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ABSTRACT

Kinesin motor proteins are responsible for orchestrating a variety of
microtubule-based processes including intracellular transport, cell
division, cytoskeletal organization, and cilium function. Members of
the kinesin-6 family play critical roles in anaphase and cytokinesis
during cell division as well as in cargo transport and microtubule
organization during interphase, however little is known about their
motility properties. We find that truncated versions of MKLP1
(HsKIF23), MKLP2 (HsKIF20A), and HsKIF20B largely interact
statically with microtubules as single molecules but can also
undergo slow, processive motility, most prominently for MKLP2. In
multi-motor assays, all kinesin-6 proteins were able to drive
microtubule gliding and MKLP1 and KIF20B were also able to drive
robust transport of both peroxisomes, a low-load cargo, and Golgi, a
high-load cargo, in cells. In contrast, MKLP2 showed minimal
transport of peroxisomes and was unable to drive Golgi dispersion.
These results indicate that the three mammalian kinesin-6 motor
proteins can undergo processive motility but differ in their ability to
generate forces needed to drive cargo transport and microtubule
organization in cells.

KEY WORDS: Kinesin, Microtubule, Anaphase, KIF20A, KIF20B,
KIF23

INTRODUCTION

Kinesins are a superfamily of proteins responsible for orchestrating
fundamental microtubule-based processes including cell division,
intracellular trafficking, cytoskeletal organization, and cilium
function (Verhey et al., 2011; Cross and McAinsh, 2014; Guillaud
etal., 2020; Konjikusic et al., 2021). The kinesin-6 family consists of
three subfamilies, two of which are conserved across eukaryotes,
mitotic kinesin-like protein 1 (MKLP1: HsKIF23, DmPavarotti,
CeZEN-4) and mitotic kinesin-like protein 2 (MKLP2: HsKIF20A,
DmSubito), whereas the third subfamily is vertebrate-specific,
KIF20B [also known as mitotic phosphoprotein 1 (MPP1)].

The kinesin-6 family is best known for its roles in mitosis and
cytokinesis in animal cells. MKLP1 and MKLP2 play important
roles during anaphase in formation of the central spindle, a narrow
region of antiparallel overlapping microtubules. MKLP1 is a
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component of the centralspindlin complex which promotes anti-
parallel microtubule bundling during central spindle assembly
(Nislow et al., 1992; Kuriyama et al., 1994; Jantsch-Plunger et al.,
2000; Kuriyama et al., 2002; Mishima et al., 2002; Zhu et al., 2005;
Pavicic-Kaltenbrunner et al., 2007) whereas MKLP?2 is responsible
for the transport of Chromosome Passenger Complex (CPC)
components from the centromeres to the central spindle
(Gruneberg et al., 2004; Neef et al., 2006; Cesario et al., 2006;
Kitagawa et al., 2013; Landino et al., 2017; Serena et al., 2020;
Adriaans et al., 2020). MKLP1 and MKLP2 also play critical roles
during cytokinesis in the assembly and constriction of the
contractile ring as inhibition of centralspindlin activity or
MKLP2-driven delivery of the CPC leads to a reduction in
constriction rate and increase in cytokinesis failure (Adams et al.,
1998; Powers et al., 1998; Raich et al., 1998; Hill et al., 2000;
Fontijn et al., 2001; Kuriyama et al., 2002; Matuliene and
Kuriyama, 2002; Matuliene and Kuriyama, 2004; Guse et al.,
2005; Yuce et al., 2005; Nishimura and Yonemura, 2006; Lewellyn
etal., 2011; Lekomtsev et al., 2012; Kitagawa et al., 2013; Nguyen
et al, 2014; Basant et al., 2015; Zhang and Glotzer, 2015;
Lie-Jensen et al., 2019). Much less is known about the function of
KIF20B, which regulates midbody maturation and is necessary for
the completion of cytokinesis (Abaza et al., 2003; Kanehira et al.,
2007; Janisch et al., 2018).

Kinesin-6 proteins also play important contributions in
interphase of cycling cells as well as in post-mitotic cells.
MKLPI1 and DmPav are expressed during neuronal development
and have been shown to regulate neurite outgrowth and dendrite
formation by controlling microtubule organization (Sharp et al.,
1997a,b; Yu et al., 1997; Ferhat et al., 1998; Yu et al., 2000; Lin
et al., 2012; Del Castillo et al., 2015). MKLP2 was identified as a
binding partner of Rab6 and functions with Rab6 in Golgi
organization and/or transport of Golgi-to-ER vesicles (Echard
etal., 1998; Majeed et al., 2014; Miserey-Lenkei et al., 2017; Hieda
et al., 2021). KIF20B also plays an important role in neuronal
development, particularly during corticogenesis. KIF20B was
implicated in axonal transport of Shootinl and loss of KIF20B
function disrupts neurite outgrowth, polarization, and migration
(Sapir et al., 2013; McNeely et al., 2017; Janisch et al., 2018).

Kinesin proteins are defined by a highly conserved kinesin motor
domain that contains signature sequences for nucleotide and
microtubule binding. For most kinesins, nucleotide hydrolysis
leads to unidirectional motility along the microtubule to drive
transport of cargoes in cells. Other kinesins diffuse along or interact
statically with microtubules. Understanding the motility properties
of a kinesin protein is critical to understanding its functions in cells,
yet the motility properties of members of the kinesin-6 family are
largely unknown. The kinsesin-6 family is defined by three features
of the motor domain: an N-terminal extension, an insertion in
loop-6 on the surface of the motor domain, and an extended region
between the neck linker and the first coiled coil predicted to drive
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homodimerization (Fig. 1A) (Mishima et al., 2002; Hizlan et al.,
2006; Atherton et al., 2017; Guan et al., 2017; Janisch et al., 2018).
The neck linker is important in force production and
mechanochemical coordination of the two motor domains
(Hwang et al., 2017; Hwang and Karplus, 2019) so the presence
of an extended neck linker suggested that kinesin-6 proteins may not
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perform classical stepwise movement (Mishima et al., 2002; White
etal., 2013; Davies et al., 2015; Atherton et al., 2017; Landino et al.,
2017). Furthermore, MKLP1 and MKLP?2 lack a key residue of the
neck linker, the N-latch (Fig. S1A), that is required for force in
generation in kinesin-1 (Budaitis et al., 2019), suggesting that these
proteins may be impaired in their force generation.
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Fig. 1. Single-molecule motility properties of kinesin-6 motors. (A) Schematic and (B) domain organization of kinesin-6 motor proteins. Blue, motor

domain; green, neck linker; orange, insertions in kinesin-6 relative to kinesin-1;

gray, predicted coiled coil. Numbers and black lines indicate the positions of

protein truncations. (C-H) Motility properties of the indicated kinesin-6 proteins and the kinesin-1 control. All proteins were tagged at their C-terminus with
three tandem mCitrine (3xmCit) fluorescent proteins. (C,D) Representative kymographs of imaging carried out using a (C) fast acquisition rate (1 frame every
50 ms, 30 s total) or (D) slow acquisition rate (1 frame every 2's, 10 m total). Motility properties were determined from kymographs for kinesin-6 motors
imaged at the slow acquisition rate and for kinesin-1 imaged at the fast acquisition rate. (E) The number of motile versus static events. (F) Fluorescence
intensities of motile (magenta) and static (gray) motors measured from the first frame of the motor on the microtubule. n=150 events each. For the motile
events, the (G) overall speed (black line, mean) and (H) dwell time (black line, median) were measured. Number of motile events: MKLP1(1-711)-3xmCit,
n=21; MKLP2(1-720)-3xmCit, n=46; KIF20B(1-780)-3xmCit, n=2; KIF5C(1-560)-3xmCit, n=408 events across three independent experiments.
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The motility properties of individual kinesin proteins are
typically examined in single-molecule motility assays where
processive motors show unidirectional movement over time and
non-processive motors show either diffusive or static binding along
the microtubule lattice. However, an inability to undergo processive
motility does not preclude a kinesin from driving microtubule-based
transport events as non-processive kinesin proteins can work in
teams drive motility (Furuta et al., 2013; Jonsson et al., 2015; Norris
et al., 2018; Schimert et al., 2019). Single-molecule motility
behavior of mammalian MKLP1 has not been evaluated, but
multiple motors can drive the movement of microtubules in a
gliding assay (Nislow et al., 1992). More progress has been made
with the C. elegans homolog, CeZEN-4, which undergoes diffusive
movement along the microtubule lattice as single motors, can
undergo processive motility as clusters of motors, and can drive
motility in microtubule gliding assays (Hutterer et al., 2009; Davies
et al., 2015). CeZEN-4 and DmPav have also been observed to
bundle microtubules in in vitro assays and have thus been suggested
to function in the bundling of antiparallel microtubules at the central
spindle and to resist microtubule sliding driven by kinesin-1 in
neurons (Matuliene and Kuriyama, 2002; Mishima et al., 2002;
Hutterer et al., 2009; Douglas et al., 2010; Del Castillo et al., 2015;
Tao et al., 2016). For MKLP2, recent research showed that the full-
length protein undergoes processive motility as single molecules
and can transport purified CPC complexes along microtubules
(Adriaans et al., 2020), suggesting that MKLP2 may be capable of a
classic kinesin transport function. For HsKIF20B, its single-
molecule motility properties have not been described but it is
capable of multi-motor transport in a microtubule gliding assay
(Abaza et al., 2003). Finally, the sole member of the kinesin-6
family in fission yeast, SpKIp9, forms homotetramers that display
slow plus end-directed motility both as single molecules and in
microtubule-gliding assays (Yukawa et al., 2019).

We utilized a variety of assays to characterize the single-molecule
and multi-motor motility properties of kinesin-6 motors MKLP1,
MKLP2, and KIF20B to understand their motility properties.
We find that kinesin-6 motors largely interact statically with
microtubules as single motors, with processive motility events
primarily observed for MKLP1 and MKLP2. While all kinesin-6
motors can work in teams to drive transport in microtubule gliding
assays, only MKLP1 and KIF20B can drive cargo transport in cells.
Our results provide a basis for understanding kinesin-6 motility
properties and can provide insight into how mutations in kinesin-6
motors can lead to disruption of neural development or cancer (Liu
et al., 2014; Duan et al., 2016; McNeely et al., 2017).

RESULTS

Individual kinesin-6 proteins infrequently engage with
microtubules for processive motility

We first tested whether kinesin-6 motors could undergo processive
motility as individual motors using a standard single-molecule
motility assay and total internal reflection fluorescence (TIRF)
microscopy. Because many kinesin proteins utilize their C-terminal
tail domains for autoinhibition of the N-terminal motor domain
and/or as an auxiliary microtubule-binding domain (Verhey and
Hammond, 2009; Tao et al., 2016; Zhang et al., 2020), we generated
truncated versions of each kinesin-6 protein that contain the kinesin
motor domain and a portion of the predicted coiled-coil segment for
dimerization (Fig. 1B). For MKLP1 (HsKIF23), we compared the
truncated MKLP1(1-711) protein to the full-length MKLP1(1-856).
For MKLP2 (HsKIF23), we tested two truncated versions,
MKLP2(1-720) and MLKP2(1-770) and for KIF20B, we also

tested two truncated versions, KIF20B(1-780) and KIF20B(1-982).
The proteins were tagged at their C-terminus with three tandem
mCitrine  (3xmCit) proteins for fluorescence imaging. In
preliminary experiments, the shorter (Fig. 1C,D) and longer
(Fig. S2B) versions of each protein behaved similar to each other.
In addition, the shorter constructs behaved similarly when tagged at
their C-terminus with either 3xmCit (Fig. 1C) or with tandem Halo
and Flag tags (Fig. S2C). Thus, only the results from the 3xmCit-
tagged shorter truncations will be described in detail.

We used single-molecule imaging to examine the ability of the
truncated 3xmCit-tagged motors to undergo processive motility
along taxol-stabilized microtubules. The well-characterized kinesin-
1 protein KIF5C(1-560)-3xmCit (Cai et al., 2009) was used as
control (Fig. 1B). Under standard imaging conditions (1 frame
every 50 ms, 30 s total imaging), all kinesin-6 motor proteins were
observed to transiently bind to and release from microtubules
(Fig. 1C) and were occasionally observed to undergo directional
motility at very slow velocities. We thus repeated the motility assays
using a slower imaging rate (1 frame every 2 s) and a longer imaging
time (15 min) to quantify the motility parameters. Most molecules
again underwent transient binding to and release from the
microtubules, however, processive, unidirectional events were
observed for each kinesin-6 motor (Fig. 1D). Processive motility
events were most frequently observed for MKLP2(1-720)-3xmCit
(23% of events) whereas fewer processive events were observed for
MKLP1(1-711)-3xmCit (14% of events) and KIF20B(1-780)-
3xmCit (1.3% of events) (Fig. 1E, Table 1).

We tested whether each motor’s oligomeric state (e.g. monomer
or dimer) determined its ability to interact statically with (bind and
release) or engage in motility along microtubules by measuring the
fluorescence intensity of the protein at the first frame of its
engagement with the microtubule. No correlation was found
between fluorescence intensity and ability to undergo processive
motility (Fig. 1F). The average fluorescence intensity of the kinesin-
6 motors was lower than that of the control KIF5C(1-560)-3xmCit,
a known dimer, but this may be due to the longer kinesin-6
motors being farther from the coverslip in the TIRF imaging
field. We measured the properties of the motile events and found
that MKLP1(1-711)-3xmCit moved with an average speed of
37.16+14.41 nm/s (mean+s.d.) and a median dwell time of 114.5 s
[40.66, 157.50] (quartiles), MKLP2(1-720)-3xmCit moved with an
average speed of 107.804+31.53 nm/s and a median dwell time of
168.6 s [38.03, 270.60], and KIF20B(1-780)-3xmCit moved with
an average speed of 53.314+13.63 nm/s and a median dwell time of
24.50 s [20.83, 24.50] (Fig. 1G,H, Table 1). Taken together, these
results show that kinesin-6 motors are capable of processive motility
despite the presence of an extended neck linker.

Kinesin-6 proteins can work in teams to drive microtubule
gliding

We used a microtubule gliding assay to test whether kinesin-6
motors can work in teams to drive motility. To do this, the shorter
kinesin-6 motor constructs were biotinylated by fusion of an AviTag
to their C-terminus and co-expression with the enzyme BirA. The
biotinylated motors were statically attached to a neutravidin-coated
coverslip and then taxol-stabilized microtubules were introduced
into the chamber (Fig. 2A). All three kinesin-6 motors were able to
work in teams to glide microtubules (Fig. 2B). In each case, the
speed of microtubule gliding was slow, similar to the speeds
observed in single-molecule motility assays (Fig. 1), with average
velocities of 43.91420.50 nm/s (mean#s.d.) for MKLPI,
60.64+4.65 nm/s for MKLP2, and 61.70+£16.00 nm/s for KIF20B
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Table 1. Summary of kinesin motility properties.

Single-molecule motility

Microtubule gliding

% motile # motile events Velocity (nm/s)* Dwell time (s)* Velocity (nm/s)* # events
MKLP1(1-711) 14% 21 37.16+x14.41 114.5 [40.66,157.50] 43.91£20.50 29
MKLP2(1-720) 23% 46 107.80+31.53 168.6 [38.03,270.60] 60.64+4.65 175
KIF20B(1-780) 1.3% 2 53.31+13.63 24.50 [20.83,24.50] 61.70+16.00 182
KIF5C(1-560) 99.5% 408 682.00+208.3 1.16 [0.650,1.908] 670.36+56.91 105

*meanzstd dev; *median [quartiles].

(Fig. 2B, Table 1). These results indicate that although the kinesin-6
motor proteins infrequently engage with the microtubule for
processive motility as single molecules, they can work in teams to
drive microtubule gliding.

MKLP1 and KIF20B persist at the midbody after completion
of cytokinesis

To examine the kinesin-6 proteins in a cellular context, the proteins
were tagged with monomeric NeonGreen (mNG) and FRB domains
and expressed in COS-7 cells, whose large, flat morphology makes
them preferred for fluorescence imaging. For MKLP1, the truncated
MKLP1(1-711)-mNG-FRB and full-length MKLP1(1-856)-mNG-
FRB proteins expressed only at low levels in the majority of cells
and localized to the midbody of one daughter cell after cell division

(Fig. 3A,B, red boxes in left panels). In cells with higher levels of
expression, both MKLP1 versions localized along microtubules
throughout the cytosol (Fig. 3A,B, right panels). For KIF20B, the
truncated KIF20B(1-780)-mNG-FRB and KIF20B(1-982)-mNG-
FRB proteins also expressed only at very low levels in the majority
of cells and localized to the midbody, however, the KIF20B proteins
were found on both sides of the midbody (Fig. 3E,F, red boxes in
left panels). At higher levels of expression, the KIF20B proteins
localized diffusely throughout the cell and not along interphase
microtubules (Fig. 3E,F, right panels). For MKLP2, the truncated
MKLP2(1-720)-mNG-FRB and MKLP(1-770)-mNG-FRB proteins
localized diffusely throughout the cell, with faint localization to
interphase microtubules in some cells, and did not persist at the
midbody after completion of cell division (Fig. 3C,D).
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Kinesin-6 proteins can work in teams to drive cargo transport
in cells

To test whether kinesin-6 proteins can work in teams to generate
force, we utilized a cargo dispersion assay in which FRB-tagged
motor proteins are recruited to FKBP-tagged organelles in a
rapamycin-inducible manner and the resulting dispersion of that
organelle is utilized as a measurement of the motor’s ability to
generate forces for cargo transport (Fig. 4A). Cargo dispersion
assays have been widely used test the ability of kinesin motor
proteins to drive transport (Kapitein et al., 2010; Efremov et al.,
2014; Franker et al., 2016; Schimert et al., 2019; Vincent et al.,
2020; Budaitis et al., 2019). We first tested whether the kinesin-6
motors could work in teams to drive dispersion of peroxisomes
in cells. Peroxisomes localize to the perinuclear region of COS-7
cells and are relatively immotile under natural conditions (Rapp
etal., 1996; Wiemer et al., 1997). We consider the peroxisome to be
a low-load cargo, as it takes about 2-12 pN to move it from

its natural location (Efremov et al., 2014). Motor-mNG-FRB
constructs were co-expressed with a peroxisome-targeted FKBP
protein tagged with mRFP (PEX-RFP-FKBP). The addition of
rapamycin causes dimerization of the FRB and FKBP domains,
resulting in targeting of the motor protein to the peroxisome
(Fig. 4A). Peroxisome localization in the absence of and 30 min
after addition of rapamycin was examined in fixed cells by
fluorescence microscopy (Fig. 4B,C) and qualitatively scored as
clustered (no motor-driven dispersion), partial dispersion, diffuse
dispersion, and peripheral (complete peroxisome dispersion
to the cell periphery) (Fig. 4A). We found that in cells where
MKLP1- or KIF20B-mNG-FRB proteins localized to the midbody
(Fig. 3A,C), the motor could not be recruited to the peroxisome
surface upon addition of rapamycin. Thus, these cells were
omitted from analysis, and cells were only scored for dispersion
if the motor colocalized with peroxisomes after rapamycin
treatment.
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protein localization (B) in the absence of Rap or (C) 30 min after addition of Rap. Images are displayed in inverted grayscale. Cyan lines indicate the nucleus

and periphery of each cell. The scored phenotype is indicated at the bottom of the peroxisome image. Scale bar: 20 um. (C) Peroxisome dispersion in
individual cells was scored as indicated in A and the data for each construct are plotted as a stacked bar plot. N=45 cells from three independent

experiments for each construct.
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MKLPI1(1-711)-mNG-FRB was able to drive robust peroxisome
dispersion with 97.8% of cells showing peroxisomes with diffuse
or peripheral localization (Fig. 4C,D), compared to 0% without
rapamycin (Fig. 4D). This transport ability is comparable to that of
the control kinesin-1 KIF5C(1-560) protein (Fig. 4B-D). Similarly,
KIF20B(1-780)-mNG-FRB was also able to drive peroxisome
dispersion as 95.6% of cells displayed diffuse or peripheral
peroxisome localization after rapamycin (Fig. 4C,D), compared to
8.3% without rapamycin (Fig. 4D). However, MKLP2(1-720)-
mNG-FRB showed a limited ability to drive peroxisome dispersion
as the majority of cells (66.7%) showed only a partial dispersion
(Fig. 4C,D).

We then tested whether the kinesin-6 motors could work in
teams to drive dispersion of the Golgi complex in cells. The Golgi
complex is also localized to the perinuclear region of COS-7 cells
and its localization is maintained by a variety of mechanisms
including dynein-directed transport and tethering by myosin
motors and linker proteins (Brownhill et al., 2009). We thus
consider the Golgi to be a high-load cargo and recent research
suggests that it takes ~200 pN of force to be dispersed from its
perinuclear position (Guet et al., 2014). Kinesin-6 motors tagged
with mNG and FRB were coexpressed with a Golgi-targeted FKBP
protein (GMAP210-RFP-FKBP). Golgi localization was examined
in the absence of and 30 min after the addition of rapamycin and
the same categorical analysis was used to quantify motor-driven
dispersion of the Golgi as a cargo (Fig. 5C). MKLP1(1-711)-mNG-
FRB was again able to drive robust transport of Golgi cargo,
with 97.8% of cells displaying Golgi localized as either diffuse
or peripheral (Fig. 5B,C) compared to 0% without rapamycin
(Fig. 5C). KIF20B(1-780)-mNG-FRB also showed strong
dispersion in this assay with 96.9% of cells displaying Golgi
localized within the diffuse or peripheral categories (Fig. 5B,C), as
compared to 0% without rapamycin (Fig. 5C). Thus, both MKLP1
and KIF2B show cargo transport properties comparable to that of
the control kinesin-1 KIF5C(1-560) protein (Fig. 5A-C). Similar to
what we observed in the peroxisome dispersion assay (Fig. 4),
MKLP2(1-720)-mNG-FRB was unable to drive transport of high-
load Golgi elements as cells expressing this motor showed a
dispersion phenotype similar to that in the absence of rapamycin
(Fig. 5B,C). Taken together, the cargo-dispersion assays suggest
that MKLP1 and KIF20B, but not MKLP2, can work in teams to
drive cargo transport in cells.

DISCUSSION

An extended neck linker does not prevent processive
motility of mammalian kinesin-6 proteins

It was previously suggested that the presence of an extended region
(~60 aa) that separates the kinesin-6 neck linker and coiled-coil
regions (Fig. 1A) would hinder coordination of the two motor
domains required for processive motility (Mishima et al., 2002;
White et al., 2013; Davies et al., 2015; Atherton et al., 2017;
Landino et al., 2017). Indeed, other kinesin family members with
extended neck linker domains have been found to be non-processive
(Zhou et al., 2009; Terabayashi et al., 2012; He et al., 2014; Yue
et al., 2018; Balseiro-Gomez et al., 2022). One exception to this
model is recent work showing that the plant Phragmoplast-
associated kinesin-related protein 2 (PAKRP2) exhibits processive
unidirectional motility on microtubules as individual homodimers
(Gicking et al., 2019). We find that while the majority of kinesin-6-
microtubule interactions result in static binding, the motors are
capable of processive motility albeit at slow speeds. Thus, while
the extended neck linker does not prevent processive motility of

kinesin-6 motors, it may limit their ability to convert a microtubule
binding event into a processive motility event.

For MKLPI1, our results are consistent with previous work
showing that the majority of CeZEN-4(1-585) molecules attached
briefly to microtubules without undergoing continuous movement
(Hutterer et al., 2009). For CeZEN-4, a longer construct was shown
to form clusters that undergo slow processive motility (Hutterer
et al., 2009). We were unable to observe a similar clustering of our
MKLPI1 constructs, perhaps because the clustering element of
CeZEN-4 (aa 585-601) is not conserved in HsMKLP1 and/or our
expression system lacks active Aurora B, which promotes MKLP1
clustering during anaphase (Douglas et al., 2010; Basant et al.,
2015).

The ability of kinesin-6 motors to interact with microtubules
and/or undergo processive motility is likely to be regulated by
regions outside of the motor domain. Indeed, it was recently shown
that full-length MKLP2-EGFP undergoes slow processive motility
with no evidence of static interactions (Adriaans et al., 2020). It is
thus possible that the C-terminal tail region may facilitate MKLP2’s
ability to convert microtubule binding to processive motility.
Alternatively, the differences between our results and those of
Adriaans et al. may reflect the use of 3xmCit versus EGFP tags and
dynamic microtubules versus taxol-stabilized microtubules.

It is also possible that binding partners can modulate the
microtubule interactions and/or motility of kinesin-6 proteins.
For example, binding of its centralspindlin partner CeCYK-4
(MgcRacGAP) results in an increase in the affinity of CeZEN-4 for
microtubules but a decrease in velocity, which may play a role in
centralspindlin’s microtubule bundling activity (White et al., 2013;
Davies et al., 2015). For MKLP2, binding of its anaphase cargo the
CPC increases the ATPase activity and processivity of MKLP2
(Adriaans et al., 2020; Serena et al., 2020).

Kinesin-6 motors can work in teams but only MKLP1 and
KIF20B generate high forces

We find that all of the mammalian kinesin-6 motors can work in
teams to drive microtubule gliding at slow speeds. These results are
consistent with previous work using a gliding assay to investigate
the motility of MKLP1 and its homologs CeZEN-4 and DmPav as
well as KIF20B (Nislow et al., 1992; Abaza et al., 2003; Hutterer
et al., 2009; Douglas et al., 2010; White et al., 2013; Davies et al.,
2015; Tao et al., 2016). Interestingly, we find that kinesin-6 motors
differ in their ability to drive cargo transport in cells. MKLP1 and
KIF20B can work effectively in teams to drive the dispersion of
both low-load and high-load organelles in cells, suggesting that
these motors may be capable of high force output. In contrast,
MKLP2 was only able to drive the limited dispersion of low-load
peroxisomes in the same assay, suggesting that the force output of
this motor may be impaired relative to kinesin-1.

Force generation by kinesin motors requires neck linker docking
which occurs in two sequential steps: zippering of the neck linker
with the coverstrand to form the cover-neck bundle (CNB) followed
by latching of the neck linker to the surface of the motor domain via
a conserved asparagine residue (N-latch) (Hwang et al., 2017;
Hwang and Karplus, 2019). Of the kinesin-6 motors, KIF20B is the
only member that contains the N-latch residue (Fig. S1A) and was
thus predicted to be capable of high force production. In support of
this prediction, we find that KIF20B can robustly drive transport of
both low-load peroxisomes and high-load Golgi in cells. These
results indicate that KIF20B can work in teams to drive robust cargo
transport, consistent with its proposed functions in the cytokinetic
furrow of mitotic cells and as a transport motor in developing
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Fig. 5. Transport of high-load cargo (Golgi) by teams of kinesin-6 motors in cells. (A,B) Representative images of motor-mNG-FRB and Golgi-mRFP-
FKBP protein localization (A) in the absence of Rap or (B) 30 min after addition of Rap. Images are displayed in inverted grayscale. Cyan lines indicate the
nucleus and periphery of each cell. The scored phenotype is indicated at the bottom of the peroxisome image. Scale bar: 20 ym. (C) Golgi localization in
individual cells was scored as clustered (red), partially dispersed (orange), diffusely dispersed (yellow), or peripheral (green). The data for each construct are
plotted as a stacked bar plot. N=45 cells from three independent experiments for each construct.

neurons (Sapir et al., 2013; McNeely et al., 2017; Janisch et al.,
2018).

The fact that MKLP1 and MKLP2 lack the N-latch residue (D in
MKLPI and Q in MKLP2, Fig. S1A) suggested that their force
output may be lower than that of kinesin-1. Consistent with this
hypothesis, we find that MKLP2 is unable to efficiently drive the
transport of either low-load or high-load cargoes to the cell
periphery. Interestingly, in addition to lacking the N-latch residue,
the neck linker of MKLP2 contains more glycine and proline
residues than other kinesins (Fig. S1A). These residues have a lower

propensity for B-sheet formation (Fujiwara et al., 2012) and could
thus also impair neck linker docking. Indeed, Atherton et al. were
unable to resolve a docked neck linker conformation for MKLP2
even in the ATP- and microtubule-bound state (Atherton et al.,
2017). Our finding that MKLP2 is only capable of low-load
transport implies that transport of its CPC cargo during anaphase
(Adriaans et al., 2020) does not require a high force output by the
transporting motor.

In contrast, our results show that MKLP1 is capable of both low-
load and high-load transport in cells. These results indicate that the
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presence of an N-latch residue is not absolutely required for force-
dependent functions of kinesin proteins. It may be that the N-latch is
required for robust force generation by individual kinesin proteins
but not when working in teams. Alternatively, individual MKLP1
proteins may be capable of robust force generation due to unique
sequences that compensate for the loss of the N-latch residue.
Further work is needed to distinguish between these possibilities.
High force generation by teams of MKLP1 proteins is likely critical
for its functions in both cycling and post-mitotic cells, particularly
in bunding and sliding anti-parallel microtubules in opposition
to other motor- and microtubule-driven forces (Matuliene and
Kuriyama, 2002; Mishima et al., 2002; Hutterer et al., 2009;
Douglas et al., 2010; Del Castillo et al., 2015; Tao et al., 2016).

MKLP1 and KIF20B differ in their midbody localization in
interphase cells

Recent work suggests that kinesin-6 motors have functional roles in
interphase of cycling cells as well as in post-mitotic cells. We find
that in the majority of interphase cultured cells, truncated (1-711)
and full-length (1-856) constructs of MKLP1 accumulate on one
side of the midbody. The asymmetric distribution of MKLP1 is
consistent with previous work showing that MKLP1 is a marker of
the midbody ring remnant that is asymmetrically inherited by one
daughter cell after completion of abscission (Mishima et al., 2002;
Kuo etal., 2011; Isakson et al., 2013; Peterman et al., 2019) and can
be detected extracellularly secreted midbody remnants (Rai et al.,
2021). In cells with higher expression of MKLP1(1-711) and
MKLP1(1-856), the proteins localized along the length of cytosolic
microtubules, consistent with previous work analyzing the
localization of MKLP1 tail-deletion mutants in interphase
HEK293 cells (Zhang et al., 2020). In contrast to the asymmetric
localization of MKLP1, the expressed KIF20B proteins associate
with both sides of the midbody on the microtubule ‘arms’,
consistent with previous work (Sapir et al., 2013; Janisch et al.,
2018; Fritzler et al., 2019). In contrast, we did not observe MKLP2
at the midbody, consistent with its loss from the midbody after
furrow ingression is complete (D’Avino and Capalbo, 2016).

MATERIALS AND METHODS

Plasmids

A truncated, constitutively active kinesin-1 [rat KIFSC(1-560)] was used as
a control in all experiments (Cai et al., 2009). Plasmids contain cDNAs
encoding the human kinesin-6 family members MKLP1 isoform 2
(HsKIF23, Uniprot Q02241-2), MKLP2 isoform 1 (HsKIF20A, Uniprot
095235), and HsKIF20B Isoform 3 (Uniprot Q96Q89-3). The truncated
versions MKLP1(1-711), MKLP2(1-720), and KIF20B(1-780) were
generated by a combination of PCR, Gibson cloning, and gene synthesis.
All plasmids were verified by DNA sequencing. MKLP1(1-711) lacks the
sequences in exon 18 (Fig. S1B), which are present in KIF23 isoform 1 [also
known as CHO1, Uniprot Q02241-1 (Kuriyama et al., 2002)] and thus likely
reflects the core microtubule-based properties of both CHO1 and MKLP1
isoforms. KIF20B contained the protein sequence conflict E713K and
natural variations N7161 and H749L (Fig. S1C). Plasmids and sequences
available upon request. Motors were tagged with three tandem monomeric
Citrine fluorescent proteins (3xmCit) for single-molecule imaging assays
(Cai et al., 2007), AviTag for gliding assays, or monomeric NeonGreen
(mNG)-FRB for inducible cargo-dispersion assays in cells. MKLP1(1-711)-
3xFLAG-Avi was cloned by inserting a dsDNA fragment encoding three
tandem Flag tag into a digested MKLP1(1-711)-Avitag plasmid using
Gibson assembly (HiFi DNA Assembly M5520, New England Biolabs).
The peroxisome-targeting PEX3-mRFP-FKBP construct is described in
(Kapitein et al., 2010) and the Golgi-targeting GMAP210p-mRFP-FKBP
construct is described in (Engelke et al., 2016). Constructs coding for FRB
(DmrA) and FKBP (DmrC) sequences were obtained from ARIAD

Pharmaceuticals and are now available from Takara Bio Inc. Plasmids
encoding monomeric NeonGreen were obtained from Allele Biotechnology.

Cell culture, transfection, and lysate preparation

COS-7 (African green monkey kidney fibroblasts, American Type Culture
Collection, RRID:CVCL_0224) were grown at 37°C with 5% (vol/vol) CO,
in Dulbecco’s Modified Eagle Medium (Gibco) supplemented with 10%
(vol/vol) Fetal Clone III (HyClone) and 2 mM GlutaMAX (L-alanyl-L-
glutamine dipeptide in 0.85% NaCl, Gibco). Cells are checked annually
for mycoplasma contamination and were authenticated through mass
spectrometry (the protein sequences exactly match those in the African
green monkey genome). Cells were seeded in 35 mm wells of a 6-well dish
and transfected 24 h later with plasmids using TransIT-LT1 transfection
reagent (Mirus) and Opti-MEM Reduced Serum Medium (Gibco). Cells
were trypsinized and harvested 24 h after transfection by low-speed
centrifugation at 3000xg at 4°C for 3 min. The pellet was resuspended in
cold 1X PBS, centrifuged at 3000xg at 4°C for 3 min, and the pellet was
resuspended in 50 pl of cold lysis buffer [25 mM HEPES/KOH, 115 mM
potassium acetate, 5 mM sodium acetate, 5 mM MgCl,, 0.5 mM EGTA,
and 1% (vol/vol) Triton X-100, pH 7.4] with 1 mM ATP, 1 mM
phenylmethylsulfonyl fluoride, and 1% (vol/vol) protease inhibitor
cocktail (P8340, Sigma-Aldrich). Lysates were clarified by centrifugation
at 20,000xg at 4°C for 10 min and lysates were snap frozen in liquid
nitrogen and stored at —80°C.

Single-molecule motility assays

Microtubules were polymerized (porcine tubulin unlabeled and HiLyte-
647-labeled, Cytoskeleton Inc T240 and TL670) in BRB80 buffer [0 mM
Pipes/KOH pH 6.8, 1 mM MgCl,, | mM EGTA] supplemented with GTP
and MgCl, and incubated for 60 min at 37°C. 20 uM taxol in prewarmed
BRB80 was added and incubated for 60 min to stabilize microtubules.
Microtubules were stored in the dark at room temperature for up to 2 weeks.
Flow cells were prepared by attaching a #1.5 18 mm? coverslip (Thermo
Fisher Scientific) to a glass slide (Thermo Fisher Scientific) using double-
sided tape. Microtubules were diluted in fresh BRB80 buffer supplemented
with 20 uM taxol, infused into flow cells, and incubated for 5 min to allow
for nonspecific absorption to the glass. Flow cells were then incubated with
blocking buffer [5 mg/ml casein in P12 buffer supplemented with 5 uM
taxol] for 5 min. Flow cells were then infused with motility mixture
[0.5-5.0 ul of COS-7 cell lysate, 25 ul BRB80 buffer, 1 ul 100 mM ATP,
0.5ul 100 mM MgCl,, 0.5ul 100 mM DTT, 0.5 ul 20 mg/ml glucose
oxidase, 0.5 ul 8 mg/ml catalase, and 0.5 ul 1 M glucose], sealed with
molten paraffin wax, and imaged on an inverted Nikon Ti-E/B TIRF
microscope with a perfect focus system, a 100x1.49 NA oil immersion TIRF
objective, three 20 mW diode lasers (488 nm, 561 nm, and 640 nm) and
EMCCD camera (iXon" DU879; Andor). Image acquisition was controlled
using Nikon Elements software for 50 ms exposures at 1 frame/50 ms (30 s
total imaging) or 1 frame/2 s (10 m total imaging) and all assays were
performed at room temperature.

Motility data were analyzed by first generating maximum intensity
projections to identify microtubule tracks (width=3 pixels) and then
generating kymographs in Fiji (https:/fiji.sc). Events that ended as a result
of a motor reaching the end of a microtubule were included; therefore, the
reported dwell times are likely an underestimation. The number of motile
events obtained for each motor in each of the three independent experiments
are: MKLP1(1-711)-3xmCit 4/39, 8/54, 9/57 (motile/total ); for MKLP2(1-
720)-3xmCit 12/58, 11/62, 17/80; for KIF20B(1-780)-3xmCit 0/41, 1/51,
1/58; for KIF5C(1-560)-3xmCit 108/109, 156/156, 144/145. For intensity
measurements, a 9x9 pixel box was drawn around a fluorescent motor in the
first frame that the motor was observed on a microtubule. 150 motility
events from three experiments were randomly selected for each motor. Each
event was noted as motile or static. The total pixel intensity inside the box
was measured and the background intensity of a region lacking motors and
microtubules was subtracted. Data were graphed using GraphPad Prism.

Microtubule gliding assay

A flow cell was prepared, and microtubules were assembled as described in
the single molecule section. Biotinylated motors were generated by
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coexpression of motors tagged with the 15-aa Avi tag and the bacterial biotin
ligase BirA fused with HA tag (HA-BirA) in COS-7 cells. Biotinylated
motors were attached to the coverslip surface by sequential incubation of
flow cells with (A) 1 mg/ml BSA-biotin, (B) blocking buffer [0.5 mg/ml
casein and 10puM taxol in BRBS80], (C) 0.5 mg/ml NeutrAvidin,
(D) blocking buffer, and (E) blocking buffer containing cell lysates with
2mM ATP, 10 mg/ml casein, 10 uM taxol. Taxol-stabilized HiLyte
647-labeled microtubules in motility mixture [2 mM ATP, 10 uM taxol,
2 mM MgCl,, and oxygen scavenging in BRB80] were then added, and the
flow cells were sealed with molten paraffin wax and imaged by TIRF
microscopy. For KIF5C, images were acquired continuously at 50 ms per
frame for 30 s. For MKLP1, MKLP2, and KIF20B, images were acquired at
one frame every 2s for 10 min. Maximum-intensity projections were
generated, and the kymographs were produced by drawing along these
tracks (width=3 pixels) using Fiji (https:/fiji.sc). Velocity was defined as the
distance on the y axis of the kymograph divided by the time on the x axis of
the kymograph.

For all three kinesin-6 motors, the amount of added cell lysate required to
generate robust microtubule gliding was tested as addition of low amounts of
cell lysate resulted in microtubule binding but not motility. For MKLP2 and
KIF20B, 2 ul of cell lysate was sufficient for microtubule gliding. For
MKLPI1, the low level of MKLP1(1-711) expression required protein
concentration from higher volumes of cell lysate. To do this, MKLP1(1-
711)-Avi was further tagged with 3xFlag peptides [MKLP1(1-711)-
3xFLAG-Avi]. Ten 10 cm plates of COS-7 cells were each co-transfected
with 4.08 ug MKLP1(1-711)-3xFLAG-Avi and 4.08 pg HA-BirA plasmids
using TransIT-LT1 transfection reagent (Mirus) and Opti-MEM Reduced
Serum Medium (Gibco). Cells were trypsinized and harvested 24 h after
transfection by low-speed centrifugation at 3000xg at 4°C for 3 min. The
pellet was resuspended in cold 1X PBS, centrifuged at 3000xg at 4°C for
S min, and the pellet was resuspended in 1000 ul of cold lysis buffer with
1 mM ATP, 1 mM phenylmethylsulfonyl fluoride, 1 mM DTT and 1%
(vol/vol) protease inhibitor cocktail (P8340, Sigma-Aldrich). Insoluble
material was removed by centrifugation at 20,000xg at 4°C for 10 min.
50 uL anti-FLAG M2 beads (A2220, Sigma-Aldrich) was mixed into the
supernatant for 1.5h then washed twice with 2xFLAG wash buffer
[300 mM KCl, 40 mM Imidazole/HCI1, 10 mM MgCl,, 2 mM EDTA, and
2 mM EGTA] supplemented with 1 mM phenylmethylsulfonyl fluoride,
I mM DTT, and 1% (vol/vol) protease inhibitor cocktail (P8340, Sigma-
Aldrich). 3 mM ATP was added for the first wash only. Protein was eluted
from the beads with 100 ul elution buffer [1% (vol/vol) BRB80, 1% (vol/
vol) protease inhibitor cocktail (P8340, Sigma-Aldrich), 1mM
phenylmethylsulfonyl fluoride, 0.5 mM DTT, 0.1 mM ATP, and 0.5 mg/
ml FLAG peptide (F4799, Sigma-Aldrich)]. The beads were pelleted by
centrifugation at 20,000xg at 4°C for 10 min and aliquots were snap frozen
in liquid nitrogen and stored at —80°C.

Inducible cargo dispersion assays

Plasmids for expression of kinesin-1 or kinesin-6 motors tagged with
monomeric NeonGreen and an FRB domain were cotransfected into COS-7
cells with a plasmid for expression of PEX3-mRFP-FKBP or GMAP210p-
mRFP-2xFKBP at a ratio of 5:1 with TransIT-LT1 transfection reagent
(Mirus). Eighteen hours after transfection, rapamycin (Calbiochem, Sigma-
Aldrich) was added to final concentration of 44 nM to promote FRB and
FKBP heterodimerization and recruitment of motor the peroxisome or Golgi
surface. Cells were fixed with 3.7% formaldehyde (Thermo Fisher
Scientific) in 1X PBS, quenched in 50 mM ammonium chloride in PBS
for 5 min, permeabilized for 5 min in 0.2% Triton-X 100 in PBS for 5 min,
and blocked in 0.2% fish skin gelatin in PBS for 5 min. Primary and
secondary antibodies were added to blocking buffer and incubated for 1 h at
room temperature. Primary antibodies: polyclonal antibody against cis-
Golgi marker giantin (1:1200 PRB-114C, Covance). Secondary antibodies:
goat anti-rabbit Alexa680-labeled secondary antibody (1:500, Jackson
ImmunoResearch). Cell nuclei were stained with 10.9 uM 4’,6-diamidino-2-
phenylindole (DAPI, 1:1000 Sigma-Aldrich). Coverslips were mounted in
ProlongGold (Invitrogen) and imaged using an inverted epifluorescence
microscope (Nikon TE2000E) with a 40%x0.75 NA objective and a
CoolSnapHQ camera (Photometrics). Only cells expressing low levels of

motor-mNG-FRB were scored (<4000 a.u.). Quantification of fluorescence
intensities demonstrates that motor expression level does not correlate with
dispersion phenotype (Fig. S3), as also noted by (Schimert et al., 2019). The
corrected total cell fluorescence (CTCF) in the motor or peroxisome channel
was quantified as CTCF=Integrated Density of Selected Cell — (Area of
Selected CellxMean Fluorescence of Background) using Fiji (https:/fiji.sc).
Cargo localization before and after motor recruitment was scored as
clustered, partial, diffuse, or peripheral dispersion based on the signal
localization in the PEX3 (peroxisome) or giantin (Golgi) signal.
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