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Abstract: Three-dimensional (3D) printing in tissue engineering has been studied for the bio mimicry of the structures
of human tissues and organs. Now, it is being applied to 3D cell printing, which can position cells and biomaterials, such
as growth factors, at desired positions in the 3D space. However, there are some challenges of 3D cell printing, such as
cell damage during the printing process and the inability to produce a porous 3D shape owing to the embedding of cells
in the hydrogel-based printing ink, which should be biocompatible, biodegradable, and non-toxic, etc. Therefore, re-
searchers have been studying ways to balance or enhance the post-print cell viability and the print-ability of 3D cell
printing technologies by accommodating several mechanical, electrical, and chemical based systems. In this
mini-review, several common 3D cell printing methods and their modified applications are introduced for overcoming
deficiencies of the cell printing process.
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1. Introduction

ince the stereolithographic 3D printer (SLA)

was invented by Chuck Hull (the co-founder of

3D Systems Co.), 3D printing has been applied
to various fields of industry, including tissue engi-
neering application, namely, 3D bioprinting techni-
que'l. This technique involves printing bioink, which
consisted of various biomaterials with and without
live cells, in a layer-by-layer fabrication for human
tissue regeneration[“’]. One of the bioprinting proce-
sses, the cell printing system, which can position cells
in a desired region, has been accomplished via nu-
merous studies of 3D structure fabrication using natu-
ral and synthetic hydrogel polymers. Recently, W. Sun
proposed computer-aided tissue engineering; the con-
cept involves printing of 3D interconnected porous

structures of anatomically modeled patient tissues and
organs from CT or MRI image data'”). Based on this
concept, printing of artificial tissues, such as the
ear, blood vessels, skin, bladder[g_lz], and organs like
the heart or liver will be expected soon.

The conventional 3D printing technology has pri-
nted porous tissue-engineered scaffolds with natural or
synthetic polymers, which are biocompatible and bio-
degradable, and seeded cells on the designed struc-
tures. However, this technique has been quite passive
owing to its dependence on the cell viability of the
scaffolds, while the new 3D cell printing method
can be more active by controlling the amount and po-
sition of various cell-types within the scaffolds. This
process was well introduced in the work of Wilson
and Boland"’!. They succeeded in printing bioinks
that contained live cells instead of the conservative
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printing materials at a size of 50 um using an ink-jet
printer. The printed cell-laden bioinks showed self-
assembling characteristics between the cell-aggregates

and formed tissue-like structures during culturing time.

The results provided the basis for the fabrication of
desired tissues or organs by printing and culturing
cells at the required sites.

Owing to the strengths of 3D cell printing techno-
logy for tissue regeneration, many studies have been

devoted to developing the technology using numerous
trials and innovative methods. Primarily, they ha-
ve been modified from conventional 3D-printing me-
thods, and adapting them for cell culture. The 3D cell
printing techniques are mainly classified into three te-
chniques: (1) laser-assisted, (2) inkjet, and (3) extrusion
cell printing!"*'%. However, unfortunately, the current
cell printing processes have not successfully designed
or fabricated 3D porous cell-laden structures (Table 1).

Table 1. Advantages and disadvantages of basic 3D cell printing techniques.

Techniques Laser-assisted

Inkjet Microextrusion

Advantages Single cell manipulation
Nozzle free

Usage of high viscosity bioink
High resolution

High accuracy

High gelation speed

Disadvantages Low mechanical properties

Long fabrication time

from laser energy
Aggregate in the final tissue construct

High cell viability

Noncontact nozzle

Printed cell patterns using different cell types
Multicell heterogeneous constructs

High throughput

High gelation speed

Low mechanical and structural integrity
Long fabrication time

Damage cells due to heat-generated Low upper limit for viscosity of bioink
Low reproducibility

Cell aggregation

High mechanical properties

Short fabrication time

Printing of various types and viscosities
of bioink

Wide range of biocompatible materials

Low cell viability due to nozzle wall
shear stress and mechanical stress

Low accuracy

Cell death due to changes in dispensing
pressure and bioink concentration

Clogging of the nozzle orifice

References [18-21] [23-27]

[29-33]

In this mini-review, we present the basic cell print-
ing technologies and show several modified cell
printing systems, which can overcome the limitations
of the current cell printing processes, with a focus on a
mechanically modified 3D cell printing process (Table
2). In addition, since, in many cases, modified cell
printing systems are closely related to hydrogel-based
bioinks, we mention various bioinks.

2. Basic Techniques of 3D Cell Printing
2.1 Laser-assisted 3D Cell Printing Technique

Laser-assisted cell printing is a 3D printing method to
pattern and assemble bioinks by direct writing using
laser. It has been rise to be an automated system that
prints the cell-laden bioinks with a high resolution,
accuracy, and precision'' ", As the lasers is beamed on
the absorbing layer, the bioink is deposited in mi-
cro-sizes by controlling scanning mirrors and focusing
lens in x and y-axis (Figure 1a)!'"* !, This nozzle-free
fabrication prevents cell o r material clogging often
found in extrusion-based 3D cell printing tech-
niques''®.. However, despite of these advantages, it is
difficult to print macroscale 3D porous structures
using laser-assisted cell printing. Owing to arela-
tively low flow rate, the vaporization of cell-la-
den bioink and possibility of cell contamination can

significantly increase if a scaffold is built in larger
scale. In addition, the potential cell damages
caused by the thermal energy of the laser is another
factor to be concerned!”*?. Therefore, the integra-
tion of techniques, such as fast gelation of droplets
or bio-papers, are actively attempted to overcome
the existing limitations.

2.2 Inkjet 3D Cell Printing Technique

In the early generation of 3D cell printing, the inkjet
cell printing technique was devised to print biomate-
rials in a 3D structure by remodeling the existing in-
kjet printers. Inkjet cell printers were designed to use
three general methods: thermal, piezoelectric, and
acoustic inkjet printers using heat, piezoelectric, and
acoustic wave actuators, respectively, to dispense
cell-embedded microdroplets (Figure 1b)[23727]. This
technique is widely used for its high cell viability and
resolution in microscale structures. In addition, it is
easily accessible and inexpensive. However, the inkjet
printers can only use comparatively low viscosity ma-
terials with a low cell density. This is a critical draw-
back for a stable 3D cell printing process[25’27]. To
overcome this problem, many approaches, such as
developing a crosslinking method, are being studied
and examined. Although inkjet 3D cell printing has
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Figure 1. Basic techniques of 3D cell printing, (a) laser-ass-
isted 3D cell printing techniques with and without an absorbing
layer,[l7‘22] (b) thermal, piezoelectric, and acoustic inkjet 3D

cell printing systems,?>**! and (c) microextrusion 3D cell pri-
nting systems and productst'**,

unsolved issues, it is expected to be a versatile tool

in broad tissue engineering application™**],

2.3 Microextrusion-based Cell Printing

Cell-embedded 3D printing with microextrusion in-
cludes ad ispensing system that uses pneumatic or
mechanical forces to extrude bioink in a line (Figure
1)1 1t is one of the most common cell printing
methods owing to its accessibility and versatility in
printing 3D structures. Microextrusion can be per-
formed using various bioinks with a broad property
range, and especially the viscosity of the bioink in
microextrusion is usually much higher than in other
3D cell printing methods. This allows for the fabrica-
tion of a complicated 3D structure. Another main ad-
vantage of the microextrusion process is its capacity
for loading cells at a high density. Using dense cells in
the 3D structure can be more effective in the forma-
tion of engineered tissues. However, this process also

has limitations, such as a relatively low printing reso-
lution owing to the microsized extruding nozzle and
comparatively low cell viability caused by severe wall
shear stresses within the nozzle using viscous bioink.
Therefore, researchers using microextrusion-printing
systems are striving for an advanced microextrusion
printing technology that creates a precise print with a

high cell viability!'*'®***>],

3. Modified Cell Printing Processes

3.1 3D Cell Printing with Modified Crosslinking
Processes

The 3D cell printing process with natural-polymer-
based bioink usually contains a cr osslinking process
owing to low mechanical properties or low viscosity
of the bioink. In this section, a few applications of mo-
dified crosslinking processes during printing are intro-
duced.

In recent, Ahn et al.?*>* developed a modified 3D
cell printing technology with an aerosol crosslinking
process (Figure 2a) that finely sprayed the crosslinked
solution creating a coagulation of the bioink to fabri-
cate the desired form and structure. They reported that
the fabrication of a 3D cell-laden porous mesh struc-
ture using an alginate bioink can produce adequate
cell growth, and it was successfully achieved by
spraying aerosols of calcium chloride (CaCl,) solution
during the printing process. Spraying the aerosol
cross-linked solution induced a high printability of
the bioink owing to the hardening of the structure sur-
faces during the crosslinking process and increased
the coherence between the printed cell-laden struts.
Throughout the process, the amount and position of
the cells were controlled within the scaffold.

The submerged-in-crosslinker cell printing process,
referred to as drop-on-demand printing, has been ap-
plied to the inkjet™ % laser-assisted*!), and extru-
sion-based*** cell printing processes to build 3D
structures with relatively low-viscosity bioinks. Xu et
al® and Boland e al*” built the drop-on-demand
printing apparatus shown in Figure 2b, which uses a
layer-by-layer-sinking plate in the crosslinker-filled
chamber, and the alginate-based bioink was printed on
the surface of the crosslinking liquid. Through their
modified method, they overcame one of the limita-
tions of the inkjet printing process, the low 3D printa-
bility, and fabricated a 3D structure with a height of
approximately 12 mm!™”. In 2015, Xiong e al!*!

International Journal of Bioprinting (2017)—Volume 3, Issue 1 31
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Figure 2. 3D cell printing with modified crosslinking processes, (a) aerosol crosslinking process with calcium chloride using an al-
ginate-based bioink**>*, (b) drop-on-demand (submerged) crosslinking with a laser-assisted printing processt*, (c) submerged
printing with a core (MSC-laden collagen) /shell (2-5 wt% alginate) nozzle*", and (d) cell printing process with a crosslinked solu-
tion and absorbing stage using a core (3 wt% alginate-based cell-laden bioink)/shell (1.2 wt% CaCl,) .

applied a similar method to the laser-assisted cell pri-
nting process, which contains the same limitations in
printing 3D structures, and they were able to fabricate
a 3D structure with a height of 9.5 mm. Conversely,
You et al* fabricated a 3D lattice structure with
cell-laden alginate hydrogel via an extrusion-based

cell printing process with submerged crosslinking.
They coated the surface of a printing plate, instead of
using a lifting stage, and printed the bioink in a CaCl,
solution to build a biaxially porous 3D scaffold, which
created pores between the deposited layers. Gao et
al P! modified the submerged crosslinking cell print-
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ing process using a core/shell nozzle. They extruded
the crosslinked solution through the core and the bio-
ink through the shell to create a hollow tube-shaped
3D structure. By applying the drop-on-demand print-
ing method, they were also able to fabricate various
3D cell-laden structures.

For applications in extrusion-based cell printing, a
dual or core/shell nozzle is occasionally used as an
alternative crosslinking method, as in the study de-
scribed above!* ). The core/shell fibrous collagen—
alginate hydrogel was proposed by Perez et al**!
(Figure 2c). They placed mesenchymal stem cells
(MSCs) into the inner cell-collagen encapsulated with
a 2 ~ 5 wt% alginate (the outer portion). The colla-
gen—alginate hydrogel was extruded into a bath filled
with a 50-mM CacCl, solution, and the outer alginate

contacted the CaCl, solution for 5 min and crosslinked.

Using this process, sufficient stability of the colla-
gen—alginate hydrogel was maintained and repress-
ented by storage moduli as 30 kPa, 40 kPa, and 50 kPa
at 2 wt%, 3 wt%, and 5 wt% alginate, respectively.
The cell viability was approximately 70 to 80% for the
collagen—alginate (3 wt%) sample and pure collagen
sample. In addition, Ahn et al."*"! developed a simple
and innovative cell printing method using a core/shell
nozzle and an absorbing printing stage (Figure 2d). In
their process, the alginate-based bioink was extruded
through the core nozzle, and the CaCl, solution was
extruded through the shell nozzle to crosslink the
printed bioink simultaneously. The crosslinking solu-
tion then immediately absorbed into the absorbing
stage to prevent the crosslinked solution from ruining
the 3D shape of the alginate struts. On a non-absorb-
ing stage, the crosslinked structure can collapse during
printing owing to the weakened coherence between
struts by the remaining crosslinked material. The sur-
faces of the struts can be constantly indurated, and the
stability of the scaffold increases through the conti-
nuous crosslinking of the previously printed layers.
This method formed a 3D structure easy and more
consistently than the submerged crosslinking tech-
nique, since the submerged process contained a high
possibility of the bioink floating in the crosslinking
solution during the printing process and required addi-
tional treatment, such as polyethylenimine (PEI) sur-
face coating***” or a layer-by-layer interactively mo-
ving stage[BM]’“].

3.2 Temperature-controlled 3D Cell Printing
Process

For the scaffold printed with formless materials, the

temperature was controlled to enhance printability in
the 3D structure while the damage to cells was mini-
mized. The rheological property of dECM (decellula-
rized extracellular matrix) bioink was controlled by
increasing the temperature to construct a 3D structure
(Figure 3a)!**l. As the temperature increased beyond
15°C, the storage modulus was increased, and a cros-
slinked gel was observed at 37°C. In this process, in-
creasing temperature is prerequisite to retain 3D
structure, which subsequently makes storage modulus
greater than loss modulus at the certain temperature. A
high cell viability (> 90%) was maintained over 14
days of culture for the in vitro and in vivo tests. Fur-
thermore, Yoon et al.*” varied temperature for opti-
mizing the fabrication of a collagen scaffold. In this
study, the stage containing a circulating pump, water
chamber, and temperature controller was used to
maintain the cell-printing plate from 25°C to 60°C.
The collagen struts were adequately fabricated be-
tween 36°C to 39°C with acell viability of 85%.
Conversely, the strut formation was rather amorphous
and not applicable below 35°C or over 42°C, with a
significant decrease in cell viability. This phenomenon
suggests that the temperature and collagen gela-
tion/crosslinking are correlated, and controlling the
temperature allows the 3D structure to be formed by
rapid gelation of the bioink. However, the printed col-
lagen scaffold lacks sufficient strength and stiffness
(0.01 = 0.001 kPa of Young’s modulus); therefore,
further exploration of a non-toxic chemical reagent or
crosslinking process is required.

Low-temperature cell printing is a printing method
that plots struts by instantly freezing the bioink ex-
truded from the nozzle (Figure 3b). The conventional
3D cell printing has revealed the conversion of dis-
pensed nearby struts, which eventually disturbs the
layer-by-layer stacking process. To overcome this
problem, Ahn et al."" applied a low temperature from
—2°C to—40 °C to fabricate the biaxially porous 3D
lattice scaffold in solid structure. Throughout the cell
printing process, the alginate bioink with cells was
maintained at 4°C to minimize the cell damage by a
rapid decrease in temperature. As the temperature
was close to 0°C, the cell viability increased up to
84%, but the shaping ability decreased. Conversely,
as the temperature decreased to —40°C, the cell via-
bility dropped below 10%, but the shaping ability
was enhanced with high fabricating efficiency of
85%. The scaffolds were printed at -10°C with the
reasonable initial cell viability (70~84%) and high
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Figure 3. Temperature-controlled 3D cell printing process, (a) increasing temperature-controlled (from 4 to 37°C) printing using

ECM-based bioinks M *! and (b) low-temperature (~10°C) cell printing process

shaping ability. It also revealed the successful fabrica-
tion of multi-layered scaffold with significantly en-
hanced mechanical properties (10 + 2.2 MPa of You-
ng’s modulus). For further development, initial cell
viability can be improved, and various types of bioink
can be used for low-temperature cell printing.

3.3 Electric-field Assisted 3D Cell Printing

Recently, the application of an electric field in cell pri-
nting was proposed. Yeo et al.”') combined elec-
tric-filed assisted 3D cell printing and aerosol cros-
slinking process to fabricate a 3D hybrid cell-laden
scaffold. The osteoblast-like cell-laden fibers were
deposited with 0.16 kV on 3D lattice PCL struts
(Figure 4a). The initial cell viability was reasonable
(above 80%), and the cells could proliferate for pro-
longed culture period. The fibers maintained their
shape without dispersion on the hybrid scaffold with a
significant increase in tensile modulus (4.9 + 0.6 MPa)
compared to alginate mat. Also, Yeo et al.l’" applied
an electric field to the extrusion-based cell p rinting
that pneumatically printed alginate-based bioink with
human adipose stem cells with the electrical field
(Figure 4b). This reduced the wall shear stress in the

[50]

nozzle and reduced the damage of the cells in the
printed bioink"*. Moreover, the electric field en-
hanced the printing stability and resolution of the dis-
pensed struts since the electric force pulled down
the bioink and resulted in an increase in the cohe-
rence between the layers and a decreased strut size.
However, there was potential cell damage when the
high electric field was used, and they reported that the
limitation of the applied voltage with their experi-
mental conditions was less than 2 kV.

3.4 Hybrid Systems for Mechanically Stable 3D Cell-
laden Structures

As the 3D cell printing was derived from the conven-
tional 3D printing technology, some researchers have
tried to apply the conventional 3D printing methods to
the 3D cell printing process. Several papers reported
that the melt-plotting method, one of the most com-
mon methods among non-cell printing processes, was
combined with the cell printing techniques to fabricate
and strengthen a cell-laden 3D structure by providing
a firm frame or support for the soft cell-laden bio-
inks**330 1n 2012, Shim et al® used the melt-
plotting method with a s ynthetic polymer, poly (e-
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caprolactone) (PCL), to fabricate a frame wall for hy-
drogel fillings extruded with air pressure between the
synthetic polymer walls (Figure 5a). Their method
enabled the printing of multi-type cells on the desired
locations in the 3D spaces. However, the fabricated
structures showed necrosis of encapsulated cells in the
center of the hydrogel owing to the lack of pores.

In an attempt to overcome this limitation, Lee et
al P suggested a hybrid 3D cell printing method
combined with a crosslinking aerosol process and
melt-plotting method to fabricate a highly porous 3D
cell-laden structure (Figure 5b). This hybrid scaffold
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[52]

was fabricated by printing bioink between the syn-
thetic polymer struts to overcome the low mechanical
properties of the struts owing to the low viscosity of
the bioink. This printing system contained a high co-
herence between the strut layers since the two differ-
ent types of struts had the same diameter and interval.
In addition, because of the release of cells inside
the bioink struts, the structure contained a uniform cell
distribution and a good supply of nutrients to the cells,
and it secured the cell transfer, which is important for
cell growth. Moreover, hybrid fabrication of the syn-
thetic polymer with high mechanical properties and

Hybrid PCL/alginate
scaffold
Cell-laden
/’l alginate strut

Dual-plotting

system Ao PCL strut

PCL solution
1,280,000 o
Sigma Aldrich)

High votiage

Printed alginate bioink
with C2C12 myoblast

Figure 5. Hybrid modifications of the 3D cell printing process with (a, b) a multi-nozzle system using natural and synthetic polymers
((a) Shim et al.®*, (b) Lee et al.®*") and (c) an additional electrospinning process for surface alignment (Yeo et al.5%).
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cell-laden bioink enables the production of accurate
3D shapes and can be applied to the regeneration of
tissues demanding high mechanical strength because
the enhanced mechanical properties and high cellular
activity of the structure. Most importantly, a 3D
structure like the natural tissue structure can be de-
signed by placing bioink with different cells on each
layer of the structure. However, the cells that con-
tacted the PCL struts showed dramatically low viabil-
ity owing to the hot temperature of the melted PCL
during printing. This remains an issue to overcome.

In an additional hybrid application, Yeo ef al.***"]
developed a hybrid fabrication of a hierarchical scaf-
fold using an electrospinning method to align fine
PCL nano-fibers on the micro-sized PCL struts created
from a melt-plotting process as shown in (Figure
5¢)). Then, they printed alginate-based bioink with
myoblasts on the electrospun fibers to examine the
alignment and stretching of the myoblast cells. Using
this method, they successfully fabricated muscle mi-
metic scaffold with sufficient mechanical properties.
In addition, the myoblasts in the scaffold were well
aligned on the nano-fibers as the aspect ratio of
F-actin with aligned fibers was over 2 folds of the as-
pect ratio with random fibers or without fibers, which
indicates the elongation of the cell in one direction.
These results showed that the fabricated scaffold was
suitable and applicable for the regeneration of muscle
tissues.

4. Bioink
4.1 Definition of Bioink

In cell printing, hydrogels made of natural and syn-
thetic polymer materials are mainly used in the fabri-
cation of a 3D cell structure. The bioink is defined as a
mixture of hydrogel and live cells and is the most im-
portant requisite for the successful production of an
artificial tissue. The bioink requires several characte-
ristics: (1) 3D printability with uniform viscosity, (2)
physical and chemical crosslink ability that enables
3D shape maintenance after printing, (3) cyto-com-
patibility that supports favorable cell viability and as-
sists cell proliferation and differentiation, and (4) bio-
degradability after transplantation into a host for the
emission of decomposed wastes”**"). Currently, the
most widely used bioink materials in cell printing are
alginate, collagen, hyaluronic acid, gelatin, pluronic

60-62
]’ e

F127, polyethylene glycol dimethacrylate! tc.

4.2 Bioink Viscosity and Crosslink Ability

One of the important variables in producing bioinks
with the materials above is viscosity. Viscosity is
defined by the concentration of the materials, and the
printability and print resolution can be enhanced as the
viscosity of the bioink increases. However, it is re-
ported that cell viability can decrease from the severe
nozzle wall shear stress generated in a narrow noz-
zle by high pressure, and this is required to print
high-viscosity bioink®”). In addition, it is known that
the ability to crosslink effects the strength and stiff-
ness of the scaffolds and the oxygen and nutrient
supply for the cells. However, excessive cross-linking
can reduce the cell viability and disturb the formation
of new tissue®®. Therefore, it is essential to develop
a biodynamic bioink with appropriate viscosity and
crosslink-ability that can be printed in a 3D layered
structure with sufficient printing resolution.

4.3 Applications of Bioink in 3D Cell Printing Tech-
nigues

The studies of bioink focus on the process conditions
to control the viscosity and the bioink’s ability to
crosslink depending on the compositions of the mate-
rials. The printability in 3D printing is an important
factor as well as good biocompatibility that promotes
and maintains high initial cell viability over 90%, cell
proliferation, and differentiation. Therefore, investiga-
tions in bi oink composed of different hydrogels
have been actively performed and applied to regene-
rate various cells with 3D cell printing techniques
(Table 3). For laser assisted 3D cell printing and inkjet
3D cell printing, fibrin bioink is widely used because
of its degradability, enhancement of cellular activities,
and, most importantly, high printability by fast-gelling
and tunable viscosity!®”. In addition, the fibrin bioink
can be easily obtained from blood by purification and
provides binding affinities that help initial cell at-
tachment®*®!. For micro-extrusion based 3D cell
printing, alginate is the most widely used materi-
al because it is inexpensive, and its viscosity can be
easily controlled!"***%) In addition, it contains excel-
lent biocompatibility, low toxicity, and a stable 3D
structure by simply mixing with the carboxyl of
L-guluronic acid in a calcium ion solution®*®”. De
spite those advantages, alginate itself lacks bioactive
factors inducing cell attachment or activities. There-
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fore, collagen bioink has been investigated to improve

Table 3. Studies and endeavors for the development of bioink in 3D cell printing

the 3D cell printing process. To date, the development

Techniques Materials Cell types Crosslinking reagents References
Laser-assisted 3D cell  Fibrin Endothelial cell/Mesenchymal stem cell - [68]
printing Smooth muscle cell - [69]
Inkjet 3D cell printing ~ Fibrin Muscle-derived stem cell - [65]

Mesenchymal fibroblast/Myoblast - [70]

Neuronal precursor cell/Cortical cell Proteolytic [64]

Neural stem cells - [71]

Collagen Epidermal keratinocyte/Dermal fibro blast ~ Sodium bicarbonate [72]

Microextrusion based 3D Hyaluronic acid Aortic valve interstitial cell Methacrylated gelatin [73]
cell printing Gelatin/Alginate Aortic root sinus smooth muscle cell CaCl, [74]
RGD-modified alginate Cardiomyocyte progenitor cell CaCl, [75]

Alginate/PEO Myoblast CaCl, [56]

Osteoblast-like cell CaCl, [76]

Alginate Bone marrow stromal cell - [77]

Fibrin Endothelial cell CaCl, [78]

Agarose Smooth muscle cell/Fibroblast - [79]

Schwann cell - [80]

Collagen Cardiac cell/Endothelial cell - [81]

Adipose stem cell CaCl, [82]

of collagen bioink has been hindered because of its
unstable 3D structure and low process ability; howev-
er, modified 3D cell printing techniques, such as
aerosol system and crosslinking reagents, are being
actively investigated to apply collagen bioink into the
3D cell printing process.

5. Conclusion

Since the introduction of 3D cell printing technologies,
studies and applications of 3D cell printing have been
focused on or striving for the fabrication of 3D tis-
sue-engineered structures that can firmly replace or
repair damaged tissues in the human body in a short
period of time. If this is possible, 3D cell printing
technology may provide patients an instant medical
treatment individually by rapidly manufacturing cus-
tomized tissue-engineered constructs, and, therefore,
creating a totally new medical course. This integrated
medical course may include the scanning of injured
parts, extracting a patient’s cells, culturing and print-
ing the cells through 3D cell printing, and implanting
the engineered scaffold into the patient’s body. How-
ever, to implement this new generation of clinical
practices several challenges, such as low mechanical

properties of natural polymer scaffolds; improvement
of crosslink ability without cell damage; materializa-
tion of complex 3D structures; development of 3D
multi-culturing; and joint works with material scie-
nces, mechatronics, computer engineering, or medi-
cine; etc., need to be surmounted. Especially the fa-
brication and culturing of 3D multicellular complex
organ structure are indispensable steps to achieve the
ultimate goal of tissue engineering. This can be
reached, however, when the former steps are accom-
plished, such as the generation of 3D vascular struc-
tures in bigger multicell-printed tissue or organ struc-
ture. The major challenges of the realization and vas-
cularization of multicellular structure would be the
complexity and exquisiteness of the natural tissues
and organs that we are striving to mimic. Despite
these assignments ahead, we believe that the comple-
tion of whole-organ fabrication technology can be
occurred in the nearer future than expected, as the stu-
dies and collaborations for tissue engineering is
now being actively performed.
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