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SUMMARY

Single-cell proteomics (scProteomics) promises to advance our understanding of cell functions 

within complex biological systems. However, a major challenge of current methods is their 

inability to identify and provide accurate quantitative information for low-abundance proteins. 

Herein, we describe an ion-mobility-enhanced mass spectrometry acquisition and peptide 

identification method, transferring identification based on FAIMS filtering (TIFF), to improve 

the sensitivity and accuracy of label-free scProteomics. TIFF extends the ion accumulation 

times for peptide ions by filtering out singly charged ions. The peptide identities are assigned 

by a three-dimensional MS1 feature matching approach (retention time, accurate mass, and 

FAIMS compensation voltage). The TIFF method enabled unbiased proteome analysis to a 

depth of >1,700 proteins in single HeLa cells, with >1,100 proteins consistently identified. As 

a demonstration, we applied the TIFF method to obtain temporal proteome profiles of >150 single 

murine macrophage cells during lipopolysaccharide stimulation and identified time-dependent 
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proteome changes. A record of this paper’s transparent peer review process is included in the 

supplemental information.

Graphical Abstract

In brief

Single-cell proteomics (scProteomics) holds great potential to advance our understanding of 

the heterogeneity of cellular phenotypes. Because of the lack of global protein amplification 

approaches, scProteomics is challenged to characterize low-abundance proteins, which are usually 

involved in critical biological processes. We develop an MS1-centric data acquisition and 

peptide identification method, transferring identification based on FAIMS filtering (TIFF), that 

improves proteome coverage, quantification accuracy, and throughput of label-free scProteomics. 

We demonstrated that the improved scProteomics platform can reveal the proteome changes of 

macrophage activation and classify dissociated human lung cells into distinct populations.

INTRODUCTION

Single-cell technologies have become the cornerstone of biomedical and cell biology 

research (Hou et al., 2016; Wilson et al., 2015). The emergence of single-cell RNA 

sequencing (scRNA-seq) and related single-cell sequencing technologies has illuminated 

unappreciated cellular heterogeneity and revealed cell subpopulations obscured in bulk 

measurements (Stuart and Satija, 2019). However, many integrative studies have shown 
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only low-to-moderate correlations between the abundance of RNA transcripts and their 

corresponding proteins (Du et al., 2019; Qian et al., 2016), as the translation of RNA 

into a functional protein can be affected by diverse events such as alternative splicing and 

microRNA regulation (Buettner et al., 2015). Additionally, RNA measurements cannot infer 

post-translational modifications that modulate protein functions. Thus, there is an unmet 

need for broad proteome measurements at the single-cell level, which has lagged behind 

single-cell sequencing approaches.

Recent advances in sample preparation and mass spectrometry facilitate unbiased single-cell 

proteomics (scProteomics) (Budnik et al., 2018; Cheung et al., 2021; Cong et al., 2020; 

Dou et al., 2019; Hartlmayr et al., 2021; Li et al., 2018; Schoof et al., 2021; Shao et 

al., 2018; Specht et al., 2021; Tsai et al., 2020; Williams et al., 2020; Woo et al., 2021; 

Zhu et al., 2018a, 2018b, 2019). Microfluidic sample processing devices and systems have 

improved protein digestion efficiency and minimized adsorptive sample losses (Hartlmayr 

et al., 2021; Li et al., 2018; Shao et al., 2018; Woo et al., 2021; Zhu et al., 2018a, 2018b). 

Tandem mass tag (TMT)-based isobaric labeling approaches (e.g., ScoPE-MS) have enabled 

multiplexed single-cell analysis in individual LC-MS runs (Budnik et al., 2018; Dou et al., 

2019; Hartlmayr et al., 2021; Schoof et al., 2021; Specht et al., 2021; Tsai et al., 2020). 

The miniaturization of capillary electrophoresis or liquid chromatography has improved 

separation resolution and enhanced electrospray ionization efficiency (Xiang et al., 2020). 

High-resolution MS analyzers combined with ion focusing devices, such as ion funnel, have 

increased detection sensitivity to the level where single molecules can be detected (Makarov 

and Denisov, 2009). State-of-the-art methodologies in scProteomics now can identify from 

∼700 to ∼1,000 proteins from cultured single mammalian cells (e.g., HeLa) using label-free 

approaches (Cong et al., 2020, 2021; Williams et al., 2020; Zhu et al., 2018a) and from 

∼750 to ∼1,500 proteins using TMT-labeling strategies (Budnik et al., 2018; Dou et al., 

2019; Schoof et al., 2021; Specht et al., 2021; Tsai et al., 2020; Woo et al., 2021). Despite 

these advances, scProteomics remains immature, and technical challenges remain, including 

not only limited proteome depth and poor quantification performance but also low system 

robustness for large-scale single-cell studies. The inability to characterize low-abundance 

proteins impedes the study of critical biological processes in single cells, such as signal 

transduction and gene regulation.

Because of the lack of a global amplification method for proteins, the coverage 

and quantification performance of scProteomics largely rely on the capabilities of 

MS measurement (e.g., sensitivity, speed, and dynamic range). Although targeted MS 

measurements enable the detection of low copy number proteins and even single molecules 

(Makarov and Denisov, 2009), these measurements are generally performed using narrow 

m/z windows (Makarov and Denisov, 2009) or tandem mass spectra (Amenson-Lamar et al., 

2019) to minimize background signals. Background ions, originating from ambient air and 

solvent/reagent impurities, dominate MS spectra during full m/z range acquisition. These 

abundant ions quickly fill ion trapping devices (e.g., ion trap or ion routing multipole) and 

limit the ability to trap ions over an extended time, which could otherwise accumulate 

low-abundance ions of interest and improve detection sensitivity (Meier et al., 2018; Pasa-

Tolić et al., 2002). The high background signals can also reduce the dynamic range of MS 

analyzers and deteriorate feature detection during downstream data analysis.
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We reasoned that the removal of background ions should dramatically enhance the 

sensitivity of MS detection and improve the proteome coverage and quantification 

performance of scProteomics. A variety of approaches have been developed to minimize 

background signals, including the use of a carbon filter in front of MS inlets to purify 

the ambient air (Luber et al., 2010), a picoliter-flow liquid chromatography (LC) system 

to reduce overall contaminates from air and solvent (Xiang et al., 2020), a dynamic 

range enhancement applied to MS (DREAMS) data acquisition algorithm to reject highly 

abundant ions before ion accumulation (Pasa-Tolić et al., 2002), and a high field asymmetric 

waveform ion mobility spectrometry (FAIMS) interface to remove singly charged ions 

(Cong et al., 2020). Recently, Cong et al. (2020) demonstrated the coupling of FAIMS 

with low-flow LC (20 nL/min), and Orbitrap Eclipse can identify ∼1,100 proteins from 

single cells. Because the peptides were identified by MS/MS, long LC gradients were 

required to collect sufficient numbers of MS/MS spectra for deep proteome coverages, 

which limited analysis throughput. Herein, to address these challenges, we describe an MS1-

centric data acquisition and peptide identification method, transferring identification based 

on FAIMS filtering (TIFF), that improves the proteome coverage, quantification accuracy, 

and throughput of label-free scProteomics. We demonstrated the capability and scalability of 

the TIFF method by studying macrophage activation with lipopolysaccharide (LPS) and by 

classifying dissociated human lung cells into distinct populations.

RESULTS

The TIFF method

The TIFF method is inspired by the accurate mass and time (AMT) tag approach 

(Pasa-Tolić et al., 2004) or other derivative approaches, such as "match between run" 

(MBR), implemented in MaxQuant (Tyanova et al., 2016a) or IonQuant (Yu et al., 2021), 

that generally rely on two measurements for the assignment of peptide identity: the 

accurate mass-to-charge ratio (m/z) and the LC retention time (RT). We have previously 

demonstrated that MBR improves the proteome coverage and reduces missing values in 

scProteomics (Zhu et al., 2018b). The recent integration of ion mobility devices, including 

FAIMS at the interface between the LC system and mass spectrometer, provides an 

opportunity to use the additional ion mobility separation dimension to reduce false discovery 

rate (FDR) and improve coverage (Prianichnikov et al., 2020). We take advantage of this 

advance and utilize the FAIMS compensation voltage (CV) as a third matching feature 

(in addition to retention time and accurate mass) for peptide identification, as illustrated 

in Figure 1A. Briefly, a spectral library is constructed by repeatedly analyzing high-input 

samples on an LC-FAIMS-MS platform, with each LC-MS analysis utilizing a discrete 

FAIMS CV. Each peptide identified in the high-input analyses is associated with a unique 

3-dimensional (3D) tag comprising LC retention time, accurate m/z, and FAIMS CV. Next, 

low-input samples (e.g., single cells) are analyzed by cycling through multiple FAIMS 

CVs within a single LC-MS analysis. A key aspect of the TIFF method is the mode of 

MS data acquisition, with most of the MS time spent on MS1 acquisition to enhance 

the accumulation of low-abundance peptide ions for sensitive detection. Compared with 

our previous FAIMS-based scProteomics method (Figures S1A and S1B), precursor ion 

sampling time is increased by >3-fold (Figure S1C). The fewer MS2 acquisitions generated 
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within each cycle are sufficient to exploit the nonlinear multisample alignment feature 

of MaxQuant. Subsequently, MS1 features in low-input samples (i.e., single cells) are 

identified by matching to the spectral library and utilizing the unique 3D tag based on the 

MBR algorithm within MaxQuant (Tyanova et al., 2016a).

TIFF improves LC-MS sensitivity

We first verified the utility of FAIMS to remove singly charged ions (“chemical 

background” noise) and create more “room” for peptide ion accumulation to enhance 

detection of low-abundance peptides. We analyzed single-cell equivalent amount (0.2 ng) 

of protein digests (CMK, human acute megakaryocytic leukemia cells) with or without 

a FAIMSpro interface. Without FAIMS, most dominating signals corresponded to singly 

charged ions, some of which are known to originate from plasticizers (e.g., m/z 391.28) 

and air impurities (e.g., m/z 445.12, 462.29, and 519.14) (Figure S2). Because these highly 

abundant contaminants quickly filled ion accumulation (or trapping) regions, the median ion 

injection/accumulation time was only 30 ms across the whole LC-MS analysis (Figure 1B). 

In comparison, when FAIMS was used, most dominating ion signals were multiply charged 

(Figure S2), and the median ion injection times increased from ∼30 to ∼180 ms for a CV of 

−45 V, reaching a maximal time of 254 ms for the other three CVs. This corresponded to an 

∼8.53× increase in ion accumulation time (Figure 1B). Benefiting from the low background 

and elongated ion accumulation, the median S/N of LC-MS features increased from 5.2 

(STD) to 29.6 (FAIMS), representing a >5-fold increase for all the CVs (Figure 1C).

To evaluate the improvements in MS sensitivity, we investigated several metrics related to 

proteome coverage, including the number of multiply charged MS features, unique peptides, 

and proteins (Figures 1D, 1E, and S3A–S3D). Briefly, we analyzed single-cell-level (0.2 

ng) protein digests from three leukemia cell lines: CMK, K562, and MOLM14 with either 

a FAIMSpro interface or with a standard interface. Compared with the standard interface, 

the FAIMSpro interface and the TIFF method increased the number of multiply charged 

MS features detected in the MS1 by >3-fold (Figure S3A). Most of the increased peptide 

features appeared in the low-MS-intensity scale across all four FAIMS CVs (Figure S3E). 

Similarly, the TIFF method increased peptide identification by >75% (Figure 1D) and 

protein identification by >74% (Figure 1E). As expected, the MS/MS-based identifications 

were reduced due to the lower number of MS/MS scans (Figures S3B–S3D) in the TIFF 

method. Modulation of CVs within the TIFF method had a modest effect on the number of 

peptide features, peptides, and proteins, with only a slight increase using 4 CVs as opposed 

to 2 CVs. However, utilizing 4 CVs in the TIFF method yielded increases in summed 

peptide intensities compared with utilizing 2 CVs (Figure S3F), which subsequently 

improved the quantification performance as described below.

We evaluated whether the 3D feature matching approach could reduce FDR by comparing 

it with the conventional 2D matching approach (Pasa-Tolić et al., 2004; Tyanova et al., 

2016a). We generated a mixed-species spectral library containing 20,588 human peptides 

from MOLM14 cells and 9,362 bacterial peptides from Shewanella Oneidensis MR-1 

(SHEWON). These Shewanella proteins were served as “decoy” proteins in the library. 

To do this, we analyzed 0.1-ng MOLM14 peptides with the 4CV-FAIMS method. During 
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MaxQuant analysis with MBR algorithm, we either disabled or enabled the FAIMS CV 

matching function. As shown in Figures 1F and S4, the conventional 2D matching approach 

resulted in a total of 7,199 peptides identified, and 304 of them were bacterial peptides, 

representing a false matching rate of 4.1%. Encouragingly, when the 3D matching approach 

(TIFF) was applied, only 161 bacterial peptides were identified, corresponding to a false 

matching rate of 1.8%. At the protein level, the FDRs of 2D and 3D matching approaches 

were estimated to be 10.8% and 5.3% (Figure S4D), respectively.

TIFF improves the quantification of scProteomics

Next, we evaluated whether the TIFF method improves quantification performance when 

compared with a standard approach. We compared the run-to-run reproducibility from 

triplicates using 0.2 ng of CMK cell digests with the standard, 2-CV TIFF, and 4-CV 

TIFF methods. Although the distribution of the coefficients of variation was similar between 

the 2-CV TIFF and the standard methods, the median of the coefficients of variation for 

the 4-CV TIFF method was significantly reduced from 15.6% to 12% (Figure S5A). Such 

an improvement could be attributed to the enhanced sensitivity of the 4-CV TIFF method, 

allowing more low-abundance peptides to be identified. With the 4-CV TIFF method, >80% 

of the proteins had no missing values and >90% had no more than one missing value 

across the triplicates. Higher percentages of missing data were present with the 2-CV TIFF 

and standard methods (Figure S5B). To further assess the quantification accuracy of the 

4-CV TIFF method, we performed a statistical analysis using samples from two cell types 

(CMK and K562). Proteins having at least 2 valid values in a given group were considered 

quantifiable. The 4-CV TIFF method exhibited a total of 2,345 quantifiable proteins that 

included ∼98% of the proteins (1,052) using the standard method (Figure S5C). Because 

it was possible to quantify proteins more consistently with the TIFF method, we observed 

1,053 differentially abundant proteins (DAPs) (FDR < 0.05 and S0 = 0.1) between the CMK 

and K562 cells, whereas only about half (i.e., 536 DAPs) were found using the standard 

method (Figures S6A and S6B). A total of 380 DAPs were shared between the two methods. 

As shown in Figure S5D, the linear correlation coefficient of protein fold changes between 

the two label-free methods was high (R = 0.95). The slope of linear regression was ∼1 (K), 

indicating similar fold changes between the two methods. Similarly, the 4-CV TIFF method 

showed improved quantification results over the standard method in the comparison between 

MOLM14 and the other two cell types (Figures S7 and S8).

A streamlined label-free scProteomics platform

Having demonstrated that the TIFF method offers improvements in proteome coverage and 

quantification for mass-limited samples, we integrated it into our scProteomics pipeline that 

includes fluorescence-activated cell sorting (FACS) for cell isolation (Zhu et al., 2018a), a 

robotically addressed nanowell chip for single-cell processing nanodroplet processing in one 

pot for trace samples (nanoPOTS) (Zhu et al., 2018b), a nanoliter-scale LC autosampler 

for reliable sample injection (Williams et al., 2020), and a low-flow LC system (LC 

column with 50 μm i.d.) (Williams et al., 2020). Both single cells and pooled library 

cells can be isolated with FACS and processed with nanoPOTS. The integrated FACS-

nanoPOTS-autosampler-TIFF-MS platform offered a complete solution from cell isolation 

to data acquisition and peptide identification for unbiased scProteomics, as well as other 
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biological applications with mass-limited samples. The platform is robust and scalable. 

Since developed, it has been used to analyze >1,200 samples in our facility.

Proteome coverage of single HeLa cells

We used HeLa cells to benchmark the TIFF-based scProteomics workflow. Using a tandem 

mass spectrometry approach (MS/MS), an average of 209 proteins were identified from 

single HeLa cells (Figure S9A). The number was comparable with our previously reported 

result (211 proteins) using a lower-flow LC-MS system (50 nL/min with 30 μm i.d. column) 

but without a FAIMS interface (Table S1) (Zhu et al., 2018a), and 42% lower than that 

obtained using an ultralow-flow LC system (20 μm i.d. column) and the newest generation 

(Eclipse) MS (Cong et al., 2020). The utilization of the 4-CV TIFF method dramatically 

increased the coverage to an average of 1,212 (±10%) identified protein across 10 single 

cells (Figure S9A). The TIFF method doubled the total number of identifications compared 

with our previous report (Zhu et al., 2018a), reaching 1,771 unique proteins (Figure S9B). 

The number of identifications obtained with the TIFF method was comparable with the one 

that we obtained using a 20-μm-i.d. column (20 nL/min), a FAIMS interface, an Eclipse MS, 

and a long LC gradient (Cong et al., 2020).

The quantification consistency was also evaluated. Using protein iBAQ intensities, 684 of 

1,771 proteins had no missing values across the 10 HeLa cells (Figure S9C). In total, 1,103 

proteins were presented in at least 50% of the analyses. Pearson’s correlation coefficients 

had a median value of 0.95 between any two HeLa cells, indicating the high reproducibility 

of our integrated scProteomics pipeline (Figure S9D). Together, these results demonstrated 

that the integration of the TIFF method with high-efficiency single-cell preparation offers a 

sensitive and reliable scProteomics pipeline for label-free quantification.

Preliminary application to dissociated primary cells from human lung

To initially explore the scProteomics platform for cell-type classification from dissociated 

primary cells, we analyzed nondepleted and nonlabeled primary cells from the lung of 

a 2-year-old donor (Figure S10A). In total, 19 single cells were processed and analyzed 

using the TIFF-based scProteomics workflow, resulting in a total of 986 identified proteins 

with an average of 390 identified proteins per single cell (Table S2). We retained proteins 

identified in at least 8 of the 19 single cells (40% presence) for quantitative analysis, 

resulting in 402 quantifiable proteins (Table S3). Principal component analysis (PCA) of 

the 402 proteins suggested the presence of at least three cell populations in the lung tissue 

single-cell suspension (Figure S10B).

To identify proteins distinguishing these populations, we performed the ANOVA test 

(permutation-based FDR < 0.05, S0 = 0), revealing 99 proteins (∼20% of quantifiable 

proteins) that were differentially abundant across the three cell population groups/clusters 

(Table S4) as visually represented in Figure S10C. Cell-type identity was assigned to 

each of the three cell population groups by comparing markers from the scProteomics 

data with lung cell-type markers previously enumerated by bulk proteomics of sorted cell 

populations of human lung endothelial, epithelial, immune, and mesenchymal cells (Du et 

al., 2019). Correspondence analysis across the scProteomic and bulk proteomic markers 
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revealed that Cluster 1 represented a lung endothelial cell population, Cluster 2 represented 

a lung immune cell population, and Cluster 3 represented a lung epithelial cell population 

(Figure S11). For example, Caveolin-1 (CAV1) and Polymerase I and transcript release 

factors (PTRF), which were highly abundant in single-cell cluster 1 (Figures S10D and S11), 

were known to structurally maintain the specialized lipid raft of caveola in lung endothelial 

cells (Chettimada et al., 2015). L-Plastin (LCP1) protein, important for alveolar macrophage 

development and antipneumococcic response (Deady et al., 2014), was highly abundant in 

bulk sorted immune cells as well as Cluster 2. Pulmonary surfactant-associated protein B 

(SFTPB), which facilitates alveolar stability by modulating surface tension (Wang et al., 

2018), was known to be preferentially enriched in lung epithelial cells. SFTPB was highly 

abundant in bulk sorted epithelial cells as well as Cluster 3. The above results demonstrated 

the feasibility of the scProteomics platform for cell-type classification from nondepleted 

whole tissue single-cell suspension samples.

We also examined the abundance patterns of the 17 marker proteins based on scProteomics, 

bulk proteomics, and transcriptomics of the sorted populations (Figure S11). For the three 

protein markers mentioned above, we observed good agreement in all three measurement 

modalities. However, similar to our previous integrative study (Du et al., 2019), we observed 

disagreement for some protein markers. For example, TUBB protein was identified as 

an endothelial cell marker in the proteomics dataset, but it was not significant in the 

transcriptomics dataset. In addition, among the 7 epithelial cell markers, only 1 protein/gene 

(SFTPM) was significantly expressed in both proteomics and transcriptomics datasets.

Large-scale proteome profiling of single macrophage cells in response to 
lipopolysaccharide treatment

To further evaluate our platform for large-scale scProteomics analysis, we profiled 

proteome changes of single murine macrophage cells (RAW 264.7) after 24 and 48 h 

lipopolysaccharide (LPS) stimulation relative to unstimulated cells (control) (Figure 2A). 

We analyzed a total of 155 individual RAW 264.7 cells, containing 54 unstimulated cells, 

52 stimulated cells at 24 h, and 49 stimulated cells at 48 h. Our analysis identified a total of 

1,671 proteins across the 155 individual cells. The median number of proteins identified per 

cell was 451. Although lower than the number of proteins identified from single HeLa cells 

described above, we noted that RAW 264.7 cells have a median diameter of 10 μm (Saxena 

et al., 2003) compared with ∼17 μm for HeLa cells (Zhu et al., 2019); the 5-fold difference 

in cell volume likely accounted for the reduced coverage. We also observed control cells to 

have fewer identified proteins than LPS-stimulated cells. The median numbers of identified 

proteins were 307, 482, and 575 for control, 24 h stimulation, and 48 h stimulation, 

respectively (Figure 2B). Previous reports have indicated that stimulated RAW 264.7 

macrophages increased in size and changed morphology upon LPS stimulation, potentially 

accounting in part for the difference in identifications (Saxena et al., 2003). Of the 1,671 

identified proteins, 519 were conservatively retained for quantitative analysis after filtering 

out proteins containing >50% missing values in at least one experimental condition (Table 

S4). Using a uniform manifold approximation and projection (UMAP)-based dimensional 

reduction analysis (Becht et al., 2019), the 155 individual cells partitioned into three distinct 

clusters on a two-dimensional plot correspond to the three experimental conditions (Figure 
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2C). Five stimulated cells (3 from 24 h and 2 from 48 h) were clustered into the control 

group, indicating that only a small portion of RAW cells (∼5%) is not sensitive to LPS 

stimulation.

To identify the DAPs that drove the partitioning of the three clusters, we performed an 

ANOVA test analysis (permutation-based FDR < 0.001, S0 = 5). A total of 250 proteins were 

significantly modulated across the three groups (Figure 2D). Gene ontology analysis results 

showed that proteins increased in abundance at 24 h LPS stimulation (cluster A in Figure 

2D) were primarily enriched in antigen processing and presentation processes (FE = 37.2–

157.5, p < 0.01). Proteins increased at 24 h LPS stimulation and remained elevated through 

48 h LPS stimulation (cluster B) were enriched in antigen processing and presentation (FE = 

10.6, p < 0.05), response to LPS (FE = 2.5, p < 0.05), and oxidation-reduction (FE = 2.1, p 

< 0.01) processes, which were known to be a critical function of activated macrophage cells. 

Biological processes enriched in proteins increased after 48 h LPS stimulation (cluster C) 

included those related to protein exit from the endoplasmic reticulum (FE = 61.8, p < 0.05) 

and to foam cell differentiation (FE = 56.1, p < 0.05). The latter finding was in line with a 

previous report on the ability of LPS-activated RAW 264.7 macrophages to differentiate into 

foam cells (Funk et al., 1993). Proteins associated with cholesterol storage (FE = 47.5, p < 

0.05) were also increased in abundance after 48 h LPS stimulation. Storage of cholesterol 

ester or triglyceride has been suggested to lead to the formation of foam cells (Feingold et 

al., 2012).

Beyond functional enrichment analysis, our statistical analysis identified specific proteins 

previously described as being involved in the response process of macrophage cells to 

LPS stimulation. For example, immune responsive gene 1 (Irg1), known as a resistance-

inducing protein against LPS (Li et al., 2013), was upregulated in macrophage cells 

exposed to LPS at both 24 and 48 h (Figure 2E). Irg1 is highly expressed during various 

infections or TLR ligand stimulation in macrophages, which have been reported to regulate 

macrophage innate immune responses by controlling proinflammatory cytokines (Li et 

al., 2013). Prostaglandin-endoperoxide synthase 2 (Ptgs2/Cox-2), an important precursor 

of prostacyclin enzyme which is expressed in macrophages exposed to LPS (Tang et 

al., 2017), was also significantly increased in LPS-stimulated macrophage cells (Figure 

2E). Transitional endoplasmic reticulum ATPase (Vcp, also called p97) is involved in the 

targeting and translocation of ubiquitinated proteins, and the regulation of the inflammatory 

response in immune cells (Fenech et al., 2020). We observed increased abundances of 

Vcp at 24 h LPS stimulation with a decrease to basal level at 48 h LPS stimulation. 

The perturbation of cellular ubiquitin homeostasis supports the concept that variations in 

protein ubiquitination may be the key response to pathogen infection and trigger the defense 

mechanism of macrophages. Heat shock cognate 71-kDa protein (Hspa8), known to be 

involved in the presentation of antigenic peptides by major histocompatibility complex 

(MHC) class II (MHCII) molecules for CD4 + T cells, was significantly increased in 

LPS-stimulated cells in line with previous studies that also showed this protein to be 

overexpressed in response to LPS stimulation (Zhang et al., 2011).
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DISCUSSION

In this study, we developed an ion mobility-enhanced MS acquisition and peptide 

identification method, TIFF (Transferring Identification based on the FAIMS Filtering), 

which was coupled with our previously described nanoPOTS scProteomics workflow 

(Williams et al., 2020; Zhu et al., 2018b) to improve the sensitivity and accuracy of label-

free scProteomics. MS acquisition efficiency was improved by filtering out singly charged 

background ions and allowing ion accumulation for extended periods for sensitive detection. 

Compared with our previous FAIMS-based scProteomics workflow using an ultralow-flow 

LC column (20-μm-i.d.) and long gradient,12 the TIFF method dramatically improved both 

system robustness and analysis throughput to enable large-scale single-cell studies. The 

TIFF-based workflow enabled the identification of >1,700 proteins and quantification of 

∼1,100 proteins from single HeLa cells with label-free analysis. We demonstrated the 

robustness and scalability of the scProteomics workflow via a large-scale analysis of 155 

single macrophage cells under different LPS stimulation conditions to reveal the biological 

processes at the single-cell level. Finally, we demonstrated the feasibility of classifying cell 

populations of a human lung.

Although our label-free analysis of single cultured cells (e.g., HeLa) yielded >1,000 proteins 

identified and a similar number of proteins quantified, a similar analysis of single primary 

cells (e.g., human lung cells) resulted in significantly fewer proteins, presumably due to 

the fact that culture cells have larger sizes and more proteins mass (Figure S12). This 

again highlights the need to further improve the overall sensitivity of current scProteomics 

platforms to enable routine and deep single-cell proteome analyses of primary cells derived 

from tissues of animal models and human donors. One strategy for improving overall 

sensitivity is to further improve protein/peptide recovery. Sample recovery during sample 

processing procedures could be increased using smaller nanowells or low-binding surfaces 

to reduce adsorptive loss. Another strategy for improving overall sensitivity is through 

enhancing peptide separation resolution and ionization efficiency. With the advances of 

nanoLC pump technologies, the LC flow rates could be reduced to low nanoliter and 

to even picoliter scale to further enhance peptide separation resolution and ionization 

efficiency. MS instrumentation with high ion-transmission optics and sensitive detectors 

could provide further enhancements in proteome coverage for single cells. In addition to 

FAIMS, other ion mobility-based technologies, including trapped ion mobility spectrometry 

(TIMS) (Michelmann et al., 2015; Vasilopoulou et al., 2020) and, particularly, structures 

for lossless ion manipulation (SLIM), can offer improved ion separation and overall ion 

utilization efficiencies. With all these developments, we believe the proteome depths of 

scProteomics will reach the level of single-cell RNA sequencing and ultimately become an 

indispensable tool in biological and medical research.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Ying Zhu (ying.zhu@pnnl.gov).
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Materials availability—This study did not generate new unique reagents.

Data and code availability—The mass spectrometry proteomics data have been 

deposited to the ProteomeXchange Consortium via the MassIVE partner repository. The 

accession number and DOI are listed in the key resources table.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture—All cell lines used in this study were maintained in a medium compatible 

with each cell line and incubated at 37 °C with 5% of CO2. Of the three leukemia cell 

lines, K562 and MOLM14 cells were cultured in RPMI-1640 medium supplemented with 

10% fetal bovine serum (FBS), and CMK cells were maintained in RPMI-1640 medium 

with 20% FBS added. For HeLa cells, DMEM supplemented with 10% FBS was added. 

RAW 264.7 cells were maintained in DMEM supplemented with 10% FBS followed to be 

stimulated with 100 ng/ul of LPS (Sigma Aldrich) in serum-free DMEM (Thermo Fisher 

Scientific) for 24 hr or 48 hr. For the control of RAW264.7 cells (non-treated), ten million 

cells were collected before stimulation with LPS. In the same way, LPS-stimulated cells 

were harvested after 24 hr or 48 hr of treatments.

Primary lung cells—The dissociated primary human lung cells was kindly provided by 

Dr. Gloria Pryhuber at University of Rochester Medical Center. The detailed protocol to 

generate the human lung cells was described previously (Bandyopadhyay et al., 2018) and 

available on protocol.io (https://doi.org/10.17504/protocols.io.biz5kf86). The dissociated 

lung cells in 90% FBS and 10% DMSO were cryo-frozen in −80°C freezer. A freezing 

vial was shipped to PNNL on dry ice.

METHOD DETAILS

Single-cell sorting—HeLa and RAW 264.7 cells were washed by chilled PBS and sorted 

on the nanoPOTS chips (4 × 3 12, 1.2 mm diameter per well) using the Influx II cell sorter 

(BD Biosciences, San Jose, CA) as described previously (Zhu et al., 2018a). To build the 

in-depth spectral library, 50 cells of each cell line (or equivalent peptides of ∼10 ng) were 

loaded onto the microPOTS chip (3 × 9, 2.2-mm diameter per well). For primary lung 

cells, the cells were thawed and resuspended in DMEM with 10%FBS for 1 Hr prior to be 

centrifuged at 800 g for 10 min. The supernatant was removed and cells were washed in 

DPBS. To gate out dead cells or cell debris, the cells with labeled with Calcein AM viability 

dye (Thermo Fisher). Similar to the FACS-sorting procedures above, we sort 50 cells into 

microPOTS chips for library generation and single cells into nanoPOTS chips for analysis.

Protein digestion—For the low-input mock samples (0.2 ng, equivalent amount peptides 

to a single-cell), leukemia cell lines were lysed in a tube with lysis buffer including 50 mM 

NH4HCO3 (pH8.0), 8 M UREA, and 1 % phosphatase inhibitor followed by sonicated in 

a cold bath for 3 min. After the measurements of the protein concentrations by BCA assay 
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(Thermo Fisher Scientific), proteins equivalent to 200 μg were reduced in 5 mM DTT for 

1 hr at 37 °C and alkylated with 10 mM iodoacetamide (IAA) in the dark for 1 hr at room 

temperature. Eightfold diluted samples with 50 mM NH4 HCO3 were digested with Lys-C 

peptidase at 37 °C with a ratio of 50:1 (w/w) for 3 hr followed by digesting with trypsin 

with a ratio of 50:1 (w/w) at 37 °C overnight. The tryptic digested peptides were acidified 

by 0.5% trifluoroacetic acid (TFA) at final concentration, then desalted using C18 SPE tips. 

After concentrated, the BCA assay was performed to estimate the final concentration of the 

peptides. Using the nanoPOTS robot, 0.2 ng and 10 ng of the peptides from each leukemia 

cell line were loaded on the nanowell/microwell chips and completely dried by a vacuum 

system (Williams et al., 2020).

For single-cell analysis, single and 50 FACS-sorted cells on the chip were processed on the 

nanoPOTS platform for single cells and spectral library, respectively. To extract proteins, 

we first added a lysis buffer containing 0.2% n-Dodecyl b-D-maltoside (DDM) and 5 mM 

DTT in 0.5 × PBS and 25 mM NH4HCO3 buffer in each well, then incubated for 1 hr at 

70 °C. Denatured and reduced proteins were alkylated with 10 mM IAA in the dark for 30 

min at RT. Double enzymatic digestions were performed by incubating with LysC (1 ng for 

single-cell, 5 ng for 50 cells) for 4 hr at 37 °C followed by treatment with trypsin (2 ng for 

single-cell, 10 ng for 50 cells) overnight. Peptides were acidified with 5% formic acid and 

completely dried using a vacuum system. All chips were stored in a −20 °C freezer until MS 

analysis.

Shewanella oneidensis MR-1 peptide was obtained from a non-related study. The sample 

preparation procedures were described in detail previously (Xiang et al., 2020; Zhu et al., 

2018c).

LC-FAIMS-MS/MS analysis—The in-house assembled nanoPOTS autosampler contains 

an in-house packed SPE column (100 μm i.d., 4 cm, 5 μm, 300 Å C18 material, 

Phenomenex) and an LC column (50 μm i.d., 25 cm long, in-house packed with 1.7 μm, 190 

Å C18 material, Waters) using a self-pack picofrit bare column (cat. no. PF360–50-10-N-5, 

New Objective, Littleton, MA). The LC column is heated to 50 °C using Agile-Sleeve 

column heater (Analytical Sales and services, Inc., Flanders, NJ) for sample analysis 

(Williams et al., 2020). Briefly, samples were dissolved with Buffer A (0.1% formic acid in 

water) on the chip, then trapped on the SPE column for 5 min. After washing the peptides, 

samples were eluted at 100 nL/min and separated using a 60-min gradient from 8% to 35% 

Buffer B (0.1% formic acid in acetonitrile).

An Orbitrap Fusion Lumos Tribrid MS (Thermo Scientific) with FAIMSpro operated in 

data-dependent acquisition mode was used for all analyses. Peptides were ionized by 

applying a voltage of 2,000 V or 2,400 V for standard or FAIMS methods, respectively.

For the standard method, precursor ions with mass range 375–1600 m/z were scanned at 

120,000 resolution with an ion injection time (IT) of 254 ms and an AGC target of 1E6. 

To analyze pooled samples for generating the spectral libraries, the selected precursor ions 

with +2 to +7 charges were fragmented by a 30% level of high energy dissociation (HCD) 

and scanned at 60,000 resolution with an IT of 118 ms and an AGC target of 1E5. When 
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single-cell level (0.2 ng) peptides were injected, fragmented peptide ions were scanned at 

120,000 resolution with an IT of 246 ms and an AGC target of 1E5.

For the TIFF method, the ionized peptides were fractionated by the FAIMSpro interface 

using a 2-CV (−45, −65 V) method or a 4-CV (−45, −55, −65, −75 V) method. Fractionated 

ions with a mass range 350–1500 m/z were scanned at 120,000 resolution with an IT of 

254 ms and an AGC target of 1E6. For the pooled samples for generating a spectral library, 

a single CV was used for each LC-MS run. Precursor ions with intensities > 1E4 were 

selected for fragmentation by 30% HCD and scanned in an ion trap with an AGC of 2E4 

and an IT of 150 ms. For single-cell samples, cycle times of 1.5 s and 0.6 s were used 

for the 2-CV and 4-CV methods, respectively. Precursor ions with intensities > 1E4 were 

fragmented by 30% HCD and scanned with an AGC of 2E4 and an IT of 254 ms.

QUANTIFICATION AND STATISTICAL ANALYSIS

All raw files were processed by MaxQuant (Ver. 1.6.2.10) with the Uniport protein sequence 

database of homo sapiens (Proteome ID: UP000005640; Downloaded in 03/12/2020 

containing 20,364 reviewed sequences) and of mus musculus (Proteome ID: UP000000589; 

Downloaded in 5/19/2020 containing 17,037 reviewed sequences) using the Andromeda 

search engine with a 6-ppm precursor ion tolerance after mass calibration (Tyanova et 

al., 2016a). Protein acetylation in N-terminal and oxidation at methionine were chosen 

as variable modifications. Carbamidomethylation of cysteine residues was set as a fixed 

modification. Both proteins and peptides were filtered with a false discovery rate (FDR) 

less than 0.01. Match between runs algorithm in Maxquant was activated with a matching 

window of 0.4 min and alignment windows of 10 min. For raw files with multiplex 

FAIMS CVs, we converted them to multiple mzxml files corresponding to separate 

individual CVs using an in-house converting tool (https://github.com/PNNLComp-Mass-

Spec/FAIMS-MzXML-Generator/releases). Those separated files were assigned to non-

adjacent fractionation numbers (e.g., 1, 3, 5, 7) during the Maxquant search to ensure feature 

matching only occurs between the files with the same CV.

It should be noted that Fragpipe (V16.0 or higher) (https://github.com/Nesvilab/FragPipe) 

has supported the direct analysis of FAIMS datasets and integrated the three-dimensional 

feature marching algorithm (Kong et al., 2017; Yu et al., 2021).

For label-free quantification of single-cell-level peptides (0.2 ng) for three leukemia cell 

lines and dissociated human lung single-cell, Perseus (Ver. 1.6.12.0) was utilized for the data 

clean and statistical analysis (Tyanova et al., 2016b). The iBAQ algorithm was used for the 

single-cell analysis because the iBAQ values are proportional to the molar quantities of the 

proteins. We log2 transformed the iBAQ values after filtering out contaminants and reverse 

identifications. Missing values were imputed based on a standard distribution (width: 0.3, 

downshift: 1.8) to simulate signals for low-abundance proteins. Data were normalized using 

width adjustment, which subtracts medians and scales for all values in a sample to show 

equal interquartile ranges. Two-way t-tests were performed for the pairwise comparison of 

the leukemia cell lines proteomes utilizing the threshold of Benjamini-Hochberg FDR < 0.05 

and S0=0.1, while ANOVA tests were employed for multiple sample tests of dissociated 

human lung single cells with Permutation based FDR < 0.05. To clarify cell populations 

Woo et al. Page 13

Cell Syst. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.uniprot.org/proteomes/UP000005640
https://www.uniprot.org/proteomes/UP000000589
https://github.com/PNNLComp-Mass-Spec/FAIMS-MzXML-Generator/releases
https://github.com/PNNLComp-Mass-Spec/FAIMS-MzXML-Generator/releases
https://github.com/Nesvilab/FragPipe


from dissociated lung cells, multiple steps including principal components analysis (PCA) 

and hierarchical clustering were employed using Perseus. Gene ontology analysis for the 

biological process of the molecules was performed in DAVID web-based bioinformatic tools 

(database version 6.8, https://david.ncifcrf.gov/) (Huang et al., 2009).

The processing of the macrophage single-cell data was performed using an R package; 

RomicsProcessor v1.1.0 (https://github.com/PNNL-Comp-Mass-Spec/RomicsProcessor). 

Briefly, the “proteingroups.txt” output file of the MaxQuant search was imported as a 

multilayered R object with its associated metadata to extract iBAQ values of the identified 

proteins. The iBAQ values were then log2 transformed and filtered to allow maximal 

missingness of 50% within at least one given condition. After median normalization, batch 

correction was applied to remove the batch effects between chips using ComBat algorithm 

from the SVA package (v3.36.0). The missing values were imputed using the function of 

imputeMissing() and UMAP (the uniform manifold approximation and projection)-based 

dimensional reduction analysis was performed using the romicsUmapPlot() function in the 

RomicsProcessor package. For the statistics, ANOVA test was applied with a Benjamini-

Hochberg FDR < 0.001 and a S0=5; we applied a highly significant level to a large number 

of macrophage cells data in which the group was clearly distinguished by the duration of 

LPS treatment to give a statistical role to the difference between the median value.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank the NIH-NHLBI Human Tissue Core (Dr. Gloria Pryhuber, Principal Investigator, U01 HL122700) 
for providing dissociated primary human lung cells and the family of the tissue donor for their generous and 
irreplaceable contribution to this research. We thank the insightful discussions from Aman Makaju at Thermo 
Fisher Scientific (San Jose, CA) on the FAIMS interface. We thank Matthew Monroe for his help to deposit 
MS data to MassIVE. This work was supported by a Laboratory Directed Research and Development award 
(13T) from Pacific Northwest National Laboratory (Y.Z.) and the NIH grants U01 HL148860 and HL122703 
(C.A. and G.C.C.), R21 DC019753 (Y.Z.), R01 GM138931 (R.T.K.), and P41 GM103493 (R.D.S.). A portion of 
this research was performed on a project award (https://doi.org/10.46936/intm.proj.2020.51688/60000255) (Y.Z.) 
from the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility sponsored by the 
Biological and Environmental Research program under contract no. DE-AC0576RL01830.

REFERENCES

Amenson-Lamar EA, Sun L, Zhang Z, Bohn PW, and Dovichi NJ (2019). Detection of 1 zmol 
injection of angiotensin using capillary zone electrophoresis coupled to a Q-Exactive HF mass 
spectrometer with an electrokinetically pumped sheath-flow electrospray interface. Talanta 204, 
70–73. 10.1016/j.talanta.2019.05.079. [PubMed: 31357355] 

Bandyopadhyay G, Huyck HL, Misra RS, Bhattacharya S, Wang Q, Mereness J, Lillis J, Myers 
JR, Ashton J, Bushnell T, et al. (2018). Dissociation, cellular isolation, and initial molecular 
characterization of neonatal and pediatric human lung tissues. Am. J. Physiol. Lung Cell. Mol. 
Physiol 315, L576–L583. 10.1152/ajplung.00041.2018. [PubMed: 29975103] 

Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, Ginhoux F, and Newell EW (2019). 
Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44. 
10.1038/nbt.4314.

Woo et al. Page 14

Cell Syst. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://david.ncifcrf.gov/
https://github.com/PNNL-Comp-Mass-Spec/RomicsProcessor


Budnik B, Levy E, Harmange G, and Slavov N (2018). SCoPE-MS: mass spectrometry of single 
mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 19, 
161. 10.1186/s13059-018-1547-5. [PubMed: 30343672] 

Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, Teichmann SA, Marioni 
JC, and Stegle O (2015). Computational analysis of cell-to-cell heterogeneity in single-cell RNA-
sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155–160. 10.1038/
nbt.3102. [PubMed: 25599176] 

Chettimada S, Yang J, Moon HG, and Jin Y (2015). Caveolae, caveolin-1 and cavin-1: emerging 
roles in pulmonary hypertension. World J. Respirol. 5, 126–134. 10.5320/wjr.v5.i2.126. [PubMed: 
28529892] 

Cheung TK, Lee CY, Bayer FP, McCoy A, Kuster B, and Rose CM (2021). Defining the carrier 
proteome limit for single-cell proteomics. Nat. Methods 18, 76–83. 10.1038/s41592-020-01002-5. 
[PubMed: 33288958] 

Cong Y, Liang Y, Motamedchaboki K, Huguet R, Truong T, Zhao R, Shen Y, Lopez-Ferrer D, 
Zhu Y, and Kelly RT (2020). Improved single-cell proteome coverage using narrow-bore packed 
nanoLC columns and ultrasensitive mass spectrometry. Anal. Chem. 92, 2665–2671. 10.1021/
acs.analchem.9b04631. [PubMed: 31913019] 

Cong Y, Motamedchaboki K, Misal SA, Liang Y, Guise AJ, Truong T, Huguet R, Plowey ED, Zhu 
Y, Lopez-Ferrer D, and Kelly RT (2021). Ultrasensitive single-cell proteomics workflow identifies 
>1000 protein groups per mammalian cell. Chem. Sci 12, 1001–1006. 10.1039/D0SC03636F.

Deady LE, Todd EM, Davis CG, Zhou JY, Topcagic N, Edelson BT, Ferkol TW, Cooper MA, Muenzer 
JT, and Morley SC (2014). L-plastin is essential for alveolar macrophage production and control 
of pulmonary pneumococcal infection. Infect. Immun. 82, 1982–1993. 10.1128/IAI.01199-13. 
[PubMed: 24595139] 

Dou M, Clair G, Tsai CF, Xu K, Chrisler WB, Sontag RL, Zhao R, Moore RJ, Liu T, Pasa-
Tolic L, et al. (2019). High-throughput single cell proteomics enabled by multiplex isobaric 
labeling in a nanodroplet sample preparation platform. Anal. Chem. 91, 13119–13127. 10.1021/
acs.analchem.9b03349. [PubMed: 31509397] 

Du Y, Clair GC, Al Alam D, Danopoulos S, Schnell D, Kitzmiller JA, Misra RS, Bhattacharya S, 
Warburton D, Mariani TJ, et al. (2019). Integration of transcriptomic and proteomic data identifies 
biological functions in cell populations from human infant lung. Am. J. Physiol. Lung Cell. Mol. 
Physiol 317, L347–L360. 10.1152/ajplung.00475.2018. [PubMed: 31268347] 

Feingold KR, Shigenaga JK, Kazemi MR, McDonald CM, Patzek SM, Cross AS, Moser A, and 
Grunfeld C (2012). Mechanisms of triglyceride accumulation in activated macrophages. J. Leukoc. 
Biol. 92, 829–839. 10.1189/jlb.1111537. [PubMed: 22753953] 

Fenech EJ, Lari F, Charles PD, Fischer R, Laétitia-Thézénas M, Bagola K, Paton AW, Paton JC, 
Gyrd-Hansen M, Kessler BM, and Christianson JC (2020). Interaction mapping of endoplasmic 
reticulum ubiquitin ligases identifies modulators of innate immune signalling. eLife 9, e57306. 
10.7554/eLife.57306. [PubMed: 32614325] 

Funk JL, Feingold KR, Moser AH, and Grunfeld C (1993). Lipopolysaccharide stimulation of RAW 
264.7 macrophages induces lipid accumulation and foam cell formation. Atherosclerosis 98, 67–
82. 10.1016/0021-9150(93)90224-i. [PubMed: 8457252] 

Hartlmayr D, Ctortecka C, Seth A, Mendjan S, Tourniaire G, and Mechtler K (2021). An 
automated workflow for label-free and multiplexed single cell proteomics sample preparation at 
unprecedented sensitivity. Preprint at bioRxiv. 10.1101/2021.04.14.439828.

Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, Wu X, Wen L, Tang F, Huang Y, and Peng J (2016). 
Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in 
hepatocellular carcinomas. Cell Res. 26, 304–319. 10.1038/cr.2016.23. [PubMed: 26902283] 

Huang da W., Sherman BT, and Lempicki RA (2009). Systematic and integrative analysis of large 
gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57. 10.1038/nprot.2008.211. 
[PubMed: 19131956] 

Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, and Nesvizhskii AI (2017). MSFragger: 
ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. 
Methods 14, 513–520. 10.1038/nmeth.4256. [PubMed: 28394336] 

Woo et al. Page 15

Cell Syst. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Li Y, Zhang P, Wang C, Han C, Meng J, Liu X, Xu S, Li N, Wang Q, Shi X, and Cao X (2013). 
Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression 
in macrophages through reactive oxygen species. J. Biol. Chem. 288, 16225–16234. 10.1074/
jbc.M113.454538. [PubMed: 23609450] 

Li ZY, Huang M, Wang XK, Zhu Y, Li JS, Wong CCL, and Fang Q (2018). Nanoliter-scale 
oil-air-droplet chip-based single cell proteomic analysis. Anal. Chem. 90, 5430–5438. 10.1021/
acs.analchem.8b00661. [PubMed: 29551058] 

Luber CA, Cox J, Lauterbach H, Fancke B, Selbach M, Tschopp J, Akira S, Wiegand M, Hochrein H, 
O’Keeffe M, and Mann M (2010). Quantitative proteomics reveals subset-specific viral recognition 
in dendritic cells. Immunity 32, 279–289. 10.1016/j.immuni.2010.01.013. [PubMed: 20171123] 

Makarov A, and Denisov E (2009). Dynamics of ions of intact proteins in the Orbitrap mass analyzer. 
J. Am. Soc. Mass Spectrom. 20, 1486–1495. 10.1016/j.jasms.2009.03.024. [PubMed: 19427230] 

Meier F, Geyer PE, Virreira Winter S, Cox J, and Mann M (2018). BoxCar acquisition method enables 
single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat. Methods 15, 440–448. 
10.1038/s41592-018-0003-5. [PubMed: 29735998] 

Michelmann K, Silveira JA, Ridgeway ME, and Park MA (2015). Fundamentals of trapped ion 
mobility spectrometry. J. Am. Soc. Mass Spectrom. 26, 14–24. 10.1007/s13361-014-0999-4. 
[PubMed: 25331153] 

Pasa-Tolić L, Harkewicz R, Anderson GA, Tolić N, Shen Y, Zhao R, Thrall B, Masselon C, and Smith 
RD (2002). Increased proteome coverage for quantitative peptide abundance measurements based 
upon high performance separations and Dreams FTICR mass spectrometry. J. Am. Soc. Mass 
Spectrom. 13, 954–963. 10.1016/S1044-0305(02)00409-9. [PubMed: 12216736] 

Pasa-Tolic L, Masselon C, Barry RC, Shen Y, and Smith RD (2004). Proteomic analyses using 
an accurate mass and time tag strategy. BioTechniques 37, 621–624. 626–633, 636 passim. 
10.2144/04374RV01. [PubMed: 15517975] 

Prianichnikov N, Koch H, Koch S, Lubeck M, Heilig R, Brehmer S, Fischer R, and Cox J (2020). 
MaxQuant software for ion mobility enhanced shotgun proteomics. Mol. Cell. Proteomics 19, 
1058–1069. 10.1074/mcp.TIR119.001720. [PubMed: 32156793] 

Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, 
Zhong C, et al. (2016). Brain-region-specific organoids using mini-bioreactors for modeling ZIKV 
exposure. Cell 165, 1238–1254. 10.1016/j.cell.2016.04.032. [PubMed: 27118425] 

Saxena RK, Vallyathan V, and Lewis DM (2003). Evidence for lipopolysaccharide-induced 
differentiation of RAW264.7 murine macrophage cell line into dendritic like cells. J. Biosci. 28, 
129–134. 10.1007/BF02970143. [PubMed: 12682436] 

Schoof EM, Furtwängler B, üresin N, Rapin N, Savickas S, Gentil C, Lechman E, Keller UAD, Dick 
JE, and Porse BT (2021). Quantitative single-cell proteomics as a tool to characterize cellular 
hierarchies. Nat. Commun. 12, 3341. 10.1038/s41467-021-23667-y. [PubMed: 34099695] 

Shao X, Wang X, Guan S, Lin H, Yan G, Gao M, Deng C, and Zhang X (2018). Integrated proteome 
analysis device for fast single-cell protein profiling. Anal. Chem. 90, 14003–14010. 10.1021/
acs.anal-chem.8b03692. [PubMed: 30375851] 

Specht H, Emmott E, Petelski AA, Huffman RG, Perlman DH, Serra M, Kharchenko P, Koller A, and 
Slavov N (2021). Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity 
using SCoPE2. Genome Biol. 22, 50. 10.1186/s13059-021-02267-5. [PubMed: 33504367] 

Stuart T, and Satija R (2019). Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272. 10.1038/
s41576-019-0093-7. [PubMed: 30696980] 

Tang T, Scambler TE, Smallie T, Cunliffe HE, Ross EA, Rosner DR, O’Neil JD, and Clark AR 
(2017). Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving 
prostaglandin E2, dual specificity phosphatase 1 and tristetraprolin. Sci. Rep. 7, 4350. 10.1038/
s41598-017-04100-1. [PubMed: 28659609] 

Tsai CF, Zhao R, Williams SM, Moore RJ, Schultz K, Chrisler WB, Pasa-Tolic L, Rodland KD, 
Smith RD, Shi T, et al. (2020). An improved boosting to amplify signal with isobaric labeling 
(iBASIL) strategy for precise quantitative single-cell proteomics. Mol. Cell. Proteomics 19, 828–
838. 10.1074/mcp.RA119.001857. [PubMed: 32127492] 

Woo et al. Page 16

Cell Syst. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tyanova S, Temu T, and Cox J (2016a). The MaxQuant computational platform for mass spectrometry-
based shotgun proteomics. Nat. Protoc. 11, 2301–2319. 10.1038/nprot.2016.136. [PubMed: 
27809316] 

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, and Cox J (2016b). The 
Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 
13, 731–740. 10.1038/nmeth.3901. [PubMed: 27348712] 

Vasilopoulou CG, Sulek K, Brunner AD, Meitei NS, Schweiger-Hufnagel U, Meyer SW, Barsch A, 
Mann M, and Meier F (2020). Trapped ion mobility spectrometry and PASEF enable in-depth 
lipidomics from minimal sample amounts. Nat. Commun 11, 331. 10.1038/s41467-019-14044-x. 
[PubMed: 31949144] 

Wang Y, Tang Z, Huang H, Li J, Wang Z, Yu Y, Zhang C, Li J, Dai H, Wang F, et al. (2018). 
Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate. 
Proc. Natl. Acad. Sci. USA 115, 2407–2412. 10.1073/pnas.1719474115. [PubMed: 29463737] 

Williams SM, Liyu AV, Tsai CF, Moore RJ, Orton DJ, Chrisler WB, Gaffrey MJ, Liu T, Smith 
RD, Kelly RT, et al. (2020). Automated coupling of nanodroplet sample preparation with liquid 
chromatography-mass spectrometry for high-throughput single-cell proteomics. Anal. Chem. 92, 
10588–10596. 10.1021/acs.analchem.0c01551. [PubMed: 32639140] 

Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, Sánchez Castillo M, 
Oedekoven CA, Diamanti E, Schulte R, et al. (2015). Combined single-cell functional and gene 
expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16, 712–
724. 10.1016/j.stem.2015.04.004. [PubMed: 26004780] 

Woo J, Williams SM, Markillie LM, Feng S, Tsai C-F, Aguilera-Vazquez V, Sontag RL, Moore RJ, Hu 
D, Mehta HS, et al. (2021). High-throughput and high-efficiency sample preparation for single-cell 
proteomics using a nested nanowell chip. Nat. Commun. 12, 6246. 10.1038/s41467-021-26514-2. 
[PubMed: 34716329] 

Xiang P, Zhu Y, Yang Y, Zhao Z, Williams SM, Moore RJ, Kelly RT, Smith RD, and Liu S (2020). 
Picoflow liquid chromatography-mass spectrometry for ultrasensitive bottom-up proteomics using 
2-μm-i.d. open tubular columns. Anal. Chem. 92, 4711–4715. 10.1021/acs.analchem.9b05639. 
[PubMed: 32208662] 

Yu F, Haynes SE, and Nesvizhskii AI (2021). IonQuant enables accurate and sensitive label-free 
quantification with FDR-controlled match-between-runs. Mol. Cell. Proteomics 20, 100077. 
10.1016/j.mcpro.2021.100077. [PubMed: 33813065] 

Zhang A, Zhou X, Wang X, and Zhou H (2011). Characterization of two heat shock proteins (Hsp70/
Hsc70) from grass carp (Ctenopharyngodon idella): evidence for their differential gene expression, 
protein synthesis and secretion in LPS-challenged peripheral blood lymphocytes. Comp. Biochem. 
Physiol. B Biochem. Mol. Biol. 159, 109–114. 10.1016/j.cbpb.2011.02.009. [PubMed: 21377538] 

Zhu Y, Clair G, Chrisler WB, Shen Y, Zhao R, Shukla AK, Moore RJ, Misra RS, Pryhuber GS, 
Smith RD, et al. (2018a). Proteomic analysis of single mammalian cells enabled by microfluidic 
nanodroplet sample preparation and ultrasensitive nanoLC-MS. Angew. Chem. Int. Ed. Engl. 57, 
12370–12374. 10.1002/anie.201802843. [PubMed: 29797682] 

Zhu Y, Piehowski PD, Zhao R, Chen J, Shen Y, Moore RJ, Shukla AK, Petyuk VA, Campbell-
Thompson M, Mathews CE, et al. (2018b). Nanodroplet processing platform for deep and 
quantitative proteome profiling of 10–100 mammalian cells. Nat. Commun. 9, 882. 10.1038/
s41467-018-03367-w. [PubMed: 29491378] 

Zhu Y, Scheibinger M, Ellwanger DC, Krey JF, Choi D, Kelly RT, Heller S, and Barr-Gillespie PG 
(2019). Single-cell proteomics reveals changes in expression during hair-cell development. eLife 8, 
e50777. 10.7554/eLife.50777. [PubMed: 31682227] 

Zhu Y, Zhao R, Piehowski PD, Moore RJ, Lim S, Orphan VJ, Paša-Tolicć L, Qian WJ, Smith RD, and 
Kelly RT (2018c). Subnanogram proteomics: impact of LC column selection, MS instrumentation 
and data analysis strategy on proteome coverage for trace samples. Int. J. Mass Spectrom. 427, 
4–10. 10.1016/j.ijms.2017.08.016. [PubMed: 29576737] 

Woo et al. Page 17

Cell Syst. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• TIFF is an ion-mobility-based method for data acquisition and peptide 

identification

• Three-dimensional feature matching increases sensitivity and reduces false 

discovery

• TIFF method enables unbiased proteome analysis to a depth of ~1,100 

proteins per cell

• Single-cell proteome changes during macrophage activation were studied
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Figure 1. The concept of the TIFF method
(A) Workflow of the transferring identification based on the FAIMS filtering (TIFF) method. 

High-input samples (usually from 50 to 100 cells) are analyzed by LC-FAIMS-MS with 

each LC-MS analysis utilizing a discrete FAIMS CV to generate a spectral library. Single-

cell samples are analyzed by cycling through multiple FAIMS CVs for each LC-MS 

analysis. Peptide features in single cells are identified by matching to the spectral library 

based on three-dimensional (3D) tags, including LC retention time (RT), m/z, and FAIMS 

CV.
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(B) MS1 injection time (IT) distributions for single-cell level peptides (0.2 ng, CMK cell) 

in the standard (STD, no FAIMS) method and FAIMS method with four different CVs. The 

numbers (n) of IT data points are 5,525 in STD and 1,774 in each FAIMS CV.

(C) The distributions of signal-to-noise ratios (S/N) of LC-MS features for the 0.2-ng 

peptides in STD run and FAIMS run with 4 CVs. The numbers (n) of S/N data points are 

10,232 in STD run, 1,546 in CV −45, 1,539 in CV −55, 1,348 in CV −65, and 1,358 in CV 

−75.

(D) The average number of unique peptides and (E) the corresponding unique proteins using 

single-cell level (0.2 ng) protein digests from three cell lines (CMK, K562, and MOLM14). 

Benchmarking analysis was performed with the STD, 2-CV TIFF (−45 and −65 V), and 

4-CV TIFF (−45, −55, −65, and −75 V) methods. The data point (n) to generate the bar 

graphs is 3.

(F) The number of human peptides (MOLM-14) and bacterial peptides (SHEWON) 

identified from 2D and 3D tag methods. See also Figure S4. The bacterial peptides were 

considered false identifications. The data point (n) to generate the bar graphs is 4. The error 

bars in (D–F) represent standard deviations (SDs).
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Figure 2. Single-cell proteomics analysis of time-dependent macrophage activation
(A) Illustration of workflow for scProteomics analysis of 155 macrophages containing 

untreated (control) cells and the cells treated by LPS for 24 and 48 h.

(B) The distribution of protein identification numbers for each treatment group.

(C) The clustering of the 155 single macrophage cells based on treatment groups 

with UMAP projection, generated by an R package of RomicsProcessor v1.1.0 (https://

github.com/PNNL-Comp-Mass-Spec/RomicsProcessor). Source data are provided in Table 

S5.

(D) Heatmap showing the protein abundance differences across the 155 macrophage cells 

after statistical test using ANOVA (FDR < 0.001, S0 = 5). The hierarchical clustering 

was performed using the Euclidean method for 250 DAPs by ANOVA test. Functional 

enrichment analysis was performed with DAVID bioinformatics tools (Huang et al., 2009). 

The scale bar shows the linear distribution of Z scores.

(E) Abundance distributions of representative regulated proteins from different treatment 

conditions. In (B) and (E), the numbers (n) of data points to generate violin plots are 54 for 

control cells, 52 for LPS 24 h cells, and 49 for LPS 48 h cells.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Primary human lung cells University of Rochester Medical 
Center

Donor D011, Provided by Dr.Gloria Pryjuber

Chemicals, peptides, and recombinant proteins

Fetal bovine serum Thermo Fisher Scientific 10–082-147

RPMI-1641 Thermo Fisher Scientific 11875093

Dulbecco’s Modified Eagle Medium (DMEM) Thermo Fisher Scientific 11965092

Lipopolysaccharides (LPS) from Escherichia coli Sigma Aldrich L2630–10MG

Calcein AM Thermo Fisher Scientific C3100MP

UREA Sigma Aldrich U5128

Ammonium bicarbonate (NH4HCO3) Sigma Aldrich S2454

Dithiothreitol (DTT) No-Weigh™ Thermo Fisher Scientific A39255

Iodoacetate (IAA), Single-Use Thermo Fisher Scientific A39271

Formic acid, LC-MS grade Thermo Fisher Scientific 28905

Lys-C, Mass Spectrometry Grade Promega V1671

Trypsin, Mass Spectrometry Grade Promega V5280

n-Dodecyl β-D-maltoside (DDM) Sigma Aldrich D4641–1G

10x phosphate buffered saline (PBS) Sigma Aldrich P5493–1 L

Critical commercial assays

Pierce™ BCA Protein Assay Kit Thermo Fisher Scientific 23225

Deposited data

Proteomics RAW files MassIVE MSV000085937; https://doi.org/10.25345/C5PR1P

Experimental models: Cell lines

K-562 human cell line Oregon Health & Science 
University

Provided by Dr.Anupriya Agarwal, originally 
obtained from ATCC (CCL-243)

MOLM-14 human cell line Oregon Health & Science 
University

Provided by Dr.Anupriya Agarwal, originally 
established from the peripheral blood of a patient at 
relapse of acute monocytic leukemia by Dr. Matsuo 
et al. at Fujisaki Cell Center in Japan

CMK human cell line Oregon Health & Science 
University

Provided by Dr.Anupriya Agarwal, originally 
obtained from the German National Resource Center 
for Biological Material

RAW 264.7 mouse cell line ATCC TIB-71

HeLa human cell line ATCC CCL-2

Software and algorithms

MaxQuant (Ver 1.6.2.10) Max Planck Institute of 
Biochemistry

https://www.maxquant.org/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Perseus (Ver 1.6.12.0) Max Planck Institute of 
Biochemistry

https://www.maxquant.org/perseus/

FAIMS MzXML converting tool PNNL https://github.com/PNNL-Comp-Mass-Spec/FAIMS-
MzXML-Generator/releases

RomicsProcessor R package PNNL https://github.com/PNNL-Comp-Mass-Spec/
RomicsProcessor

GraphPad Prism Ver.8.3.0 GraphPad Software https://www.graphpad.com/scientific-software/prism/
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