i.e., tumor necrosis fac-
tor alpha [TNF-α], IL-6, interleukin 1-beta [IL-1β] and
interleukin-8 [IL-8]) after stimulation with toll-like re-
ceptor (TLR) ligands [26]. TNF-α is an inflammatory
cytokine involved in systemic inflammation that is in-
duced by lipopolysaccharide (LPS), other bacterial prod-
ucts, and IL-1 s. CD16-expressing monocytes are a
major source of TNF-α [27]. TNF-α gene expression is
induced by high glucose treatment of monocytes [28]
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and neutralization of TNF-α improves insulin sensitivity
in an animal model of T2D [13]. Obesity, another risk
factor for insulin resistance, induces alterations in
monocytes and macrophages, stimulating the production
of chemokines and cytokines (i.e., monocyte chemo-
attractant protein-1 [MCP-1/CCL2], IL-6, IL8, IL-1β,
TNF-α), and leads to insulin resistance in target cells by
activating c-jun N-terminal kinase (JNK) and I-Kappa-B-
Kinase-Beta (IKKβ/NF-κB) pathways [12, 29]. Monocytes
from HIV-infected individuals exhibited higher variabil-
ity in immune responses as measured by the production
of proinflammatory cytokines compared to non-infected
individuals [30], prompting us to examine whether this
variability may underlie their heightened risk for insulin
resistance. The transcriptional levels of proinflammatory
cytokines are regulated by DNA methylation [31]. To-
gether, these studies suggest that the DNA methylation
landscape of monocytes may be altered in monocytes of
insulin-resistant individuals, possibly exhibiting a higher
degree of variability than that of insulin-sensitive
individuals.
Additionally, we recently reported an immunoepige-

netic signature of cognitive impairment in monocytes
from HIV-infected individuals with dementia [32],
prompting us to examine whether altered DNA methyla-
tion states in these cells may also relate to insulin resist-
ance and cardiometabolic disease risk. Thus, we
evaluated genome-wide DNA methylation states in HIV-
infected individuals (n = 37) with varying levels of insu-
lin sensitivity, measured by the homeostatic model
assessment of IR (HOMA-IR) using fasting insulin and
glucose levels. As expected, individuals diagnosed as
insulin resistant (IR; HOMA-IR≥2.0) had a higher risk
for cardiovascular disease as measured by the Framing-
ham Risk Score (FRS) than their insulin-sensitive (IS;
HOMA-IR < 2.0) counterparts [33]. IR individuals also
exhibited unique DNA methylation differences enriched
at genes involved in signaling pathways, including in-
flammatory and glucocorticoid signaling. These associa-
tions are likely independent of HIV, as we observed a 3%
overlap of differentially methylated CpGs in monocytes
of HIV-infected and non-infected in our comparative
analyses of insulin resistance. These results support a re-
cent study describing an association between DNA
methylation states at specific loci in T cells with IR in
non-infected individuals [34]. Furthermore, our data im-
plicates defects in myeloid differentiation as a potential
origin of the monocyte methylation states associated
with the IR phenotype.

Materials and methods
Sample cohorts and clinical data
This prospective study was conducted utilizing data and
specimens selected from the first two years of the

Hawaii Aging with HIV Cohort-Cardiovascular Disease
(HAHC-CVD) study, a 5-year natural history study in-
vestigating the role of chronic HIV infection in the
development of cardiovascular disease (CVD) among
HIV-infected participants on suppressive ART. Inclusion
criteria from the cohort of 160 patients required docu-
mented HIV-positive status, use of combination ART ≥
6 months, male, and non-diabetic at time of blood draw.
Extensive HIV immunologic and cardiometabolic assess-
ments were available from this cohort, and additional
characteristics have been previously described [35].
Viably cryopreserved PBMCs were obtained from the
Hawaii Center for AIDS (HICFA). Clinical and immuno-
logical parameters for each individual available, included
age, gender, ethnicity, total cholesterol, high-density
lipoprotein- cholesterol (HDL-c), low-density lipoprotein
cholesterol (LDL-c) smoking status, systolic blood pres-
sure, use of anti-hypertensive medication, viral load
(HIV RNA), CD4+ cell counts, diabetic status, HOMA-
IR, body mass index (BMI), insulin sensitivity, fasting
glucose, oral glucose tolerance test (OGTT), and FRS
(Table 1). Of the 160 patients in the cohort, we excluded
diabetic subjects and females due to sex differences af-
fecting genome-wide DNA methylation and gene expres-
sion in pancreatic β-islets and association with insulin
secretion [36], and limited sample size. Finally, due to
exhaustion of available PBMCs from the cohort, 37 indi-
viduals were selected for inclusion in the study. These
37 individuals were stratified into one of two groups on
the basis of their HOMA-IR scores, calculated using
fasting blood glucose and insulin levels as a surrogate
measure of β cell function and insulin sensitivity:
HOMA-IR < 2.0 was considered insulin sensitive (IS; n =
23), whereas a HOMA-IR ≥ 2.0 was considered insulin
resistant (IR; n = 14) based on comparisons to previous
studies [37–39]. Informed consent was obtained from
participants following procedures approved by the Uni-
versity of Hawaii Human Studies Program (CHS
#16476). All experiments were performed in accordance
with relevant guidelines and regulations.

Measuring systemic levels of inflammation in plasma
To evaluate systemic cytokine/chemokine protein levels,
we performed a custom 8-plex bead-based multiplexing
assay using the Milliplex Human Cytokine/Chemokine
Magnetic Bead Panel following the manufacturer’s
recommendations (Millipore, Darmstadt, Germany) on
plasma biospecimens from IR and IS individuals
acquired during the same blood draws for PBMC. Anti-
bodies for interferon gamma (IFN-γ), interleukin-10 (IL-
10), IL-1β, IL-6, IL-8, TNF-α, MCP-1, and vascular
endothelial growth factor (VEGF) were utilized in this
custom 8-plex panel. Standards, controls 1 and 2, and
samples were measured in duplicates. The human
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cytokine standards were customized to include a lower
than recommended concentration (0.64 pg/mL) to in-
crease the range of the standard curve for lower limits
of detection. To further improve sensitivity of the assay
for analytes, the plates were incubated overnight at 4 °C
for 17 hours with constant agitation. Fluorescent signals
were analyzed using the Luminex 200™ instrument (R&D
Systems, Inc., Minneapolis, MN, USA). Bio-Plex Man-
ager™ software (Bio-Rad Laboratories, Inc., Hercules,
CA, USA) was used for data processing.

PBMC specimens, monocyte enrichment, and nucleic acid
isolation
Viably cryopreserved PBMCs of approximately 2.5 × 106

to 1.7 × 107 from HIV-infected individuals were first
thawed in AIM-V Serum Free Media (Thermo Fisher
Scientific, Inc., Waltham, MA, USA) supplemented with
1:50 DNase (Sigma-Aldrich, St. Louis, MO, USA),
washed, and resuspended in wash buffer (PBS, 3% BSA,
and 1mM EDTA). Aliquots of 1.25 × 105 cells (PBMCs)
were taken from each sample prior to enrichment for
flow cytometry-based cellular phenotyping assays to de-
termine cell type composition. Monocytes were enriched
from PBMCs using the Negative-Selection, Human
Monocyte Enrichment Kit without CD16 Depletion

(StemCell Technologies, Inc, Vancouver, BC, Canada)
following the manufacturer’s guidelines utilizing the pur-
ple EasySep™ magnet (StemCell Technologies). Cells
were counted prior to cell separation using the Count-
ess® Automated Cell Counter (Life Technologies™,
Carlsbad, CA, USA) to determine the minimal cell con-
centration required for cell:antibody/magnetic bead
binding necessary for monocyte enrichment. Negatively
selected cells were counted again after monocyte enrich-
ment to partition the appropriate number of cells
required for flow cytometry (1.0 × 105–1.25 × 105 cells)
to confirm efficiency of monocyte enrichment, while the
remainder of enriched cells were pelleted and resus-
pended in lysis buffer for subsequent purification of
nucleic acids. DNA and RNA were isolated from
enriched monocytes using the AllPrep® DNA/RNA Mini
Kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s recommendations for purification of DNA and
RNA from animal cells. Nucleic acid concentrations
were quantified using the Qubit® 2.0 Fluorometer
(Thermo Fisher Scientific) following the manufacturer’s
protocol. Qubit® dsDNA HS Assay Kit and Qubit® RNA
BR Assay Kit (Thermo Fisher Scientific) were used for
DNA and RNA, respectively. DNA and RNA were stored
in − 20 °C and − 80 °C, respectively.

Table 1 Baseline characteristics of insulin-sensitive (IS) and insulin-resistant (IR) individuals

Clinical data comparing the IS and IR group. Data shown are median values [first quartile , third quartile], except for frequency counts (%). P value was determined
between IS and IR groups using Mann-Whitney U test; significance at P < 0.05
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Validation of monocyte enrichment by flow cytometry
To confirm the enrichment of monocytes by negative se-
lection, an aliquot of PBMCs (1.25 × 105 cells) for all
subjects pre- and post-enrichment was analyzed by a
flow cytometer for monocytes, T cells, NK cells, and B
cells (Table 2). Aliquots were stained with yellow amine
fluorescent reactive dye (YARD; Thermo Fisher Scien-
tific) then with anti-CD16 Brilliant Violet 421 (Clone
3G8), anti-CD3 V500 (Clone UCHT1), anti-CD14
Qdot®605 (Clone TüK4), anti-CD56 Pe-Cy7 (Clone
B159), anti-CD19 PE-Cy7 (Clone SJ25C1), anti-CD20
Pe-Cy7 (Clone 2H7), and anti-HLA-DR APC-H7 (Clone
G46-6) for identification of leukocyte subpopulation fre-
quencies. Anti-CD16 was purchased from BioLegend,
Inc., San Diego, CA, USA. Anti-CD3, anti-CD56, anti-
CD20, anti-CD19, and anti-HLA-DR were obtained from
BD Bioscience, San Jose, CA, USA. Anti-mouse Ig/Nega-
tive Control (FBS) Compensation Particle Set (BD Bio-
science) was used for compensation analysis of
fluorescent signals emitted by each fluorochrome from
the multi-colored cellular phenotyping panel employed.
Anti-mouse Ig compensation beads were stained with
each fluorochrome-conjugated antibody in separate
wells. ArC™ Amine Reactive Compensation Bead Kit
(ThermoFisher Scientific) reactive bead/negative beads

were used for compensation of YARD (Live/Dead stain)
fluorescent signals. Stained cells from PBMCs, enriched
monocytes, and compensation particles were analyzed
using a 4-laser BD LSRFortessa flow cytometer (BD Bio-
science). The data was analyzed using the FlowJo
software (Tree Star, Inc., Ashland, OR, USA). The fre-
quency (%) of each cell type was determined by event
count (specific event/total events) with debris exclusion.
Successful enrichment was observed for all samples in
each group with an average monocyte enrichment of
89.5% (87.5%, 92.8%) and 88.7% (85.2%, 95.9%) for the IS
and IR groups, respectively (shown: median [first quar-
tile, third quartile]; Table 2). High-quality enrichment
was necessary to diminish background noise caused by
mixed cell populations, as the heterogeneity of cell pop-
ulations confounds downstream DNA methylation ana-
lyses [40].

Illumina 450 K array-based DNA methylation analysis
The Illumina Infinium HumanMethylation450 BeadChip
(450 K; Illumina®, Inc., San Diego, CA, USA) is capable of
quantifying DNA methylation at over 450,000 cytosine-
guanine dinucleotides (CpG) distributed throughout the
genome at single-nucleotide resolution based on the ratio
of fluorescent intensities between the methylated and

Table 2 Overall and HOMA-IR stratified baseline immunological and cell flow cytometry characteristics of study cohort

Immunological data, including cytokine/chemokine data derived from Luminex assays and monocyte composition data derived from flow cell cytometry assays.
Data shown are median values [first quartile, third quartile]. Differences between IS and IR groups for each parameter shown were determined by Mann-Whitney
U test and resulting P values are shown with significance at P < 0.05
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unmethylated alleles of each CpG locus. To perform the
450 K microarray using the Illumina® Infinium® HD Methy-
lation assay (Illumina®, Inc.), a minimum of 500 ng of gen-
omic DNA from isolated monocytes was first treated with
sodium bisulfite using the EZ DNA Methylation™ Kit
(Zymo Research, Irvine CA, USA) following Illumina’s sug-
gested protocol. Illumina iScan SQ scanner was utilized for
chip imaging to receive intensities of hybridized CpG
probes. Preprocessing was performed on raw IDAT data
files with RNBeads 0.99.10 R [41]. Methylation data (β
values; 0.00–1.00, as a percent from unmethylated to meth-
ylated) was normalized using methylumIDAT and Subset-
quantile within array normalization (SWAN) to reduce
technical variations on the microarray. Of the ~ 450,000
CpG sites that were quantified for methylation, a total of ~
15,000 probes were removed after filtering for missing
probes, SNP-enriched probes, and probes with statistically
insignificant low intensity detections (P > 0.05), leaving 435,
267 CpGs. From those remaining, we sought to identify
sites with significant DNA methylation differences (δ of the
β value) between the IS and IR groups (P < 0.05) using the
resampling-based empirical Bayes Methods permutation
approach with P < 0.05 [42] and filtered for sites with
absolute average methylation differences greater than
10% (δ) between the IR and IS groups. This approach
reduces the false discovery rates for non-normally dis-
tributed array-based data and offers higher statistical
power. Incorporating differences at a threshold of 10%
absolute difference in DNA methylation also diminishes
the likelihood of random technical errors from true
biological differences, increasing the confidence in de-
tecting differences in DNA methylation [43]. We
consider these CpGs as differentially methylated loci
(DMLs). Gplot Bioconductor package was used to gen-
erate heatmaps of DMLs. Unsupervised hierarchical
clustering was performed using Manhattan distances.
Region enrichment analysis of distribution of DMLs for
gene location and CpG island region was performed
using chi-square goodness of fit tests with each cat-
egory vs. sum of all other categories with Bonferroni
correction. Similar to the above approach, we per-
formed an analysis comparing methylation states of the
DML from the IR or IS groups to that of the methylation
states within hematopoietic stem cells (HSCs) (n = 3; GEO
Accession: GSE87197) [44] and stratified differences be-
tween the IR or IS group and that of HSCs as CpGs main-
taining methylation between HSCs and IR or IS individuals
(δ < 10%). Power analysis using estimated differences and
standard deviations in DNA methylation changes between
groups was conducted to examine the power of our study.
The results of this power analysis showed with a total sam-
ple size of at least 23 individuals, we have 80% confidence
(false discovery rate = 0.05) in detecting an effect. Thus, this
study was sufficiently powered.

Cell type-specific differential methylation validation of
monocyte enrichment
Illumina Infinium HumanMethylation450 BeadChip data
was downloaded from GEO Accession: GSE35069 [45].
Cell type-specific methylation data for fluorescence-
activated cell sorted (FACS) monocytes (n = 6) and
PBMCs (n = 6) were used to determine cell type-specific
DNA methylation sites using the resampling-based
empirical Bayes Methods permutation approach as per-
formed above but with an average methylation δ > 30%
between monocytes and PBMCs [42]. This produced 5,
124 CpGs whose methylation states appeared robustly
cell type-specific, allowing distinction between mono-
cytes and PBMCs derived from DNA methylation. We
then compared the methylation states at these sites
distinguishing PBMCs from monocytes to that from the
monocyte methylation data of each of our samples to
determine the degree of difference or similarity using a
correlation analysis. Similarly, to determine if there was
an enrichment of specific monocyte subpopulations (i.e.,
classical, intermediate, or non-classical monocytes), we
developed our own means of identifying subsets based
on cell type-specific DNA methylation, as previously
performed in the monocyte-specific DNA methylation
profiling [45]. Leukocytes were obtained by means of
leukapheresis from two non-infected, healthy volunteers,
and monocyte subsets were collected using FACS per-
formed by the Flow Cytometry Services of the University
of Hawaii at Manoa, John A. Burns School of Medicine
(University of Hawaii, Honolulu, HI, USA). Monocyte
subsets were then subjected to the 450 K microarray for
methylation profiling and differentially methylated sites
between each subset was determined by the resampling-
based empirical Bayes Methods permutation approach
as performed above with an average δ > 10% [42]. This
revealed 394 CpGs, 128 CpGs, and 496 CpGs whose
methylation states robustly stratified classical, intermedi-
ate, and non-classical monocytes, respectively. This
molecular approach for determining cell identity com-
plemented flow cytometry-based phenotype data,
thereby increasing confidence in the efficiency of bead
separation technology for enrichment of monocytes and
their purity. DNA methylation-based approaches further
allows for determining cellular identity, which goes be-
yond the limits of proteins displayed on the surface of
cells of interest. A list of DNA methylation datasets re-
trieved from GEO that were utilized in this study can be
found in Additional file 7: Table S1.

Gene Ontology analysis
Gene ontology (GO) analysis was performed using Ma’a-
yan Lab’s Enrichr publicly available analysis program
(http://amp.pharm.mssm.edu/Enrichr/), which utilizes
specific single nucleotide positions of each CpG of
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interest to determine the nearest gene(s) each CpG is lo-
cated at and the functional relevance these regions/genes
may have to specific molecular, cellular, or biological
processes and various pathways [46, 47]. GO analysis in-
cluded annotation of differentially methylated loci
(DML) between IR and IS, and DML that maintained
DNA methylation levels between IS/IR and HSCs. Statis-
tical significance of GO results were determined using
Fisher’s exact test; significance at P < 0.05.

Statistical analysis
Comparative analyses of clinical, immunological, cell
flow cytometry, and DNA methylation data were per-
formed using Mann-Whitney U test. Non-parametric
tests for clinical, immunological, and cell flow cytometry
data were used primarily due to the majority of data be-
ing non-normally distributed, as measured using the
D’Agostino and Pearson test for normality. DNA methy-
lation data was statistically analyzed using non-
parametric tests due to the heteroscedastic nature of β
values [43]. Overall, utilizing non-parametric statistical
analyses reduces bias that parametric tests would confer
and decreases the false discovery rate. Regional enrich-
ment analysis of CpGs at specific gene locations and
CpG island regional distribution was performed using
chi-square goodness of fit. Spearman’s rho (r correlation
coefficient) was used in statistical analysis for all associa-
tions tested. To predict associative outcomes, several
stepwise multiple logistic regression models were tested
on clinical features, immunological features, and differ-
entially methylated sites that were identified by Wil-
coxon Rank-Sum tests followed by multiple testing
corrections (FDR-adjusted P < 0.01). Graphing and stat-
istical analysis were performed using Prism 7, Version
7.0c (GraphPad, La Jolla, CA, USA). All statistical sig-
nificance was determined at P < 0.05.

Results
Higher variability of clinical features associated with
cardiometabolic disease is characteristic of insulin
resistance
Clinical characteristics from individuals stratified into
the IS or IR groups are shown in Table 1. As expected,
the clinical factors defining insulin resistance by
HOMA-IR (i.e., fasting glucose and insulin) were signifi-
cantly higher among IR individuals compared to IS indi-
viduals (P < 0.05). In addition, we observed higher
variability in clinical parameters (i.e., fasting insulin,
HOMA-IR, total cholesterol, LDL-cholesterol, total to
HDL cholesterol ration, and LDL to HDL-choleseterol
ratio) among the IR group. The higher degree of intra-
individual clinical variability in the IR group could be at-
tributed to the increased risk of individuals in this group
for developing cardiometabolic disease [48]. Indeed,

Framingham Risk Scores (FRS), a measure of risk for de-
veloping cardiovascular disease, was significantly higher
among the IR group compared to the IS group (P = 0.01;
Table 1) consistent with prior observations [49–51].
Although HIV RNA copy number was significantly in-
creased in the IR group (P = 0.02; Table 1), due to two
outlier individuals having HIV RNA copy number above
the threshold for undetectability (48 copies/mL), it was
still within the threshold to be considered successfully
suppressed (< 200 copies/mL). We next measured the
association between HOMA-IR and clinical features
typically associated with cardiometabolic disease risk.
HDL cholesterol was inversely correlated to HOMA-IR;
lower HDL cholesterol levels correlated to higher
HOMA-IR (r = − 0.41; P = 0.01; Additional file 1: Figure
S1A). Furthermore, the ratio of total cholesterol to HDL
cholesterol concentration, a measurement used to assess
risk of developing heart disease, was significantly corre-
lated to HOMA-IR (r = 0.34; P = 0.04; Additional file 1:
Figure S1B). Obesity, as measured by body mass index
(BMI), is another independent risk factor for developing
insulin resistance, as an increase in adiposity underlies
mechanisms contributing to IR pathogenesis [52]. Consist-
ent with this notion, we observed that individuals with
higher BMIs also had greater HOMA-IR scores (r = 0.41;
P = 0.02; Additional file 1: Figure S1C). We also observed
a significant positive correlation between between FRS
and HOMA-IR (r = 0.48; P = 0.003; Additional file 1:
Figure S1D). Taken together, these results are consistent
with prior observations that FRS, the ratio of total choles-
terol to HDL cholesterol, and BMI are subclinical indica-
tors of cardiometabolic disease risk [53–55]. We note that
these data are representative of a larger cohort in the
original Hawaii Aging with HIV Cohort-Cardiovascular
Disease (HAHC-CVD) study [35].

Higher variability of systemic levels of inflammatory
factors is characteristic of insulin resistance
To determine the relationship between IR and IS with
respect to inflammation, we measured plasma levels of
inflammatory cytokines and chemokines using Luminex-
based assays and evaluated the leukocyte cell compos-
ition in PBMCs among our cohort. Results of these
immunological measures stratified between the IS and
IR groups are shown in Table 2. Of the cytokines/che-
mokines measured, significantly higher levels of MCP-1
was observed in IR compared to IS individuals (P = 0.04;
Table 2). MCP-1 is an essential factor involved in the
migration of monocytes to tissues, which may underlie
microinflammation in skeletal muscle and adipose tissue
in the IR state [56]. Increased systemic MCP-1 concen-
trations agrees with previous reports of associations with
IR and diabetes [57]. The other cytokines/chemokines
(i.e., IL-8, IL-1β, TNF-α, IFN-γ, IL-6, and VEGF) did not
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elicit significant differences between IR and IS partici-
pants. However, we observed higher variability in the
levels of all these inflammatory markers in IR compared
to IS individuals (Table 2).
We next measured the frequency of total monocytes

(CD56,19,20low and HLA-DR+), and classical (CD14++,
CD16-), intermediate (CD14++, CD16+), and non-classical
(CD14+, CD16++) monocyte subtypes in our cohort using
immunophenotyping analysis (Additional file 2: Figure
S2A). The frequency of total monocytes and monocyte
subsets derived from PBMCs of individuals in either the
IR or IS groups were equivalent (Table 2; Additional file 2:
Figure S2B). However, similar to the plasma levels of in-
flammatory markers, we observed a considerably higher
degree of variability in the abundance of total monocytes
in the IR compared to IS group (Table 2).

Monocyte methylation signature of insulin resistance
relates to immune function
As suggested by our previous study, monocytes exhib-
ited a specific methylomic signature of neurocognitive
defects in HIV-infeced individuals [32]. To determine
whether monocytes also exhibit a methylomic signature
of insulin resistance, we first enriched monocytes in our
cohort of 37 individuals. We confirmed the purity of our
enrichment procedure by flow cytometry-based immu-
nophenoyping, which yielded an average monocyte pur-
ity of 89% from all individuals in the IS and IR group
(Table 2). Further, we independently verified monocyte
composition and purity using a comparative DNA
methylomic approach with data we collected using the
450 K microarray. To do so, we first identified a
monocyte-specific DNA methylation profile using data
available from GEO Accession: GSE35069 [45] and an
approach similar as we had previously reported [32]. We
then compared the methylation states of these CpGs
underlying the monocyte-specific profile with that of
each of the enriched populations of monocytes from our
cohort. This resulted in a significant positive correlation
in the IS and IR groups (r = 0.96 and r = 0.96, respect-
ively; P < 0.0001 for both; Additional file 2: Figure S2C),
suggesting that the monocyte-specific methylation states
matched that derived from our monocytes we enriched
from PBMCs. Additionally, when evaluating DNA
methylation states at CpGs that specify the PBMC popu-
lation in bulk using data from GSE35069 [45], we
observed that these loci in the enriched population of
monocytes from IS and IR individuals were significantly
distinct from the PBMC-specific methylation profile (r =
0.27 and r = 0.28, respectively; P < 0.0001 for both; Add-
itional file 2: Figure S2D), reinforcing the purity of
monocytes that we enriched from PBMCs. To further
confirm immunophenotyping data, we identified mono-
cyte subset-specific DNA methylation patterns unique to

classical, intermediate, and non-classical monocytes and
compared these profiles with that derived from total
monocytes in IR and IS individuals. By comparing the
correlation coefficient derived from comparing the
methylation states at CpGs that were subtype-specific
for each of the three monocyte subtypes with that of
each individual in our cohort, we observed no significant
differences between IR and IS individuals among clas-
sical monocytes (mean ± SEM; IR: 0.78 ± 0.004, IS: 0.78
± 0.06; Additional file 2: Figure S2E), intermediate
monocytes (IR: 0.77 ± 0.008, IS: 0.76 ± 0.01; Additional
file 2: Figure S2F), and non-classical monocytes (IR: 0.63
± 0.004, IS: 0.63 ± 0.006; Additional file 2: Figure S2G).
Altogether, these methylation profiling analyses con-
firmed immunophenotyping data indicating that IS and
IR indviduals exhibited no differences in monocyte cell
type and subtype composition.
Having confirmed the purity of the monocyte methyla-

tion dataset in each of the samples we enriched from
PBMCs from all individuals in our cohort, we then iden-
tified differentially methylated CpGs between IR and IS
individuals. To do so, we applied a permutation analysis
of the entire 450 K array to compute the sampling distri-
bution between both groups with a threshold P ≤ 0.05.
This yielded 11,443 CpGs that exhibited some degree of
differential methylation between the groups. Similar as
we previously reported [32], we then filtered this list
based on absolute mean differences in methylation of
10% or more between the IR and IS groups (δ ≥ |0.10| at
P < 0.05), which yielded 162 CpGs that we define as dif-
ferentially methylated loci (DMLs) associated with IR.
As all individuals were HIV-infected despite being strati-
fied on the basis of IR, we further confirmed that these
DMLs related to IR rather than HIV infection status. To
do so, we generated a monocyte methylomic profile re-
lated to HIV status by comparing the monocyte methyla-
tion states from our cohort to that of HIV-seronegative
volunteers (n = 9) by the same methods as described
above. We performed a permutation analysis to identify
DMLs between HIV-seronegative and HIV-infected (n =
37) individuals, which resulted in 5,781 CpGs exhibiting
absolute mean differences in methylation greater than
10% between these groups (δ ≥ |0.10| at P < 0.05). By
comparing these 5,781 CpGs, potentially HIV-associated
DMLs, to the 162 CpGs related to IR in monocytes from
HIV-infected individuals, we could discern those CpGs
in the IR analysis whose methylation differences may be
attributed to HIV infection status. Union of these two
lists of DMLs revealed that only 5 CpGs (~ 3%) over-
lapped. Upon removing these sites, we next filtered out
any loci that exhibited known single-nucleotide poly-
morphisms (SNPs) or displayed a pattern of methylation
distribution that could be confounded by the presence
of a SNP within the probe [58]. To do so, we manually
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assessed the distribution of methylation levels of DMLs
within either the IR or IS group that exhibited β values cor-
responding to 0%, 50%, or 100% methylation, a pattern
which cannot be distinguished from a SNP, and/or anno-
tated by Illumina to possibly harbor a SNP (https://support.
illumina.com/downloads/infinium_humanmethylation450_
product_files.html). This assessment revealed 33 CpGs
among the DMLs related to SNPs, which we removed from
further analyses. Altogether, using these stringent filtering
criteria, we identified 123 CpGs whose methylation states
in monocytes robustly stratified IR and IS according to the
clinical parameter we described (Fig. 1a). We consider these
CpGs as HIV-independent DMLs relevant to insulin resist-
ance. Unsupervised hierarchical clustering revealed a strong
degree to which the methylation states of these DMLs
could distinguish between IR and IS individuals (Fig. 1b).
Interestingly, the majority of these DMLs were hypomethy-
lated within the IR group compared to the IS group (106
CpGs, 86.2%; Fig. 1d), a finding consistent with previous
studies reporting DNA hypomethylation in PBMCs and in
the liver and kidneys in diabetic individuals and rats, re-
spectively [59, 60].
Next, we evaluated whether the IR-associated DMLs

preferentially occurred in specific genomic contexts.
Specifically, our analyses examined whether the methyla-
tion differences were over CpG islands, gene promoters,
gene bodies, or intergenic regions of the genome. We
found that the DMLs were predominantely distributed
and enriched within gene bodies (observed: 66, expected:
41; P < 0.05; Fig. 1c) and occurred significantly less than
expected at gene promoters (observed: 29, expected: 53;
P < 0.05; Fig. 1c). A closer inspection of CpGs with re-
spect to their distribution in CpG islands, sequences
dense in GC content and typically within promoter
regions [61], revealed a trending but a statistically non-
significant enrichment of DMLs within the north shore,
a region within ~ 2 kb region upstream of CpG islands
(observed: 27, expected: 16; Fig. 1c). Interestingly, these
CpG shores have some of the most dynamic changes in
DNA methylation, especially in disease [62]. These data
suggest IR-associated differences of DNA methylation
that may relate to epigenetic dysregulation of genes in-
volved in monocyte function. To further explore this
possibility, we next performed gene ontology (GO) en-
richment analysis using Enrichr [46, 47]. This analysis
revealed five genes, in particular, that contained DMLs
significantly overrepresented in pathways involved in
glucose metabolism, inflammation, and other pathways
related to insulin sensitivity: NDUFS7, INSIG1, RAB1A,
CMKLR, and MAPK11 (Table 3) [63–70]. Additionally,
DNA methylation levels of the CpGs in four of these five
genes were significantly correlated to HOMA-IR:
MAPK11 (r = − 0.42; P = 0.009), NDUFS7 (r = − 0.39;
P = 0.02), RAB1A (r = − 0.38; P = 0.02), and CMKLR

(r = − 0.50; P = 0.001 [Additional file 3: Figure S3A–D]).
These results implicate a role for DNA methylation in
regulating genes involved in monocyte activity, which may
be dysregulated as a result of the IR condition.
We further sought to explore the degree to which the

DML associated with IR identified among HIV-infected in-
dividuals may be specific to HIV infection status or repre-
sented shared gene pathways affected by IR independent of
HIV infection. To do so, we took advantage of a small but
robust sampling of 450 K array methylation data we gath-
ered from monocytes in 9 HIV-seronegative individuals
with differences in HOMA-IR that stratified into IR (n = 5;
avg. HOMA-IR > 3.0, note 3/5 diagnosed with T2D; Add-
itional file 5: Table S3) and IS (n = 4; avg. HOMA-IR: 0.88
[0.73–1.20]; Additional file 5: Table S3) groups. Using an
approach similar to that described for the HIV-infected co-
hort, we performed a permutation analysis on DNA methy-
lation differences in monocytes between HIV-seronegative
individuals, which resulted in 3,296 CpGs. We further fil-
tered out CpGs that did not meet an absolute mean differ-
ence in methylation greater than 10% between these groups
(δ ≥ |0.10| at P < 0.05), resulting in 345 CpGs with statisti-
cally significant and biologically relevant differences in
DNA methylation between HIV-seronegative IR and IS in-
dividuals; we labeled these CpGs as HIV-seronegative DML
of IR. This list was further refined to filter out CpGs at
known SNPs and CpGs that displayed methylation patterns
indistinguishable of potential unknown SNPs, which re-
sulted in the removal of 41 CpGs (refer to Additional file 4:
Figure S4A for workflow). Unsupervised hierarchal cluster-
ing of the remaining 304 CpGs distinctly clustered IR and
IS individuals into their respective groups, further support-
ing a methylomic profile in monocytes that could distin-
guish the IR condition and potential biomarkers for disease
risk (Additional file 4: Figure S4B). We observed that
among the 304 CpGs in the HIV-seronegative DML of IR,
only 1 CpG (< 1%) overlapped with the 123 CpGs charac-
terizing the DML of IR in the HIV-infected cohort (Add-
itional file 4: Figure S4C). However, GO analysis of the 304
CpGs found enrichment at 275 genes that were involved in
pathways similar to that of the DML of IR in HIV-infected
individuals, including pathways relevant to immune func-
tion, metabolism, and signaling pathways (Additional file 6:
Table S2). These results indicate that although methylation
differences at specific CpGs may be distinct between mono-
cytes from HIV-infected and non-infected individuals,
those whose methylation states robustly distinguished indi-
viduals on the basis of insulin resistance occur at genes in
shared biological pathways relevant to monocyte function,
insulin signaling, and glucose metabolism. Additionally, we
estimated monocyte subset proportion in monocytes of
these HIV-seronegative individuals based on our subset-
specific methylation profiles using a method similar to that
described for the HIV-infected individuals. Unlike the HIV-
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infected population (Additional file 2: Figure S2), we ob-
served a slight but significant decrease in the correlation of
only the intermediate monocyte subset in HIV-seronegative
IR compared to IS individuals (Additional file 4: Figure
S4D). Along with differences in monocyte methylation, the
effect on monocyte subsets may be important in contribut-
ing to the insulin-resistant condition independent of HIV
infection. However, we cannot completely rule out the pos-
sibility that HIV infection may play a role in differences we
observed between IR and IS given limitations of age, sex,
and clinical differences among the HIV-seronegative

individuals. Thus, we further focused on understanding the
differences in methylation among the HIV-infected
individuals.

Methylation levels at distinct CpGs in monocytes strongly
associate with insulin resistance, which may originate
from aberrant maintenance of an HSC-like state
To identify parameters that may be predictive of insulin
resistance, we performed multiple logistic regression
analyses among the 123 DMLs of IR identified in the
HIV-infected cohort combined with clinical data and

Fig. 1 Differentially methylated loci from IS and IR individuals. a Workflow for processing of DNA methylation data acquired from 450K microarray
to generate DMLs. b Heatmap produced from unsupervised hierarchical clustering using the Manhattan distance, complete linkage method
displaying DNA methylation (β-value) of the 123 CpGs determined to be DMLs, stratifies IS (green; above column) and IR (purple; above column)
from each other. DNA methylation ranges from low (0, blue) to intermediate (0.50, yellow) to high (1.0, red). c Distribution of DMLs in the gene
context, with representation of CpGs as lollipops distributed linearly along gene regions indicated (top diagram). Distribution of CpGs along the
indicated gene region with expected (orange) and observed (green) frequency over the 450K array shown and compared (left graph).
Distribution of CpGs relative to position in CpG islands with expected (orange) and observed (green) frequency over the 450K array shown and
compared (right graph). *P < 0.05. d Histogram representation of the distribution of the δ value of IR for all 123 DMLs, as described in methods.
Majority of loci were hypomethylated in IR compared to IS
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immunological data. We found that individual methyla-
tion levels at any 1 of 4 CpGs had the strongest effect
on IR outcome independent of other risk factors:
cg27655935 (ESRP1), cg02000426 (Intergenic),
cg10184328 (SVOPL), and cg23085143 (SVOPL). Due to
a limited sample size and multicollinearity of some data
points, simple logistic regression analyses were the
strongest predictive models of outcome, or IR. To exam-
ine the degree to which the DNA methylation levels at
these CpGs associated with HOMA-IR scores, we per-
formed a correlation analysis. For all four CpGs, we ob-
served a significant inverse relationship between DNA
methylation and HOMA-IR scores: a CpG within ESRP1
(cg27655935; r = − 0.63; P < 0.0001; Fig. 2a), an inter-
genic CpG ~ 5 kb from miRNA596 (cg02000426; r = −
0.59; P = 0.0001; Fig. 2b), and two CpGs within a puta-
tive alternate promoter of SVOPL (cg10184328: r = −
0.60; P < 0.0001; Fig. 2c and cg23085143: r = − 0.63;
P < 0.0001; Fig. 2d). As a result of our simple logistic re-
gression analyses, we determined the methylation level
(β value) for each CpG that predicted insulin resistance
independently of the other three CpGs or risk factors. In
each model, a β value less than 0.61, 0.73, 0.64, or 0.56
for ESRP1 (cg27655935), SVOPL (cg10184328), SVOPL
(cg23085143), or the intergenic CpG (cg02000426), re-
spectively, classified IR with 64.3% accuracy and values
greater than or equal to these cutoffs classified IS indi-
viduals with 90.2% accuracy (data not shown). To com-
pare the predictive value of the methylation level at
these sites with that of the clinical risk factors typically
associated with IR, we performed several multiple logis-
tic regression analyses on clinical and immunological
data independent of CpG methylation, which generated
four independent logistic regression models that each
significantly associated with IR (Table 4). As measured
by the area under the curve (AUC), we observed a stron-
ger diagnostic accuracy of predicting IR by simple logis-
tic regression models based on methylation states at any
of the four CpGs compared with models based on any of
the clinical risk factors (Table 4). Our data suggest DNA
methylation at specific loci in monocytes may have po-
tential value as epigenetic biomarkers predictive of IR.
To further explore the possibility that the methylation

levels at the four CpGs may relate to the development of
IR [71], we next determined how the levels of methyla-
tion at these sites in monocytes compared to that from
an earlier timepoint in myeloid differentiation, specific-
ally to hematopoietic stem cells (HSCs) from which
monocytes are derived. Thus, using a publicly available
450 K array dataset of human HSCs from cord blood
cells (n = 3; GEO Accession GSE87197) [44] and nor-
malized using the same approach as we have described
for monocytes in our study, we performed a comparative
analysis of the average methylation levels at these sites

Table 3 GO Analysis of DMLs

DMLs enriched at genes involved biological processes as indicated with CpG
probe ID and genomic position (hg19) displayed. GO P value was determined
using Fisher’s exact test with significance at P < 0.05. Delta ( ) value
represents the difference in DNA methylation (β value) of the DML between
the mean methylation levels of IS and IR groups. P value represents the
significance of the mean differences between IS and IR calculated by Mann-
Whitney U test, with significance at P < 0.05
DML differentially methylated loci, CpG cytosine guanine dinucleotide, UTR
untranslated region, TSS transcription start site
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in HSCs with that of monocytes from the IS and IR
group. For cg2765593 in ESRP1, we observed a signifi-
cantly higher level of methylation in the IS group than
that in the IR group (mean ± SEM; IS: 0.69 ± 0.02, IR:
0.59 ± 0.03; P < 0.0001; Fig. 2e). Interestingly, the levels
of methylation at this site in HSCs were similar to that
of monocytes from IR individuals (HSC: 0.60 ± 0.02, IR:
0.59 ± 0.03; Fig. 2e), which was distinct from IS individ-
uals (HSC: 0.60 ± 0.02, IS: 0.69 ± 0.02; P = 0.03; Fig. 2e).
Notably, ESRP1 has previously been shown to regulate
differentiation of stomach smooth muscle cells and is in-
volved in regulation of alternative splicing of FGFR2, a
gene that regulates the differentiation of HSCs [72–74].
For cg02000426, a CpG in an intergenic region of
chromosome 8 approximately 5 kb from miRNA596, we
observed significantly higher levels of methylation in the
IS compared to IR group (IS: 0.63 ± 0.01, IR: 0.53 ±
0.02; P < 0.0001; Fig. 2f ). Similar to ESRP1, the methyla-
tion level at this CpG in HSCs was indistinguishable
from that of monocytes of IR individuals (HSC: 0.52 ±
0.03, IR: 0.53 ± 0.02; Fig. 2f ), while it remained signifi-
cantly different from that of IS individuals (HSC: 0.52 ±
0.03, IS: 0.63 ± 0.01; P = 0.005; Fig. 2f ). Although the
role miRNA596 has not been completely elucidated,

some studies have observed microRNA involvement in
HSC function [75]. For cg10184328 and cg23085143,
two CpGs within 200 bp of each other within SVOPL,
exhibited higher levels in methylation in the IS group
compared to that in the IR group (IS: 0.78 ± 0.01, IR:
0.67 ± 0.04; P < 0.0001 and IS: 0.69 ± 0.01, IR: 0.58 ±
0.03, P < 0.0001, respectively; Fig. 2g, h). When com-
pared to the methylation levels in HSCs, both CpGs
exhibited methylation levels indistinguishable in mono-
cytes from IR individuals (HSC: 0.59 ± 0.04, IR: 0.67 ±
0.04 and HSC: 0.56 ± 0.03, IR: 0.58 ± 0.03, respectively;
Fig. 2g, h), yet remained distinct from that of IS individ-
uals (HSC: 0.59 ± 0.04, IS: 0.78 ± 0.01, P = 0.001, and
HSC: 0.56 ± 0.03, IS: 0.69 ± 0.01, P = 0.001, respectively;
Fig. 2g, h). Although limited, one study has shown that
SVOPL was involved in HSC function [76]. Altogether,
the methylation levels in monocytes at all four of these
CpGs that strongly associate with IR appear to be similar
to that established early in HSCs, hinting at a potential
source of the IR-associated methylation levels in
monocytes.
Given the origin of circulating monocytes from HSCs,

the results described above suggest the intriguing possi-
bility that methylation states observed in monocytes

Fig. 2 Logistic regression analysis reveals DMLs that may be predictive of insulin sensitivity status and whose methylation states in monocytes of
individuals with IR strongly associate with that of HSCs. a–d Four CpGs were identified as significantly associated with IR outcome using simple
logistic regression analysis of the DMLs, clinical data, and immunological data each of which independently predicted outcome. Linear regression
analysis was applied to display this relationship between HOMA-IR scores and DNA methylation at each of the four CpGs and their associated
genes for a ESRP1 (cg27655935), b an intergenic region 5kb from miRNA596 (cg02000426), c SVOPL (cg10184328), and d SVOPL (cg23085143).
Blue dots represent data from IS individuals, and red dots represent data from IR individuals. Red dotted line shows the cut-off value for HOMA-
IR. Spearmen correlation coefficient (r) is shown with significance at P < 0.05. e–h. Box-plots shows the monocyte DNA methylation levels of the
four independently predictive CpGs in the IS and IR groups along with the methylation states in HSCs for e ESRP1 (cg27655935), f an intergenic
region 5kb from miRNA596 (cg02000426), g SVOPL (cg10184328), and h SVOPL (cg23085143). Differences between these groups were determined by
Mann-Whitney U test with significance at P < 0.05. Diagrams above each box-plot shows a linear depiction of the associated gene with the position of
each CpG indicated by a red triangle. Blue boxes represent exonic sequences with gene orientation marked (5′- ends). ESRP1, Epithelial Splicing Regulator
Protein 1; SVOPL, SV2-Related Protein Homolog-Like; HSC, hematopoietic stem cell
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under insulin-resistant conditions may arise as a result
of maintaining an HSC-like methylation state during
myeloid differentiation and thus a failure to adopt a
monocyte-specific state in IR individuals. To determine
whether this may be the case, we compared the methyla-
tion levels of all IR-associated DMLs to that of HSCs.
To do so, we applied a principal component analysis
(PCA) using the methylation states of the 123 DMLs in
monocytes from IS and IR individuals as well as that of
HSCs. Examining the first two principal components de-
rived from this dataset (explaining ~ 27% and ~ 9% of
the variance in the data, respectively) revealed that in
comparison to that of IS individuals, the methylation
levels from monocytes of IR individuals tended to be
more variable and related more to that of HSCs (Fig. 3a)
. To determine which CpGs may be driving the IR-
association with HSCs, we first subtracted the normalized
β values of monocytes in both IR and IS groups from that
of HSCs. Although we observed slightly more CpGs
among the IR group whose methylation levels were indis-
tinguishable from that of HSCs (79 vs 71 CpGs; Fig. 3b, c),
they overlapped on 35 CpGs. GO analysis of the 79 CpGs
whose methylation states in IR individuals were similar to
that of HSCs were enriched at genes involved in pathways
relevant to regulating pluripotency of stem cells (FGFR2),
Lck and Fyn tyrosine kinases in initiation of T cell recep-
tor activation (CD3E), and Wnt signaling (PCDHGB7/
PCDHB11 and SMARCB1; Table 5). In contrast, GO ana-
lysis of the 71 CpGs whose methylation states in IS indi-
viduals were similar to that of HSCs were enriched at
genes involved in T cell proliferation (MCI1 and
TNFRSF9; Table 5). Interestingly, these results suggest
possible CpG sites whose methylation states must be
maintained throughout myeloid differentiation and may
be necessary for proper monocyte function in the IS con-
dition. Notably, these data also reveal CpG sites whose
methylation states, if aberrantly maintained in an HSC-
like state, potentially contributes to abnormal monocyte
differentiation and function that associates with the higher

degree of variability in systemic inflammation and clinical
factors associated with insulin resistance. We caution,
however, that this analysis was performed on a limited set
of individual HSCs (n = 3) from which 450 k array data
was publicly available. Future studies are required to valid-
ate these preliminary observations.

Discussion
Inflammation has become a prominent feature studied in
the pathogenesis of insulin resistance, T2D, and CVD [12].
Monocytes play a crucial role in innate immunity, and
their activation is important to the immune response in
fighting infection or clearing dead cells and debris, but the
inability of these cells to resolve inflammation appears to
underlie the pathogenesis of cardiometabolic disorders
[77, 78]. MCP-1, primarily released by monocytes, macro-
phages, and dendritic cells, is a key chemokine involved in
trafficking of monocytes to targeted tissue to elicit local
inflammation and has previously been associated with IR
and T2D [57, 79]. Despite the HIV infection status of all
individuals in our cohort, we observed elevated systemic
levels of MCP-1 among those who were insulin resistant
(defined by HOMA-IR; Table 2), which could be indicative
of their heightened inflammatory states and increased risk
of developing cardiometabolic disease. Indeed, insulin-
resistant individuals also exhibited a higher FRS score
compared to insulin-sensitive individuals (Table 1).
Based on a previous study describing increased
abundance of total monocytes, including the classical
subset (CD14++CD16-) among insulin-resistant HIV-
infected individuals which predicted HOMA-IR [80],
we initially suspected that the differing levels of
MCP-1 in our cohort may relate to variability of the
monocyte population. However, our flow cytometry-
based data of monocyte frequencies, including the
three characterized monocyte subsets, showed no
differences among insulin-sensitive and insulin-
resistant individuals (Table 2; Additional file 2: Fig-
ure S2B). We further confirmed this by utilizing

Table 4 Multiple independent logistic regression analyses of clinical/immunological data and clinical/immunological/methylation
data reveal the latter produces stronger probability of predicting IR

Separate logistic regression analyses were performed for clinical and immunological data (left panel) and a combination of clinical, immunological and epigenetic
data (right panel). The strongest independent predictive models (AUC) for outcome (IR) for clinical/immunological data were either, fasting glucose, 120 min.
OGTT, FRS, or total to HDL cholesterol ratio. The strongest independent predictors of IR for clinical/immunological/epigenetic data were the methylation states of
four CpGs; cg27655935, cg02000426, cg10184328, or cg23085143. Significance at P < 0.05
AUC area under the curve, OGTT oral glucose tolerance test
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monocyte-specific and monocyte subset-specific
DNA methylation data (Additional file 2: Figure S2C,
E, F). Thus, among our cohort at least, non-
monocyte sources of MCP-1 (i.e., macrophages and
dendritic cells) are suspected to contribute to the

variability between the two groups. Additionally, our
data suggest that differences in monocyte function,
rather than the proportion and composition, may
exist between insulin-sensitive and insulin-resistant
individuals.

Fig. 3 Monocyte methylation levels of DMLs vary considerably more in IR individuals compared to that of IS and maintain an HSC-like state. a Scatter
plot of the first two principal components displays the distribution of variability of the DNA methylation at the DMLs for monocytes of IS (blue) and IR
(red) individuals, with methylation data at these sites from HSCs (green) shown. Peaks distributed on the X axis (upper perimeter) and Y axis (right
perimeter) represent the density of samples present on that axis with matched colors. b and c Representation of the degree of divergence and/or
maintenance of methylation between IR (b) or IS (c) and HSCs of each DML. Dotted line represents cut-off (10% difference in methylation of the δ
value) for divergence from HSCs. Values ≤− 0.10 represents hypomethylation in either the IR or IS group vs HSCs, whereas values ≥ 0.10 represents
hypermethylation in either the IR or IS group vs HSCs. Values ≤ 0.10 but ≥ − 0.10 are loci considered to maintain methylation levels in either the IR or
IS group to a similar degree as in HSCs. Table above b and c shows the count and frequency (%) of DMLs that diverge or maintain methylation levels
relative to HSCs

Table 5 GO analysis of DML maintaining DNA methylation between HSCs and IR/IS subjects

GO analysis of CpGs that maintained DNA methylation between HSCs and IR or IS individuals. Fisher Exact Test was used to determine significance of gene
enrichment in biological processes with significance at P < 0.05. Delta ( ) value was derived from difference of DNA methylation levels (β-value) between IR or IS
and HSCs at specific DMLs. Probe ID (CpG), associated gene, and gene position (hg19) are indicated
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Given the role of DNA methylation in regulating cell
identity and function [81–83], we examined the methy-
lomic landscape of monocytes in insulin-sensitive and
insulin-resistant individuals. Our comparative analyses
revealed 123 DMLS whose methylation states robustly
stratified insulin-resistant and insulin-sensitive individ-
uals as illustrated by the near complete clustering
(Fig. 1b), similar to our previous work describing DNA
methylation differences in monocytes between HIV-
infected individuals with and without cognitive impair-
ment [32]. Similar associations stratified insulin-resistant
and insulin-sensitive individuals with DNA methylation
differences in visceral adipose tissue [84]. These differ-
ences occurred preferentially downstream of promoter
regions, in particular within gene bodies and CpG shores
(Fig. 1c). Notably, these regions contain the highest
DNA methylation dynamics, often exhibiting tissue/cell
type specificity [62]. Methylation in these transcribed
regions could be relevant to regulating gene expression
via alternate promoter usage or alternative splicing [85].
Interestingly, we observed DNA hypomethylation in the
DMLs of insulin-resistant individuals (Fig. 1d), a finding
similar to a previous report describing extensive DNA
hypomethylation in pancreatic beta islet cells from pa-
tients with T2D [86]. Hypomethylation may underlie
variable monocyte function between insulin-resistant
and insulin-sensitive individuals by impacting gene regu-
lation. To explore this possibility, our gene ontology
analysis (Table 3) revealed that most of the DMLs we
observed that relate to insulin resistance occured at
genes involved in aerobic respiration (NDUFS7), growth
hormone secretion (RAB1A), positive regulation of
macrophage chemotaxis (CMKLR1), and rapid gluco-
corticoid signaling (MAPK11). Functionally, these genes
have all been previously described in pathways relating
to insulin resistance via signaling or inflammatory path-
ways [63–70]. Furthermore, each of the CpGs annotated
to these genes occurred in intragenic regions and exhib-
ited DNA methylation levels that were significantly in-
versely correlated with insulin resistance (Additional file
3: Figure S3A–D), further implicating a functional role
for the methylation in monocyte activity related to the
pathogenesis of insulin resistance.
In addition to implicating gene pathways that may be

epigenetically dysregulated in insulin resistance, we
sought to explore the feasibility of DMLs from monocyte
in predicting the insulin-resistant state, as previous
models utilizing DNA methylation in the bone marrow
and PBMCs have reported [87]. Our multiple logistic re-
gression analysis identified four CpGs whose methyla-
tion states independently associated with HOMA-IR
status, which was surprisingly stronger than that of
clinical measures typically associated with insulin resist-
ance (Table 4). This finding agreed with prior studies

incorporating DNA methylation measures as predictive
to health outcome [88]. Interestingly, three of the four
CpGs were enriched at genes involved in stem cell pluri-
potency and differentiation (ESRP1 and SVOPL) [73, 76,
89]. This prompted us to examine how the methylation
states at these sites related to an earlier timepoint in
myeloid differentiation, in particular as early as HSCs.
Our results clearly showed that the methylation states of
all four CpGs in monocytes from insulin-resistant, but
not insulin-sensitive, individuals significantly resembled
the levels established in HSCs (Fig. 2e–h), hinting at a
possible origin of DNA methylation in monocytes from
insulin-resistant individuals. This notion was further
supported by the PCA analysis of all DMLs associated
with insulin resistance (Fig. 3a), which also illustrated
the heightened variability of DNA methylation levels at
these sites among monocytes of IR individuals. These re-
sults are consistent with the prior observation of high
locus-specific DNA methylation variability in disease
states [90, 91].
Variability of DNA methylation, particularly at dynam-

ically regulated sites, such as in gene bodies as we
observe here, is a prominant feature of differentiation
wherein the chromatin landscape is vulnerable to drastic
change. The chromatin landscape of hematopoietic stem
cells appears to be less well defined compared to later
stages of differentiation [92]. During differentiation, the
chromatin landscape adopts a more uniform pattern
indicative of their differentiated and more restricted cell
fate. However, a recent study examining individual cells
in defined populations revealed remarkable diversity in
the chromatin landscape of distinct cell types previously
characterized on the basis of cell type-specific surface
markers [92]. This heterogeneity suggests that among
populations of cells thought to be “homogenous,” there
could exist multiple, previously uncharacterized sub-
types, possibly with distinct functional diversity as well.
Given our data showing the higher degree of variability
in methylation levels of the monocyte population we de-
scribed based on the expressivity of monocyte-specific
cell surface markers CD14 and CD16 among insulin-
resistant and insulin-sensitive individuals coupled with
the observation that the methylation levels at these same
sites in insulin-resistant (and not insulin-sensitive) indi-
viduals appear to be similar to those of HSCs, the mono-
cytes in the insulin-resistant state could be more
functionally diverse than their insulin-sensitive counter-
part. This diversity in function could potentially explain
the significantly higher degree of variability that the IR
group exhibits in systemic inflammation and other clin-
ical parameters (Table 2). This notion is further sup-
ported by the observation that the CpGs whose
methylation states in monocytes of insulin-resistant indi-
viduals that were indistinguishable from that of HSCs
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were overrepresented at genes involved in pathways im-
portant to HSC differentiation and pluripotency [93, 94].
Consistent with these findings, increased variability in
DNA methylation in immune cells (T cells, B cells, and
monocytes) was observed among twins discordant for
type 1 diabetes mellitus (T1D), wherein higher variability
was observed in the T1D twin as compared to the
healthy twin [91]. Furthermore, analysis of cord blood
derived from newborns progressing to T1D suggests the
differentially variable DNA methylation states may ori-
ginate from birth, supporting our notion that dysregula-
tion of DNA methylation underlying monocyte function
may originate during differentiation.
Taken together, the plasticity of the methylome of

monocytes under the insulin-resistant condition may be
contributing to the variability of systemic levels of inflam-
mation underlying insulin resistance. Our data implicate
the possibility of previously unrecognized monocyte sub-
types developing under the insulin-resistant condition,
likely due to aberrant myeloid differentiation, that could
be contributing to disease progression. Future work char-
acterizing this cell population at the single-cell level could
confirm this notion, which would reveal further insights
into monocyte heterogeneity and their various functions
in insulin resistance.

Conclusion
Evidence is emerging for what role monocytes, and their
tissue differentiated macrophages, may play in the
pathogenesis of insulin resistance [29, 80, 95]. Here, we
provide the first evidence for a distinct methylomic
signature in peripheral monocytes associated with insu-
lin resistance in HIV-infected individuals. The IR-
associated DMLs underlying this signature were overrep-
resented at genes involved in immune function. Further,
these DMLs were preferentially distributed at CpG
island shores and gene bodies, areas of the genome that
are particularly susceptible to epigenetic regulation [62].
Of note, most of these DMLs appeared to be independ-
ent of HIV infection status and the methylation states of
four of these CpGs strongly accounted for the insulin-
resistant condition independent of other clinical risk
factors. Together, these results suggest immunoepige-
netic biomarkers in monocytes that may be predictive of
insulin resistance. Further, our comparison with
hematopoietic stem cells suggests that the methylation
states of some of these CpGs in monocytes of IR individ-
uals might originate from a failure to undergo normal
epigenetic regulation during myeloid differentation.
These sites may, for example, be protected from the dy-
namic changes in methylation during differentiation and
consequently alter the trajectory of expression states of
underlying genes that impact monocyte function in the
insulin-resistant condition. Future research will need to

examine whether methylation differences in insulin re-
sistance occur prior to its onset and are functionally
relevant, which collectively will lead to improved early
diagnostic and treatment strategies that reduce the de-
velopment of insulin resistance and related chronic con-
ditions in populations with a heightened risk, including
HIV-infected and aging populations.

Additional files

Additional file 1: Figure S1. Association between clinical parameters
and insulin resistance. A–D. Linear regression analysis of each clinical
feature as indicated with insulin resistance (HOMA-IR). Blue dots, insulin-
sensitive (IS) individuals; red dots, insulin-resistant (IR) individuals. Dotted
red line shows the cut-off for IR and IS groups based on HOMA-IR. Correl-
ation coefficients shown were calculated using Spearman’s rho (r), with
significance at P < 0.05. HOMA-IR, Homeostatic Model Assessment of In-
sulin Resistance; HDL, high-density lipoprotein cholesterol; BMI, body
mass index; FRS, Framingham Risk Score. (PDF 9233 kb)

Additional file 2: Figure S2. Independent confirmation of monocyte
and monocyte subset composition by flow cytometry and DNA
methylation analysis. A. Representative FACS analysis of gating strategy
employed for determining monocyte subsets: M1(CD14++,CD16−), M2
(CD14++CD16+), and M3 (CD14+CD16++) monocytes. B. Frequency (%)
of monocyte subsets was determined by cellular FACS-based phenotyp-
ing of monocytes from IS and IR individuals for classical (M1), intermedi-
ate (M2), and non-classical monocytes (M3); significance at P < 0.05 by
Mann-Whitney U test. N.S., non-significant. C. Linear regression analysis
validates monocyte enrichment observed by flow cytometry using
monocyte-specific DNA methylation data of FACS-sorted cells in compari-
son to our monocyte enrichment results from IS (blue) and IR (red) indi-
viduals as described in the methods section. D. Linear regression analysis
of PBMC-specific DNA methylation profiles compared with monocytes
enriched from IS (blue) and IR (red) individuals. Significance at P < 0.05.
Spearman’s rho (r) was used to determine correlation coefficients. E–G.
Correlation analysis of monocyte subset-specific DNA methylation profiles
among IS and IR individuals. Spearman correlation coefficient values (r)
were compared between each group for mean differences for indicated
monocyte subsets (E: M1, F: M2, and G: M3); Significance at P < 0.05.
(PDF 9233 kb)

Additional file 3: Figure S3. Relationship between DNA methylation
and HOMA-IR scores of DMLs enriched at genes involved in various insulin-
related processes. DNA methylation derived from DMLs with their CpG
probe ID shown that were enriched at genes involved in processes related
to insulin signaling: MAPK11 (A), NSUFS7 (B), RAB1A (C), and CMKLR (D). The
metylation levels at these CpGs in monocytes were significantly correlated
with insulin resistance measured by HOMA-IR from IS (blue dots) and IR (red
dots) individuals. Spearman correlation coefficient (r) shown with signifi-
cance at P < 0.05. (PDF 9233 kb)

Additional file 4: Figure S4. Differentially methylated loci from HIV-
seronegative individuals stratified by HOMA-IR into IR or IS. A. Workflow
for processing DNA methylation data acquired from 450k microarray to
generate the HIV-seronegative DML of IR. B. Unsupervised hierarchal clus-
tering heatmap using Manhattan distance, complete linkage method dis-
plays DNA methylation (β value) of the 304 CpGs of the HIV-seronegative
DML of IR, stratifies IS individuals (green) from IR individuals (purple).
DNA methylation ranges from low (0, blue) to intermediate (.50, yellow),
to high (1.0, red). C. Vendiagram is representative of the two datasets that
culminate the DML of IR in HIV-infected individuals (left; DML of IR) and
HIV-seronegative individuals (right; HIV-seronegative DML of IR). Shown
are the CpG counts that are independent to each dataset and the CpGs
that are overlapped in both datasets; below displays the number of
genes harbored at the CpGs. D. Comparison of monocyte subset-specific
DNA methylation correlation of HIV-seronegative IR and IS individuals.
Correlation determined utilizing Spearman’s rho (r); significance
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determined using Mann-Whitney U test between IS and IR at P < 0.05.
(PDF 9233 kb)

Additional file 5: Table S3. Clinical characteristics of HIV-seronegative
individuals stratified by insulin sensitivity and insulin resistance. Table rep-
resents clinical data comparing the IS and IR groups of HIV-seronegative
individuals. Data shown are median values [first quartile, third quartile]. P
value determined between IS and IR groups using Mann-Whitney U test;
significance at P < 0.05. (PDF 9233 kb)

Additional file 6: Table S2. GO analysis of HIV-seronegative DML of IR.
Table displays significant biological functions of the DMLs enriched at
genes involved in immune responses, metabolic processes, and signaling
pathways. Included in table are GO analysis P value calculated using the
Fisher exact test (P < 0.05), the CpG probe ID, genomic position of the
DML, the gene(s) harboring each CpG, the genomic location of the CpG
in the context of a gene, the mean DNA methylation in both the HIV-
seronegative IS and IR groups, the difference in methylation (Delta Value),
and the P value calculated between the IS and IR groups as determined
using the Mann-Whitney U test and taken at a significance of P < 0.05.
(PDF 9233 kb)

Additional file 7: Table S1. Datasets used for DNA methylation
analyses in this study. List of the GEO accession numbers for the datasets
used for DNA methylation analyses incorporated into study. (PDF 9233
kb)
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