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Abstract: Lipopolysaccharide, the main component of the outer membrane of Gram-negative bacteria
is a highly potent endotoxin responsible for organ dysfunction in sepsis. It is present in the blood
stream not only in Gram-negative infections, but also in Gram-positive and fungal infections, pre-
sumably due to sepsis-related disruption of the intestinal barrier. Various pathways, both extra- and
intracellular, are involved in sensing endotoxin and non-canonical activation of caspase-mediated
pyroptosis is considered to have a major role in sepsis pathophysiology. Endotoxin induces specific
pathological alterations in several organs, which contributes to poor outcomes. The adverse conse-
quences of endotoxin in the circulation support the use of anti-endotoxin therapies, yet more than
30 years of experience with endotoxin adsorption therapies have not provided clear evidence in favor
of this treatment modality. The results of small studies support timely endotoxin removal guided
by measuring the levels of endotoxin; unfortunately, this has not been proven in large, randomized
studies. The presence of endotoxemia can be demonstrated in the majority of patients with COVID-19,
yet only case reports and case series describing the effects of endotoxin removal in these patients
have been published to date. The place of blood purification therapies in the treatment of septic shock
has not yet been determined.
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1. Introduction

Sepsis is recognized as a global health problem with an estimated nearly 50 million
cases and 11 million deaths recorded worldwide in 2017, representing almost 20% of all
global deaths [1]. Recent meta-analysis of epidemiological evidence, related to the burden
of hospital-acquired sepsis, showed mortality between 30.1% and 64.6% among ICU-treated
patients [2]. Septic shock is characterized by persistent hypotension requiring vasopressor
support and a serum lactate level > 2 mmol/L, despite adequate fluid resuscitation. In the
continuum of sepsis severity it carries the worst prognosis, with mortality reaching up to
92% in some studies [3].

In addition to standard therapy, which includes infection control (antibiotics, control-
ling the source), cardiovascular resuscitation (administering fluids, vasoactive agents), and
organ support, modulation of the host response is assumed to improve outcome, with
low-dose corticosteroids being most commonly advocated [4,5]. An alternative approach
includes extracorporeal therapies aimed at removing molecules that are involved in the
immune reaction to invading microorganisms. Endotoxin plays a prominent role in the
pathogenesis of sepsis, and the idea to neutralize its detrimental capacities continues to
attract the attention of researchers and clinicians. The aim of this review is to summarize
the current knowledge on the pathophysiology of endotoxin and the existing evidence on
the efficacy of extracorporeal blood purification treatment relative to the adverse impact of
endotoxin on organ function.
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2. Endotoxin, Lipopolysaccharide

In 1892, Richard Pfeiffer introduced the concept of endotoxin to define the phe-
nomenon that a toxic substance—an insoluble part of the bacterial cell—evokes a typical
picture of bacterial infection, even without the presence of living bacteria [6]. Many years
of research were needed to determine the exact structure, function, and mechanism of the
action of lipopolysaccharide that proved to be responsible for this effect.

Lipopolysaccharide (LPS) is the major component of the cell wall of Gram-negative
bacteria, comprising roughly 75% of the surface of the outer leaflet of the outer membrane
of the cell wall. LPS is a glycolipid; it consists of a hydrophobic lipid part, called lipid A,
which is anchored in the outer leaflet, and a hydrophilic polysaccharide part, which extends
outside the cell. The polysaccharide part is composed of two domains: the core oligosaccha-
ride and the O antigen. The O antigen (also called the O-chain) is a polysaccharide which
is composed of several oligosaccharide units and is bound to lipid A through the core
region [7]. LPS molecules create a tight hydrophobic structure with strong bonds that form
a permeability barrier that protects the bacterial cell against antimicrobial factors [8]. With
a few exceptions, for example, Treponema pallidum, LPS is produced by most Gram-negative
bacteria [9].

Although the general LPS structure is conserved, many differences are possible among
species of bacteria. An LPS molecule without the O-chain which is produced by some
species of Gram-negative bacteria is referred to as “rough” LPS, as opposed to a “smooth”
LPS, which includes the O antigen [10,11]. LPS is essential for bacterial survival in a hostile
environment and Gram-negative bacteria that lack the LPS or that have the LPS without an
O-chain are more sensitive to the host’s defense mechanisms and antibiotics [8].

Lipid A deserves particular attention, as this part of the LPS molecule is sensed by
the host and is responsible for activating the immune system and the toxic and pyrogenic
effects of endotoxin. The structure of lipid A synthesized by various Gram-negative bacteria
can differ in the number and the length of fatty acid chains attached and the presence
or absence of phosphate groups or other residues [8]. The variable structure of lipid A
determines the stimulatory or inhibitory action. Lipid A with a hexa-acyl structure, i.e.,
when the diglucosamine backbone has two phosphates and six fatty acyl chains attached,
is best sensed by the host’s complex of myeloid differentiation factor 2 and the toll-like
receptor 4 (MD2-TLR4) [12].

Lipopolysaccharide in the cell membrane of anaerobic Bacteroidales, a predominant
phylum in the commensal microbiota of the human gut, has an under-acylated (tetra- or
penta-acyl) lipid A in its structure and is a potent TLR4 inhibitor. Consequently, it silences
TLR4 pathway signaling, thus facilitating the host’s tolerance of gut microbes [13]. It is
unknown whether this phenomenon has any effect on the progression of sepsis [14]. In fact,
the lipid A structure of many Gram-negative bacteria, including Pseudomonas aeruginosa,
does not have six FA chains [12]. Yersinia pestis has the ability to produce hexa-acyl LPS at
21–27 ◦C and tetra-acyl LPS at 37 ◦C, and thus it escapes the host’s first line of defense in
fleas and mammals. A genetically modified strain of Y. pestis which produces hexa-acylated
LPS at 37 ◦C appeared avirulent, as it facilitated the early recognition of infection and the
effective onset of immune signaling [15]. During chronic infection, alterations in the LPS
molecule are possible and are thought to facilitate the evasion of host immune defenses
and biofilm adaptation [16].

Gram-negative bacteria constitute a major part of the gut microbiota and are a source
of LPS that is estimated to possibly exceed 1 g [17,18]. In health, minor amounts of LPS
can translocate into the bloodstream with the potential to trigger an immune response.
In order to protect the host from noxious over-activation of the immune system, several
mechanisms exist for LPS detoxification [19,20]. LPS that enters the bloodstream is rapidly
sequestered by lipoproteins, mainly high density lipoproteins (HDL) in cooperation with
the phospholipid transfer protein (PLTP). Lipoproteins transport LPS to the liver, where it
is inactivated by enzymes acyloxyacyl hydrolase and alkaline phosphatase and excreted in
the bile [19].
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Another mechanism relies on the binding of LPS to HDL3, the small form of HDL. LPS
from the intestines is captured locally by HDL3 particles that are produced by intestinal
epithelial cells to form the HDL3-LBP-LPS complex. This complex hides LPS from being
detected by liver macrophages, and instead leads to the inactivation of LPS by the plasmatic
enzyme acyloxyacyl hydrolase (AOAH), thus protecting the liver from inflammation and
fibrosis that may develop in the course of chronic LPS exposure [21].

The capacity of the detoxifying mechanisms is insufficient when sepsis-related disrup-
tion of the intestinal barrier occurs, and an increased amount of endotoxin enters the blood
stream. This is likely when the intestinal epithelium, formed by only one layer of cells
with a huge area of approximately 30 m2, is compromised by hypoperfusion, inflammation,
dysregulation of commensal flora, or sepsis-induced ileus resulting in increased gut-barrier
permeability [22–25].

3. Lipopolysaccharide Sensing Pathways

Lipopolysaccharide is sensed via extracellular and intracellular pathways that lead to
the activation of the immune response.

3.1. Toll-like Receptor 4–Myeloid Differentiation Protein 2 (TLR4-MD-2) Pathway

The toll-like receptor 4 (TLR4) is the main sensing receptor for LPS, and it is one of the
pattern recognition receptors responsible for the early detection of invading microbes by
the innate immune system. TLR4 is expressed on the surface of macrophages, monocytes,
neutrophils, dendritic, and epithelial cells, as well as within endosomes, forming the
front line of the host’s defense against Gram-negative bacteria. LPS molecules in the
bacterial cell wall and also soluble LPS-aggregates are dissociated and bound by LPS
Binding Protein (LBP), carried to form a complex with either a soluble or membrane
bound cluster of differentiation-14 (CD14), and subsequently transferred to the toll-like
receptor 4/myeloid differentiation-2 (MD-2) complex, which promotes the TLR4/MD-2
dimerization necessary for activating intracellular MyD88-dependent and TRIF-dependent
pathways. Both pathways lead to the production and release of pro-inflammatory cytokines
and type I interferones (IFNs), respectively [26–28]. Immune hyperactivation from the
inappropriate triggering by pathogens and the cytokine storm leads to organ damage,
multi-organ failure, and death [29].

The progress in research on LPS recognition systems, witnessed in the last decade,
led to important discoveries of TLR4-independent LPS-sensing pathways that may have a
central role in the pathophysiology of sepsis and related mortality.

3.2. Transient Receptor Potential (TRP) Ion Channels

Transient receptor potential ion channels are membrane-bound channels that serve as
cellular sensors of environmental and intracellular stimuli. LPS sensing by TRP channels
has been demonstrated in neurons and airway epithelial cells [30,31]. The activation of
TRPA1 channels in nociceptive neurons by the LPS of pathogenic bacteria generates pain
during inflammation [32]. Activation of the TRPV4 channels in the airway epithelium
boosts ciliary beat frequency and the production of bactericidal nitric oxide, which facil-
itates the pathogen clearance from the airways. LPS sensing by TRP channels provides
an immediate response to invading pathogens, which is faster and independent of the
canonical TLR4 immune pathway [31].

3.3. Intracellular LPS Sensing

The activation of caspases plays a crucial role in intracellular pathogen detection
and defense. LPS can enter the cytosol as LPS/outer-membrane-vesicle (OMV)-high
mobility-group-box-1 (HMGB1) complexes internalized through a receptor for advanced
glycation (RAGE). LPS that enters the cytoplasm of macrophages, as well as endothelial
and epithelial cells, is sensed by inflammatory caspases—caspase-11 in mice and caspase-
4/5 in humans—and leads to the induction of pyroptosis, an inflammatory form of cell



J. Clin. Med. 2022, 11, 619 4 of 13

death. Activated caspases cleave gasdermin D, which causes pore formation in the cell
membrane with subsequent cell lysis and the release of proinflammatory IL-1β and IL-
18 [33]. Inflammasome activation and pyroptosis are important mechanisms of the innate
immune defense against pathogens that are capable of invading the cytosol and play
a major role in sepsis pathophysiology. Caspase-11 has been found to be responsible
for bacterial clearance in Klebsiella pneumoniae and Acinetobacter baumannii, as well
as Burkholderia lung infections [33]. It is speculated that caspases may be responsible
for sensing penta-acylated LPS, which is not detected by TLR4 [34]. Caspase-mediated
pyroptosis of endothelial cells has a fundamental role in the host’s defense and immune
surveillance functions of the microvasculature [35]. Excessive activation of pyroptosis
causes extensive cell death and immense inflammation leading to organ failure and septic
shock [36].

4. Organ Damage Caused by Sensing Endotoxin

Endotoxin plays a very prominent role in the pathogenesis of sepsis. It is one of
the most important pathogen-associated molecular patterns (PAMP), and a large burden
of endotoxin triggers an excessive, uncontrolled systemic inflammatory response that
leads to multi-organ failure and death. Moreover, endotoxin induces specific pathological
alterations in several organs that contribute to the outcome (Figure 1).
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4.1. The Kidney

Acute kidney injury (AKI) develops in at least 40–50% of patients with sepsis or
septic shock and is associated with significantly higher mortality [37–40]. In addition
to septic alterations, AKI presents with metabolic and fluid abnormalities, necessitating
adjustments in volume therapy and pharmacotherapy, most notably limiting antimicrobial
choice. The pathophysiology of septic AKI is complex and, in addition to hypoperfusion,
interactions between vascular, tubular, and inflammatory factors are involved. Although
the exact mechanism underlying renal dysfunction in sepsis remains unknown, there is
strong experimental evidence supporting the prominent role of the toll-like receptor 4 (TLR-
4), which is expressed in the kidney [41]. Its activation causes cytokine and chemokine
release; leukocyte infiltration, which results in endothelial dysfunction; tubular dysfunction
and altered renal metabolism and circulation [42]. TLR-4 receptors are located in the
tubular epithelium and in the glomeruli and vascular endothelium. Endotoxin is filtered
in renal glomeruli, internalized by S1 proximal tubules through TLR4 receptors, and
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interactions between endotoxin and S1 tubules result in severe oxidative stress and damage
to the neighboring S2 segments [42,43]. TLR4 directly inhibits bicarbonate absorption in
the medullary-thick ascending limb, downregulates renal sodium, chloride, and glucose
transporters, causes luminal obstruction, and reduces tubular flow, among other effects [42].
Endothelial activation and alterations to glomerular glycocalyx and the deposit of NETs
in kidney tissue secondary to endotoxic shock also contribute to kidney injury [44,45].
Direct renal damage by endotoxin can explain the occurrence of AKI in sepsis, even when
hemodynamic parameters are well-controlled [43]. In fact, protocolized hemodynamic
resuscitation did not influence either the development or the course of AKI in patients
with septic shock [40]. As a result, the concept of equating sepsis-induced AKI to acute
tubular necrosis, attributed to ischemia from hemodynamic changes, has been replaced
by the theory of the interplay between inflammation and oxidative stress, microvascular
dysfunction, and the adaptive response of the tubular epithelial cells to the septic insult [46].

4.2. The Lung

In mice subjected to LPS-induced sepsis, pronounced histological alterations in the
lungs were found, with thickening of the septum, edema, congestion, and high leukocyte
infiltration into the interstitium, which correlated with a significant increase in the serum
concentrations of NETs and the extent of lung injury [45]. In another experimental study,
lung injury was attributed to LPS-triggered pyroptosis of the endothelial cells in the lungs;
LPS sensing in the endothelial cytoplasm via caspase-4/5/11-mediated pyroptosis led to
disruption of the endothelial barrier resulting in pulmonary edema, the release of pro-
inflammatory cytokines, fluid protein leakage, and a massive influx of leukocytes [35]. The
pyroptotic response was augmented when the expression of caspase-4/5/11 was enhanced
by concomitant priming with extracellular LPS via LPS binding to TLR4 [35].

4.3. The Heart

Toll-like receptors 4 are expressed in cardiomyocytes and their activation elicits an
inflammatory response with the production of cytokines and chemokines with a negative ef-
fect on cardiac contractility [47]. In healthy volunteers, endotoxemia resulted in a reduction
in the left ventricular ejection fraction and an increase in the left ventricular end diastolic
volume [48]. In mice, LPS administration resulted in significant pathological changes in the
myocardial bundles, congestion of the capillaries with the presence of leukocytes attached
to the endothelium, and pathological changes in the cardiomyocytes seen upon histological
examination [45]. The results of other studies indicated that sepsis-associated cardiac
dysfunction was also mediated by mechanisms other than TLR4 [49].

4.4. The Liver

The liver is an important participant in the body’s reaction to endotoxemia. Murine
studies demonstrated that endotoxin uses both TLR4 and caspase-11/gasdermin D (Gs-
dmD) pathways to induce the release of HMGB1 from hepatocytes—the major source of
circulating HMGB1 in sepsis [50]. Complexes of hepatocyte-released HMGB1 and LPS are
delivered via RAGE into the cytosol of macrophages and endothelial cells, where LPS acti-
vates caspase-11 and induces pyroptosis and cell death [51]. The intracellular LPS-sensing
pathway is considered to have a central role in the pathogenesis of sepsis [33].

In the liver, LPS affects the architecture of the sinusoidal endothelium and blood
flow velocities, which leads to extravasation of neutrophils and neutrophil–hepatocyte
interactions, decreases protein S and thrombomodulin synthesis, which contributes to
a pro-coagulant state and has a direct cytotoxic effect on hepatocytes [44,52]. In mice
subjected to LPS-induced endotoxemia, histological changes in the liver included enlarged
sinusoids, an increased volume of endothelial cells with rounded nuclei, a high number of
leukocytes in the lumen, Kupffer cell hypertrophy and hyperplasia, along with the presence
of leukocytes close to periportal areas and congestion of the central vein with swollen
hepatocytes [45].
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4.5. The Vascular Endothelium

Endothelial cell dysfunction is thought to be the key factor in the progression from
sepsis to organ failure [44]. The presence of endotoxin in the blood causes shedding of the
glycocalyx lining of the vascular endothelium that leads to the loss-of-barrier function, the
formation of edema, and the dysregulation of vascular tone, among other effects [44]. LPS
triggered, caspase-dependent pyroptosis in endothelial cells results in disruption of the
endothelial barrier, fluid leakage, and the development of ALI [35].

5. Endotoxin Removal

In patients with septic shock, an early start of an appropriate therapy is generally
advised. The SSC guidelines underscore the importance of the prompt implementation of
bundles of care, including cultures, broad-spectrum antibiotics, fluids, vasopressors, and
lactate levels [5]. Yet, despite an optimal treatment, the mortality caused by septic shock
remains high. The idea that the endotoxin burden triggers a detrimental, excessive, and
uncontrolled response of the immune system that leads to multi-organ damage and death
is the mainstay of anti-endotoxin therapies.

Endotoxemia is a frequent finding in patients with septic shock and correlates with
increased organ failure and higher mortality [53–55]. In a group of 157 patients with septic
shock and endotoxemia on admittance to the ICU, the group with endotoxin activity above
0.4 had a much higher mortality than the group of patients with low endotoxin activity,
regardless of the infecting microorganism [56]. In postsurgical patients admitted to the ICU,
high levels of endotoxin were associated with a longer ICU length of stay [57]. In septic shock
patients, endotoxemia occurs frequently in the absence of Gram-negative bacteria and is
also found in patients with documented Gram-positive and fungal infections [53,56,58–60].

The presence of endotoxin in systemic circulation is presumed to be due to the in-
creased translocation of bacteria and their toxins as a result of a failure of the gut barrier.
Changes in the tight junction, indicating intestinal barrier dysfunction and increased per-
meability, can occur as early as 1 h following sepsis [61]. Significant endotoxemia is also
present in patients after prolonged cardiopulmonary bypass [62] and other conditions that
result in splanchnic hypoperfusion [63,64].

Several therapies targeting endotoxin in sepsis were studied. Anti-endotoxin anti-
bodies [65,66], phospholipid emulsion [67], bactericidal/permeability-increasing protein
(BPI) [68], and synthetic lipid A antagonist [69], among others, failed to demonstrate any
benefit in septic patients.

The first attempts at extracorporeal elimination of endotoxin from solution were
reported in the 1970s. Research that led to the development of the PMX cartridge, which
contains an immobilized polymyxin B—a polypeptide antibiotic with the capacity to
neutralize endotoxin, began in 1981 in Japan. Clinical trials with PMX were started in 1989
and the treatment became widely used in Japan after 1994, upon receiving approval from
the Japanese government and the National Health Insurance (NHI) system for patients
with sepsis who require vasoactive support with endotoxemia or in whom a Gram-negative
infection is suspected [70]. Since then, PMX hemoperfusion therapy has been used in
Japan in more than 100,000 cases [71]. The results of several small trials were beneficial
with respect to the impact noted on survival, hemodynamics, and the pulmonary function.
Regrettably, this has not resulted in the development of high-quality evidence for the
efficacy of endotoxin removal via PMX hemoperfusion. A systematic review was published
in 2007 of the studies coming from Japan. It identified 26 publications from Japan that were
relevant and that pointed to the favorable effects on MAP, dopamine use, PaO2/FiO2 ratio
and mortality, even though there was poor overall quality noted about the studies [72].

5.1. Randomized Controlled Trials of Endotoxin Adsorption Therapies

The results of randomized controlled studies (RCT) with endotoxin adsorbers per-
formed in Europe and North America were inconclusive. Improved hemodynamic status
and cardiac function was found in a group of 17 patients allocated to a single polymyxin B
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hemoperfusion (PMX HP) treatment, compared to the control group [73]. No differences in
organ function or mortality were observed.

In the EUPHAS trial conducted in 10 Italian ICUs, two sessions of PMX HP performed
in 34 patients resulted in significantly improved hemodynamics and organ dysfunction
and reduced 28-day mortality [74]. The study suffered from premature termination by the
ethics committee, when a statistically significant reduction in mortality was reached. This
was criticized for the questionable statistical method used, the small number of enrolled
patients, and the increased risk of type I errors [75,76].

An opposite result was found in the ABDOMIX trial conducted in 18 French ICUs.
A non-significant increase in mortality and no improvement in organ failure was demon-
strated in a group of 119 patients with peritonitis-induced septic shock after surgery who
were subjected to two sessions of polymyxin B hemoperfusion [77]. A critique of the study
included the lower 28-day mortality observed in the control group than reported in other
studies with similar cohorts, a significantly higher rate of RRT in the PMX HP group than
in the control group, and the fact that only 68% of the treated patients had completed two
sessions of PMX HP [78].

The EUPHRATES trial was expected to give definitive evidence for the efficacy of
endotoxin removal. The design of the trial used a theragnostic approach and included
measuring endotoxin for patient enrollment. A simulated treatment in the control group
was used to keep the treatment blind. The trial was the largest so far with 450 randomized
septic shock patients, of which 224 were in the polymyxin B hemoperfusion group vs.
226 in the simulated treatment group. Only patients with EAA ≥ 0.6 were included.
The result of the study was inconclusive, because the primary end-point of mortality at
28 days in the PMX-B HP group was not reduced [79]. A possible explanation for the
negative result of the trial could be insufficient reduction in the endotoxin burden, which
was supported by the observation that the PMX HP treatment did not result in significant
reduction in EAA, especially in patients with a high baseline EAA [79]. This hypothesis was
supported by the study on the relationship between EAA and endotoxin concentrations,
which found that when EAA was higher than 0.9, the lipopolysaccharide concentration
increased exponentially to the high non-measurable values [80]. It was speculated that
when the level of EAA is above 0.9, the amount of endotoxin in the circulating blood may
be very high and it may exceed the binding capacity of the adsorber. In addition, it is likely
that a significant sequestration of endotoxin can occur in the extravascular compartment,
which greatly heightens the total amount of endotoxin in the body [59]. Based on these
premises, a post-hoc analysis of the EUPHRATES trial was performed and only patients
with EAA ≥ 0.6–0.89 were included. A third of the 194 patients had an intra-abdominal
infection, and another third had a lung infection. Gram-negative infections were present in
only 18% of patients, Gram-positive in 27%, and cultures from 31% of patients showed no
growth of bacteria. The 28-day mortality, adjusted for the APACHE II score and baseline
MAP, was significantly lower in the PMX HP group, although in the unadjusted analysis
the difference was not statistically significant. It was suggested that when strict patient
selection criteria are applied, the use of PMX is associated with favorable changes in mean
arterial pressure, ventilator-free days, and mortality; these findings should be considered
as hypothesis-generating [59]. A study called TIGRIS (ClinicalTrial.gov Identifier NCT
03901807) is currently underway to validate this result.

5.2. Systematic Reviews and Meta-Analyses

Systematic reviews of publications on polymyxin B hemoperfusion in septic/septic
shock patients yielded disparate results, depending on the inclusion strategy of eligible
trials [72,81–83] and the statistical method used [3,84]. Earlier studies, mostly small or
non-randomized, and representing a low quality of evidence, were in favor of using
PMX HP treatment, whereas the results of RCTs published after 2010 did not show a
beneficial effect [3]. The most recent meta-analysis that included 13 studies suggested
that patients with sepsis and septic shock benefit from PMX HP in overall mortality
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compared with conventional medical therapy [84]. The authors speculated that a reduction
in endotoxin levels and an improvement in the hemodynamics by the PMX HP treatment
could contribute to improved survival. As opposed to previous publications, it also found
that when subgroup analysis was based on disease severity stratified by APACHE II scores,
then the mortality of patients with less severe sepsis, i.e., with an APACHE II score lower
than 25, appeared to be significantly lower after PMX HP treatment.

An analysis of the data from EUPHAS 2, an international, multicenter registry, showed
a favorable outcome in patients treated with PMX HP, similar to the EUPHAS study [85].
The data from the Japanese patient database showed better outcome in a cohort of patients
with septic shock and kidney dysfunction that necessitated renal replacement treatment,
suggesting that there was a benefit from the PMX HP therapy in a more severe population
of patients [86]. On the contrary, patients who had open abdominal surgery for perforation
of the lower gastrointestinal tract and who required vasopressor support were not found to
have any survival benefit with a relatively low mortality of 16.3% in the control group [87].

6. COVID-19 and Endotoxemia

The presence of endotoxemia was demonstrated in patients with COVID-19 pneumo-
nia [88,89]. Lipopolysaccharide was speculated to be of lung [89] or intestinal origin [88]
and may have contributed to the pathogenesis of COVID-19. Of note, the presence of
bacterial DNA in serum was detected in 49 of 50 samples from 19 COVID-19 pneumonia
patients using the 16S rDNA sequencing method [88]. Endotoxemia was also observed
in 75% of 92 critically ill patients with COVID-19, with only two patients having positive
blood cultures for Gram-negative organisms [90]. Significant endotoxemia was found in a
cohort of 22 patients with COVID-19-related pneumonia, together with increased serum
zonula occludens-1 levels, a marker of the integrity of the intestinal paracellular barrier,
implying that there was intestinal barrier dysfunction and supporting the speculation that
bacterial translocation from the gastrointestinal tract may complicate severe COVID-19
and may contribute to the cytokine storm [88,91]. In another study, the co-existence of
low-grade endotoxemia with enhanced levels of zonulin in patients with COVID-19 was
observed, as well as an association with thrombotic events [92].

Only case reports and case series describing the effects of endotoxin removal in patients
with COVID-19 have been published to date; therefore, their results should be treated with
caution. In a case series of 12 patients from the EUPHAS 2 registry with COVID-19 and
endotoxic shock due to a secondary infection, the PMX HP treatment was associated with
organ function recovery, hemodynamic improvement, and a reduction in the EAA level [93].
Clinical improvement was observed after endotoxin adsorbent therapy in six critically ill
patients with COVID-19 and an elevated EAA level. All six patients survived [94]. PMX HP
performed in 12 patients with COVID-19 resulted in a decrease in disease severity in 58.3%
of the patients on day 14 after the first treatment. It is noteworthy that a high frequency of
clotting of the adsorber was observed [95].

7. Investigating Aspects of Endotoxin Removal
7.1. Timing of the Initiation of Endotoxin Adsorption

Non-randomized studies that compared an early vs. late initiation of the PMX HP
treatment in patients with septic shock found better survival or reduced catecholamine
requirements in the early treatment group. The initiation of PMX hemoperfusion within 6,
8, or 9 h after the administration of catecholamine or the diagnosis of septic shock resulted
in a more favorable outcome compared to a later initiation [96–98]. According to the results
of these studies, PMX HP therapy should be performed as early as possible in patients with
septic shock, and a delay in PMX HP therapy may contribute to increased mortality [97].
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7.2. Extended Endotoxin Adsorption Treatment

The recommended period for PMX HP treatment is 2 h. In studies where the time
of treatment ranged from 8 to 24 h, there were improved hemodynamics and improved
pulmonary oxygenation, but no improved mortality was observed [99–101].

7.3. Endotoxin Removal Treatment Guided by Measuring the Endotoxin Level

In 11 patients diagnosed with postsurgical sepsis and who had a high EAA (≥0.6),
when the PMX HP treatment was performed and repeated every 24 h until the EAA was
low (<0.4), all patients survived until the 28-day follow-up [102]. These findings are similar
to an observation from the post-hoc analysis of the EUPHRATES trial. A trend toward
lower mortality and a significant increase in ventilation-free days was found in patients
with septic shock and a greater than median reduction in EAA on day 3 after the PMX HP
treatment. The same was true for patients who achieved an EAA of less than 0.65 on day
3 [103]. The authors of the study suggested that the dosing regimen of PMX therapy should
be tailored according to measured endotoxin levels and/or patient’s clinical response, but
this hypothesis needs to be validated in a prospective study [103].

8. Conclusions

Adjuvant therapies have, at most, only a supportive role in the treatment of septic
shock. Nevertheless, antibiotics, controlling the source, and organ support remain the
mainstays of treating sepsis and septic shock. Endotoxin removal therapy, guided by the
blood endotoxin level and applied early in the course of septic shock has the potential
to improve organ function and improve survival. The adverse effects of endotoxin in
the circulation support the timely removal of endotoxin in the course of sepsis, before
the vicious spiral of progression to septic shock, multi-organ failure, or death occurs.
Unfortunately, this has not been proven in large, randomized studies. Blood purification
therapies need further clinical evaluation and their place in the therapy of sepsis/septic
shock has not yet been determined.
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