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Communication networks between cells and tissues are necessary for homeostasis in multicellular
organisms. Intercellular (between cell) communication networks are particularly relevant in stem cell
biology, as stem cell fate decisions (self-renewal, proliferation, lineage specification) are tightly regulated
based on physiological demand. We have developed a novel mathematical model of blood stem cell
development incorporating cell-level kinetic parameters as functions of secreted molecule-mediated
intercellular networks. By relation to quantitative cellular assays, our model is capable of predictively
simulating many disparate features of both normal and malignant hematopoiesis, relating internal
parameters and microenvironmental variables to measurable cell fate outcomes. Through integrated in
silico and experimental analyses, we show that blood stem and progenitor cell fate is regulated by cell–cell
feedback, and can be controlled non-cell autonomously bydynamically perturbing intercellular signalling.
We extend this concept by demonstrating that variability in the secretion rates of the intercellular
regulators is sufficient to explain heterogeneity in culture outputs, and that loss of responsiveness to
cell–cell feedback signalling is both necessary and sufficient to induce leukemic transformation in silico.
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Introduction

Systems-biology research to date has primarily focused on
elucidating the topological features and dynamics of intra-
cellular networks, with the implicit assumption of cell
populations as homogenous, autonomous units. Intercellular
communication networks, represented with cell types as
vertices, and functional (rather than molecular) interactions
as edges, have been largely unexplored.

Communication networks among cells, tissues, and organ
systems are necessary for homeostasis in multicellular
organisms. For example, soluble factor-mediated cell–cell
networks have a dominant function in orchestrating immune
reactions through ‘cytokine cascades’ in response to infection.
Intercellular communication networks are particularly relevant
in stem cell biology, as stem cell fate decisions (self-renewal,
proliferation, lineage specification) are tightly regulated based
on physiological demand and responsive to external perturba-
tions. Evidence suggests that stem cell dysregulation is funda-
mental to the progression of multiple cancers, degenerative

diseases, and general aging phenomenon (Rossi et al, 2008).
Stem cell-based therapies are hence emerging as a foundational
tool in regenerative medicine. One of the key challenges lies in
controlling the emergent cellular and microenvironmental
complexity that arises as stem cell populations develop in vitro
and in vivo (Kirouac and Zandstra, 2006).

Hematopoiesis, the process by which blood cells develop,
serves as a prototype for other stem cell systems. Hematopoietic
stem cells (HSCs), at the apex of a developmental hierarchy, give
rise to a series of increasingly differentiated and developmentally
restricted progenitor cells, eventually producing all of the mature
blood cell populations. In vivo, HSC fate decisions are regulated
by cross-talk with neighbouring cell populations either directly or
through secreted factors (Wilson and Trumpp, 2006). Much
experimental and theoretical work has been conducted to
understand the structure and dynamics of the homeostatic
control mechanisms in vivo linking blood cells in the circulation
to stem cells in the bone marrow (Lajtha et al, 1962). Evidence
suggests that mature blood cells suppress proliferation and
differentiation of progenitors, and progenitors correspondingly
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suppress the expansion of stem cells through coupled negative
feedback loops (Wichmann and Loeffler, 1985).

Hematopoietic cells are known to secrete and respond to a
large number of regulatory proteins in lineage- and differ-
entiation stage-specific patterns (Billia et al, 2001; Majka et al,
2001). This results in complex and dynamic intercellular
signalling networks, providing a mechanism by which cells
interrogate and interpret their local microenvironment (their
niche), propagate this information through signal transduction
and gene regulatory networks, and respond by modulating
cell fate decisions. A number of studies have attempted to
reconstruct the intracellular molecular networks regulating
stem cell fate (Muller et al, 2008), including mathe-
matical modelling of genetic regulatory networks and
intracellular feedback mechanisms (Glauche et al, 2007).
However, intercellular regulatory mechanisms remain largely
undefined.

Motivated by the fact that HSC transplantation is a curative
therapy for a number of hematopoietic and immunological
diseases, herein we explore the behaviour of intercellular
regulatory networks as tools to regulate cell fate during in vitro
human blood stem cell propagation. We have developed and
used for predictive purposes a novel mathematical model of
in vitro hematopoiesis by linking functional cellular assays to
specific model outputs, by defining cell-level kinetic para-
meters such as cell cycle rates and self-renewal probabilities as
functions of culture variables, and by simulating feedback
regulation using cell–cell interaction networks. Our resultant
model captures many facets of hematopoiesis, connecting
internal model parameters and microenvironmental variables
to measurable cell fate changes. We show that negative
feedback signalling between differentiated cells and stem
and progenitor populations is a dominant factor regulating
culture output, and that stem cell fate can be controlled
non-autonomously by the dynamic perturbation of cell–cell
signalling networks. We extend this concept by demonstrating
that variability in the secretion rates of intercellular regulators
are sufficient to explain variability in culture output, and that
loss of responsiveness to cell–cell feedback signalling is both
necessary and sufficient to induce leukemic transformation in
silico. The development of quantitative models incorporating
cell–cell regulatory networks should serve as an important tool
to understand and control emergent cellular complexity
in vitro and in vivo (Kirouac and Zandstra, 2008).

Results

A feedback-based cell–cell interaction network
model of hematopoiesis

The hematopoietic hierarchy can be divided into discrete
cellular compartments, wherein compartment transitions are
typically coincident with compartment size amplifying cell
divisions. Taking advantage of differentiation-state-associated
in vitro and in vivo assays, we have defined functional
readouts as overlapping series of consecutive compartments.
The functional readouts we consider are the immunodeficient
(non-obese diabetic (NOD)/Scid) mouse repopulating cell
(SRC) assay for quantifying stem cells, the long-term culture-
initiating cell (LTC-IC) assay for quantifying primitive

progenitors, and the colony forming cell (CFC) assay for
quantifying committed progenitors (Coulombel, 2004). He-
matopoietic cell populations are also broadly classified
phenotypically based on their expression (Linþ ), or lack of
expression (Lin�), of blood lineage-associated cell surface
antigens. Frequency estimates in umbilical cord blood total
nucleated cells (TNC) for cell compartment—assay relation-
ships, as described in Materials and methods, are shown in
Table I, and a schematic diagram of the model is depicted in
Figure 1A. For clarity, all model parameters, variables, and
simulated cell population outputs will henceforth be indicated
with italics.

It is well established experimentally that self-renewal
probabilities decrease and cell cycling rates increase with
differentiation (Young et al, 1996). We implemented Gaussian-
type functions to quantify proliferation rates (ui) and the self-
renewal probabilities (fi) as functions of compartment number
(i) (see Materials and methods for details and Figure 1B and C
for phase portraits).

We simulate a branching model of hematopoiesis by
lumping differentiated (Linþ ) cells into three functional
classes based on their functional feedback interactions with
stem and progenitor cells; populations that secrete inhibitors,
populations that secrete stimulators, and populations that
secrete molecules with no net effect. The framework for the
intercellular signalling network topology is based largely
around in vivo experimental data on murine hematopoietic
homeostasis (Wichmann and Loeffler, 1985) with the
implicit assumption that the network will be at least
partially reconstituted in vitro. We have designated compart-
ment-specific self-renewal and proliferation rates as regulated
by a balance between endogenously secreted inhibitors
(negative feedback) and stimulators (positive feedback)
(Figure 1D). We consider only soluble factor-mediated
signalling between blood cell populations, and thus limit
our analysis to liquid suspension cultures; the additional
complexities associated with stoma-supported co-cultures or
in vivo hematopoiesis are not implicitly considered. The
resultant model consists of 24 state variables [20 cell
compartments (Xi) and 4 secreted regulatory molecules
(SF1–4), defined in Figure 1A] and 16 internal parameters,
their definitions and theoretically constrained ranges are given
in Table II.

Global parameter space analysis reveals a critical
function for non-cell autonomous parameters

To systematically explore the parameter space in an unbiased
manner, functional outputs from theoretical 8-day cultures

Table I Estimated compartment—functional assay relationships

Cell population Frequency Compartment(s)

SRC B1/106 TNC 1
LTC-IC B1/4�104 TNC 1–8
CFC B1/5�103 TNC 1–11
Lin� B1/100 TNC 1–13
TNC — 1–20
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(Madlambayan et al, 2005) were simulated for 1000 random
parameter values log-uniformly distributed within the
constraints (‘LO’ and ‘HI’ values) defined in Table II.

Figure 2A shows the statistical relationship among the in vivo,
in vitro, and phenotypic assays, and Figure 2B shows the
statistical relationship between individual parameter values

Model variables

i = compartment number [ ]

Xi = cells in compartment i

ui = proliferation rate (day–1)

fi = self-renewal probability 

SF1 = proliferation inhibitor 

SF2 = self-renewal inhibitor

SF3 = proliferation stimulator

SF4 = self-renewal stimulator
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Figure 1 Schematic depiction of blood stem cell development model incorporating functional assays and positive and negative feedback. (A) Stem cells (X1) at the
apex of the hematopoietic hierarchy may self-renew with probability f1 to regenerate the stem cell compartment, or differentiate (1�f1), giving rise to a series of increasing
differentiated, and developmentally restricted progenitor populations (Xi). Transit between cell compartments is associated with mitosis (ui). In vivo (SRC) and in vitro
(LTC-IC, CFC) functional assays, and cell surface phenotype (Lin� versus Linþ ) can be used to quantify different cellular compartments within the hierarchy.
Differentiated cell populations secrete factors that inhibit or enhance progenitor proliferation (SF1 and SF3, respectively), and undifferentiated (Lin�) cells secrete factors
that inhibit stem cell self-renewal (SF2). The inhibitory effects of SF2 on self-renewal are balanced by secretion of the self-renewal stimulator SF4 by differentiated cells.
Differentiated populations are functionally lumped into those that secreted inhibitory factors (red), those that secrete stimulatory factors (green), and those that secrete
factors with no effect on stem and progenitor cell growth (yellow). Phase portraits below the diagram display normalised proliferation rates (ui/uMAX) and self-renewal
probabilities (fi /fMAX) as functions of model parameters varied between the constraints given in Table II (low to high values represented by blue to red as indicated).
(B) Proliferation and self-renewal versus differentiation status (compartment number) for parameters nMAX, DGR, and DSR left to right, respectively. (C) Proliferation
versus time for parameters tD (left) and kt (right). (D) Proliferation or self-renewal versus secreted regulatory factor (SF1–4) concentrations for Hill coefficients (k1–4).
Refer to Table II for parameter definitions.
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and culture outputs. Pearson correlation coefficients (r)
were calculated for each relationship and are shown on
each plot.

Notably, there is a poor correlation between total
nucleated cell (TNC) and stem cell (SRC) expansion
(r¼�0.029) and between progenitor (CFC) and stem cell
(SRC) expansion (r¼0.433). The model, thus, captures the
recognition that these mature cell assays are poor surrogates
for stem cell output (Zandstra et al, 1997). Our analysis
suggests that under many conditions, the LTC-IC assay is a
better surrogate for stem cell content (r¼0.703). Production
of differentiated Linþ cells correlates negatively with stem
and progenitor cell output (r¼�0.322 for CFC and LTC-IC,
r¼�0.187 for SRC) likely due to the negative feedback-biased
architecture of the system.

As one might predict, the progenitor proliferation rate
(uMAX) is the best positive predictor of total cell (TNC),
progenitor (CFC), and primitive progenitor (LTC-IC) expansion
(r¼0.695, 0.452, and 0.274, respectively). However, surpris-
ingly, this parameter (uMAX) is inversely correlated with stem
cell (SRC) expansion (r¼�0.161). Non-intuitively, the stron-
gest positive correlate to stem cell (SRC) expansion is secretion
rate of the proliferation inhibitor SF1 (sr1) (r¼0.227), a finding
that suggests a negative relationship between total cell and
stem cell growth. The secretion rate of the self-renewal
inhibitor SF2 (sr2) is the best negative correlate with CFC,
LTC-IC, and SRC expansion (r¼�0.14, �0.372, and �0.479,
respectively). This analysis suggests that non-cell autonomous
parameters (soluble factor-mediated cell–cell interactions)
may be dominant factors controlling stem cell growth. It is
notable that while the parameter correlations are low,
particularly with regard to SRC output (the highest
r2¼0.0515), most are statistically significant (|r|40.062
corresponds to Po0.05 for n¼1000 simulations). The wide
distribution of outputs observed is indicative of highly non-
linear parameter interactions, necessitating the use of stochas-
tic global optimisation methods to estimate parameter values.
Thus, we next devised an appropriate reverse engineering
strategy using earlier published data.

Parameter training identifies self-renewal inhibitor
(SF2) exposure time as a key regulator of stem and
primitive progenitor cell output

Our laboratory has previously developed a bioprocess for the
clinical-grade expansion of umbilical cord blood (UCB)-
derived HSCs (Madlambayan et al, 2006). This system allows
us to dynamically perturb cell–cell signalling networks, and
thereby interrogate our theoretical model. Specifically, Lin�

cell negative selection (S) reduces the secretion rates sr1 to
sr4, and media exchange (E) reduces the concentration of
factors SF1 to SF4 (Figure 3A). Eight-day culture outputs for
combinations of Lin� cell selection (S) versus no selection
(NS), and media exchange (E) versus no exchange (NE) at
culture day-4, as reported earlier (Madlambayan et al, 2005),
are shown in Table III. Performing Lin� cell selection and
media exchange in combination (S/E) synergistically en-
hanced primitive progenitor (LTC-IC) and stem cell (SRC)
output, while the effect of the described culture manipulations
on other system outputs (%Linþ , TNC, or CFC expansion)
was not statistically significant (P40.1).

To estimate parameter values, we used the data displayed in
Table III to define an objective function based on the sum of
squared residuals between experimental and simulated
culture outputs (see equation (25)). As the objective landscape
was expected to be multi-modal, a hybrid stochastic
method was developed to estimate the unknown parameters
by minimising the objective function. A genetic algorithm
was first used to globally search the parameter space, followed
by the Nelder–Mead Simplex algorithm for local optimisation.
The estimated parameter vector is displayed in Table II (‘Est’
column), and the results are summarised in Figure 3B.
Coefficients of variation (CVs) for the parameter estimates
(Table II ‘CV’ column) were calculated using a computational
bootstrapping approach, and indicate that a number of
parameters are non-identifiable (i.e. system dynamics
can be simulated using multiple parameter combinations,
indicated in Table II ‘ID’ column; ‘þ ’¼identifiable, ‘�’¼non-
identifiable). Such ‘sloppy’ parameter estimates are in fact a

Table II Model parameters

P Description Units Lo Hi Est CV ID

uMAX Maximum proliferation rate of Lin� cells day�1 100 101 6.26�100 0.311 +
u+ Maximum proliferation rate of Lin+ cells day�1 10�1 100 2.04�10�1 0.209 +
nMAX Compartment with maximal proliferation — 100 101 5.32�100 0.273 +
DGR Proliferative decay term — 100 101 3.38�100 0.368 +
fMAX Self-renewal probability of LT-HSC — 10�1 100 6.34�10�1 0.136 +
DSR Self-renewal decay term — 10�1 101 1.96�100 0.355 +
sr1 Secretion rate of SF1 pg/cell.day 10�7 10�5 2.37�10�5 0.300 +
sr2 Secretion rate of SF2 pg/cell.day 10�7 10�5 2.93�10�5 0.539 �
sr3 Secretion rate of SF3 pg/cell.day 10�7 10�5 5.96�10�6 0.237 +
sr4 Secretion rate of SF4 pg/cell.day 10�7 10�5 5.30�10�6 0.632 �
k1 Hill coefficient for SF1 (equation 14) — 10�1 101 6.14�10�1 1.22 �
k2 Hill coefficient for SF2 (equation 15) — 10�1 101 5.55�10�1 1.25 �
k3 Hill coefficient for SF3 (equation 14) — 10�1 101 6.25�10�1 0.467 +
k4 Hill coefficient for SF4 (equation 15) — 10�1 101 5.33�10�1 1.15 �
Ls [SF1] inducing 1

2 maximal SF2 secretion pg/ml 10�4 101 9.15�10�1 0.635 �
ks Hill coefficient for SF1 (equation 9) — 10�1 101 1.08�100 1.04 �

P, model parameter; LO, lower constraint on parameter; HI, upper constraint on parameter; Est, estimated parameter value; CV, coefficient of variation for parameter
estimate; ID, identifiability (‘+’, identifiable, ‘�’, non-identifiable).
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consistent feature of systems biology models, and may reflect
underlying robustness of biological networks (Gutenkunst
et al, 2007).

Importantly, the model captures the experimental
results, and explains the synergistic and targeted effect of
the culture manipulations (S/E) on stem and primitive

progenitor populations through reduced exposure
(concentration� time) to the proliferation and self-renewal
inhibitors SF1 and SF2 (Figure 3C). To further investi-
gate the relationship between individual parameters and
system dynamics, parameter sensitivity analysis was
performed.
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Figure 2 Statistical analysis of state space reveals critical roles for non-cell autonomous parameters. Eight-day culture outputs simulated using 1000 random
parameter combinations (within constraints given in Table II) are plotted against each other (A) and against each of the 16 model parameters (B) as correlation matrices.
Plots are in log scale. Correlation coefficients (r) are displayed for each individual plot, and red boxes are used to highlight plots with r240.05.
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Phase portraits and parameter sensitivity analysis
demonstrate antagonistic relationship between
mature and primitive cell compartments

Parameter sensitivities represent emergent systems-level
properties, which cannot be deduced by analysing individual
components or reactions (Savageau, 1971). Parameter
sensitivity coefficients (S) were calculated for each system
output (O) B parameter (P) combination (equations (26) and
(27)), producing a 5�16 sensitivity coefficient matrix,
depicted as a heat map in Figure 4. Parameters and system
outputs were organised through unsupervised hierarchical
clustering, and distances (1�r) represented by associated
dendograms.

The system outputs organise into two primary clusters, one
containing differentiated (Linþ ) cells, total cells (TNC), and
mature progenitors (CFC), and the other containing primitive

NS/NE

NS/E

S/NE

S/E

Day-0

Day-4

Pre-manipulation

Day-8

Functional analysis

NS/NE S/ES/NENS/E

Day-4

Post-manipulation

1 10

1

10

TNC

S
im

ul
at

io
ns

Experimental data

CFC
LTCIC
SRC

S/E

NS/E
S/NE
NS/NE

S/E

NS/E
S/NE
NS/NE

In
hi

bi
to

r 
ex

po
su

re
 (

[S
F

] x
 t)

 

Proliferation inhibitor (SF1)

Self-renewal inhibitor (SF2)

Lin– progenitor

Lin+ inhibitory cell
Lin+ null cell
Lin+ stimulatory cell
Secreted inhibitor
Secreted stimulator

Figure 3 Model training methodology and results reveal endogenous inhibitors as key regulators of cell population outputs. (A) Cytokine-supplemented cultures
initiated with UCB-derived undifferentiated (Lin�) cells (blue) rapidly evolve, producing heterogeneous populations of differentiated cells (red, yellow, and blue) and
secreting multiple regulatory factors. At culture day-4, cultures are perturbed through Lin� cell negative selection (S), or not (NS), and media exchange (E), or not (NE).
These culture manipulations are carried out in combination, producing four conditions in total: NS/NE, NS/E, S/NE, and S/E. After an additional 4 days in culture, the
resulting cell populations are analysed using in vitro, in vivo, and phenotypic assays. (B) Experimental outputs (TNC, CFC, LTC-IC, and SRC population expansions)
used to train the model are plotted against the resulting model simulations. The S/E manipulation significantly enhances stem (SRC) and primitive progenitor (LTC-IC)
expansion compared with the remaining three conditions, predicted to result from reduced exposure (concentration� time) to the proliferation and self-renewal inhibitors
SF1 and SF2 (C).

Table III Data training set for parameter estimation

Readout NS/NE NS/E S/NE S/E

% Lin+ B25 B25 B25 25±10
TNC X 23±9 26±10 17±9 33±14
CFC X 17±10 12±9 10±5 21±13
LTC-IC X 7±3 7±1 4±3 15±3
SRC X B1 B1 B1 5±2

(Madlambayan et al, 2005).
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progenitors (LTC-IC) and stem cells (SRC). This clustering
pattern emphasises the modular nature of cell compartments,
and the relative independence of primitive and mature cell
outputs. The parameters correspondingly fall into two general
categories; those that positively influence stem cell (SRC)
expansion while repressing total cell (TNC) growth, and vice
versa. This demonstrates an antagonistic relationship between
mature and primitive cell compartments, a result of the
(negative) feedback interactions.

To highlight the effects of individual parameters on system
dynamics, select phase portraits are shown in Figure 4B,
wherein system outputs [TNC and SRC] are plotted against
time, for individual parameter values [progenitor proliferation
rate (uMAX), self-renewal inhibitor and stimulator secretion
rates (sr2 and sr4, respectively)] varied over the ranges given
in Table II. In all cases, there is a clear divergence in the
population dynamics for total cells (TNC) versus stem cells
(SRC); while the total cell (TNC) numbers display near-
exponential growth throughout the 8-day cultures, primitive

progenitors (LTC-IC) and stem cell (SRC) numbers plateau mid-
culture and then begin to decline. This bi-phasic growth curve
has been observed in many blood progenitor cultures,
regardless of the choice of cytokine cocktail (Zandstra et al,
1997; Mobest et al, 1999).

As expected, the most sensitive parameter controlling stem
cell growth is the probability of self-renewal (fMAX). This is
consistent with most current strategies for inducing in vitro
stem cell expansion through the identification and use of
specific modulators of self-renewal (Sauvageau et al, 2004).
However, our analysis suggests for the first time that the
system dynamics are predominantly regulated by the non-
stem cell autonomous negative feedback signals (SF1 and SF2)
rather than stem cell-autonomous factors. Following this,
sustained stem cell amplification should depend on removal or
blocking of these signals. In fact, factors inducing total cell
expansion [i.e. increasing progenitor proliferation rate (uMAX)
through stimulatory growth factors such as interleukin (IL)-3]
may actually repress stem cell growth through enhanced
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accumulation of cells secreting inhibitory factors. We next
sought to use this insight in a new series of experiments to
predictively manipulate culture variables to control stem and
progenitor cell output.

Dynamic culture perturbations reveal intercellular
feedback control of stem and progenitor cell
output

Our model simulations predict that cell–cell feedback would
produce non-linear cell population dynamics in response to
culture perturbations. In a first series of experiments, we
measured the in vitro production of undifferentiated (Lin�)
cells, differentiated (Linþ ) cells, and progenitors (CFC) in
response to consecutive culture perturbations. UCB-derived
Lin� cells were cultured for 8 days unmanipulated (NS/NE), or
subject to the Linþ cell selection and media exchange
procedure at culture day-4 (S/E-d4), or at day-4 and day-6
consecutively (S/E-d4,d6) (Figure 5A and B). The relative

frequency of differentiated (%Linþ ) cells at culture day-8
was unaffected by the number of times the Linþ cells were
depleted. Although the production of undifferentiated (Lin�)
cells across conditions was unaffected, total output of
differentiated (Linþ ) cells was increased in response to the
S/E procedures (P¼0.079, t-test). Additionally, progenitor
(CFC) output was enhanced in response to consecutive
perturbations (P¼0.075, t-test). These non-intuitive results
can be attributed to the dynamic regulation of progenitor cell
proliferation and differentiation by the intercellular feedback
control loops.

The wide sample-to-sample variability in the expansion
potential of blood stem cells necessitates a large number
of replicate experiments to achieve statistical significance
(Koller et al, 1996). We examined what sources of exogenous
(culture variables) or endogenous (biological) variability
could account for the variability typically observed in culture.
To test this, 8-day unmanipulated (NS/NE) culture simulations
were run with individual parameter values and select
combinations normally distributed (CV¼1) around the
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values given in Table III. Experimental (n¼9) and simulated
(n¼100) output distributions were compared using a ranking
metric based on the sum of squared residuals between total
cell (TNC versus TNC), progenitor (CFC versus CFC), and
primitive progenitor (LTC-IC versus LTC-IC) population expan-
sion means and CVs (Supplementary Figure S1). Variabilities
in the secretion rates sr1–sr4 most closely simulated the
distribution of experimental cell population outputs. As shown
in Figure 5C, the distribution of culture outputs [CV for
TNC¼0.64, CFC¼0.67, and SRC¼0.73] is closely recapitulated
in silico [CV for TNC¼0.60, CFC¼0.83, and SRC¼0.76],
providing evidence that variability in culture outputs may be
attributable to variability in intercellular signalling dynamics.
That is, microenvironmental noise may have a function in
guiding cell fate.

Intercellular feedback signalling regulates
LTC dynamics

We next asked whether our model simulations are capable of
accurately predicting cell population dynamics for extended
(16-day) liquid cultures. Although in unmanipulated cultures,
stem and progenitor cell numbers rapidly plateau and begin to
decline within a week, our model simulations predicted that by
performing consecutive culture manipulations, stem and
progenitor cell growth would be enhanced. Liquid cultures
were maintained as described with Lin� cell election and
media exchange (S/E) performed every 4 days. As shown in
Figure 6A, total cells (TNC) continue to proliferate throughout
the 16-day culture, whereas progenitor (CFC) expansion
plateaus after day-12, and primitive progenitor (LTC-IC)
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numbers begin to decline after a maximal expansion of
approximately 12-fold at day-8. Cultures subjected to media
exchange alone every 4-days (NS/E) were predicted to decline
faster (Figure 6A, dashed lines). The model simulations fit the
experimental data for media exchange efficiencies (defined as
the percentage of media replaced) of approximately 90% or
greater (Supplementary Figure S2), and suggest that the
culture decline was due to increased secreted factor (SF1 and
SF2) feedback from the accumulating differentiating cells
(Figure 6B). To interrogate the predicted dynamic correlation
between inhibitory protein secretion (SF1 and SF2) and culture
decline, we profiled conditioned media obtained at culture
days 4, 8, 12, and 16 for a set of 31 ligands using a liquid chip
cytokine array. Although the sample-to-sample variability in
protein concentrations detected was large, the chemokines
MIP-1b (CCL4), IL-8 (CXCL8), and RANTES (CCL5), as well
as TGF-b1 display dynamics qualitatively similar to that of
the theoretical proliferation and self-renewal inhibitors SF1
and SF2 (Figure 6C). The remaining 27 ligands were not
consistently detected above background (Supplementary
Table SI). Many additional factors are likely to be involved;
however, technical limitations of proteomic technology
currently preclude systematic measurement for the small
sample volumes obtained from these primary human cell
cultures. Although the specific functional effects of combina-
tions of these factors on stem cell fate have yet to be elucidated,
these data show that a number of ligands are endogenously
secreted with dynamics qualitatively similar to our model
predictions.

Model simulations predicted that increased frequency of
culture manipulations at later time points (day-8þ ) would
improve primitive progenitor (LTC-IC) expansion, while
having no effect on the output of total cells (TNC) or
committed progenitors (CFC). To test this prediction, we
conducted a series of 12-day liquid cultures as described (S/E-
d4,8), or with an additional S/E procedure at day 10 (S/E-
d4,8,10). As predicted, the additional culture manipulation
had no effect on total (TNC) or progenitor cell (CFC) output
(not shown); however, primitive progenitor (LTC-IC) expan-
sion was enhanced from 11±4 to 19±3-fold (P¼0.10, t-test)
(Figure 6D). Primitive progenitor cell output can, thus, be
specifically manipulated by dynamically perturbing intercel-
lular feedback. We next asked whether our intercellular
feedback model could provide mechanistic insight into the
effects of culture variables on cell population outputs.

Culture strategies to manipulate intercellular
feedback signalling: plating density and input
cell population enrichment

Thus far, all cell cultures described have been initiated at Lin�

cell densities of 105 cell/ml. However, it has been reported in a
number of studies that low cell densities and progenitor
enrichment are associated with greater stem cell expansions
(Sandstrom et al, 1995; Kohler et al, 1999; Xu et al, 2000),
although the underlying mechanisms are largely undefined. To
study the effect of plating density on culture outputs, both
in vitro and in silico cultures were initiated with UCB Lin� cells
at densities of 104, 5�104, 105, and 5�105/ml. As shown in

Figure 7A (upper panel), lower cell seeding densities induce
greater expansions of total cells (TNC), progenitors (CFC), and
primitive progenitors (LTC-IC).

In a second series of simulations, cultures were initiated in
silico using cell populations with different amounts of stem
cell enrichment [from i¼20 (BTNC, Lin� plus Linþ ) to i¼8
(BLTC-IC)], and 8-day culture outputs were simulated
(Figure 7B, upper panel). Although the corresponding experi-
ment was not performed, experimental data for similar studies
initiated with mononuclear cells (TNC), Lin�, Lin�CD34þ ,
and Lin�CD34þCD38� enriched populations have been
published (Conneally et al, 1997; Kohler et al, 1999).
Consistent with earlier reports, expansion of stem
cells (SRC), progenitors (LTC-IC, CFC), and total cells
(TNC) directly correlate with the degree of progenitor cell
enrichment.

Examination of the simulated secreted factor concentrations
(Figure 7A and B, lower panels) under these conditions yields
mechanistic insight. Cultures seeded at lower cell densities
and/or with more enriched populations are cumulatively
(concentration� time) exposed to lower levels of endo-
genously produced proliferation and self-renewal inhibitors
(SF1 and SF2), resulting in greater stem and progenitor cell
expansions.

Our intercellular feedback model is thus capable of
simulating many features of in vitro hematopoiesis. As the
model contains a large number of (non-identifiable) para-
meters, we performed analysis to determine whether our
results could be attributable to parameter ‘over-fitting’.
Intracellular network connections were systematically re-
wired producing a set of nine structurally altered models
(S1–9) with conserved or decreased number of free para-
meters. We then calculated the Akaike information criterion
(AIC) for each, a metric used to rank alternative models based
on their ability to explain data with a minimum number of free
parameters (Landaw and DiStefano, 1984). Our original model
performs significantly better than 8/9 altered models; how-
ever, deletion of the positive proliferation feedback connection
(SF3) produces an incrementally higher ranking (model ‘S9’),
as the data are equivalently described, but with two fewer
parameters (Supplementary Figure S3). As our culture media
is supplemented with high concentrations of proliferation-
inducing cytokines, endogenous proliferative signals may be
obscured. However, in other in vitro or in vivo environments,
positive feedback loops may have a significant function (Eaves
and Eaves, 1988). This connection was hence maintained to
enable broader model applicability. We next queried whether
the model could be extended to hematopoietic pathologies.

Loss of responsiveness to endogenous
self-renewal inhibitors simulates stem cell
leukemic transformation

Progenitor enriched (Lin� or CD34þ ) UCB cells have been
used to generate in vitro models of leukemic stem cells (LSCs)
by transformation with leukaemia-associated gene fusions
such as MLL-ENL (Barabe et al, 2007), MLL-AF9 (Wei et al,
2008), and TLS-ERG (Warner et al, 2005). The resulting cell
lines are immortalised, yet growth factor-dependent and
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growth factor-responsive, display partially blocked myeloid
differentiation patterns, and induce acute myeloid leukaemias
in vivo on transplantation into immunodeficient mice.

We used data from Warner et al (2005) as a training set, and
the reverse engineering strategy described earlier, to determine
model parameter sets that most closely simulate long-term LSC
cultures. The simplest notion of tumourgenesis, as applied in
chemo- and radiation therapies, is that cancerous cells have
a higher intrinsic proliferation rate. To simulate this, the
progenitor proliferation rate (uMAX) was increased by 50%. We
could account for a partial differentiation block through
reducing the Linþ maturation rate (uþ ) by 50%. Enhanced
self-renewal associated with LSCs was simulated by increasing
the probability of self-renewal (fMAX) by 15%. As malignant
transformation involves multiple mutations, we also consid-
ered the effect of modulating all three parameters (uMAX, uþ ,
and fMAX) simultaneously. Finally, we considered a situation
wherein stem cell responsiveness to endogenous self-renewal
inhibitors (SF2) are diminished. Simulated culture outputs are
shown in Figure 8. Simulations were run using a range of
parameter values; however, the results were qualitatively
unaffected.

Remarkably, modulating any of the three parameters (uMAX,
uþ , or fMAX) independently had little effect on the long-term in
vitro growth kinetics. Modulating the three parameters
simultaneously had additive effects; however, the cell line
was not immortalised as the stem cells (SRC) were gradually
depleted as a result of accumulating differentiated cells and
associated feedback inhibition. When the stem cells were
simulated to be unresponsive to the endogenous self-renewal

inhibitor (SF2), they display all of the characteristic features of
in vitro-derived LSCs; sustained proliferation (immortalisa-
tion), reduced differentiation, and constitutive self-renewal.
The dynamic oscillations result from the weekly re-plating, as
the transformed cells are still responsive to the endogenous
proliferation inhibitor (SF1). Modulating this single topologi-
cal feature of the model (which may represent a combination
of several distinct molecular events) is, therefore, necessary
and sufficient to induce leukemic transformation in silico. This
is consistent with the parameteric and structural analysis of
our model; system dynamics are robust against alterations in
kinetic parameters, but sensitive to alterations of the regula-
tory network structure.

Discussion

The cellular network model described predictively recapitu-
lates many disparate features of in vitro hematopoiesis,
explaining the enhanced stem and progenitor cell expansions
observed at low cell densities, progenitor enrichment, frequent
media exchange, and progenitor re-selection as a consequence
of reduced inhibitory feedback signalling. The model suggests
scenarios in which stem cell fate is non-cell autonomously
controlled by intercellular signalling dynamics. This basic
concept could be extended to malignant hematopoiesis, as
dysregulated responsiveness to intercellular signals was
sufficient to reproduce characteristic features of in vitro
leukemic transformation. Additionally, biological variability
in the secretion rates of endogenous regulators was sufficient
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to explain the large sample-to-sample variability observed in
culture outputs. Although the model was developed specifi-
cally for blood stem cell growth in vitro, the underlying
principles may be more broadly applicable to other stem cell
systems both in vitro and in vivo.

Although many individual aspects of our model have been
considered earlier, to our knowledge this is the first mathe-
matical model of stem cell growth that systematically
considers (1) quantitative functional readouts as lumped and
overlapping cell compartments, (2) both proliferation rates
and self-renewal probabilities as functions of differentiation
state, and (3) proliferation rates and self-renewal probabilities
as functions of endogenously secreted positive and negative
regulatory molecules. Although some of the structural
assumptions may be disputed (i.e. the hierarchy may exist
as a functional continuum rather than discrete stages
(Quesenberry, 2006) and cells may alter their functional status
(undergo compartment transitions) without proliferating
(Kent et al, 2008)), these alterations have minimal effects on
model outputs. Additionally, the use of differential equations
limits the model’s applicability to situations in which the
stochastic effects of low stem cell numbers are negligible.
Modelling the growth of limiting numbers of stem cells
requires the use of single cell-based (stochastic) models
(Roeder et al, 2008). Further, our analysis has been limited
to liquid suspension cultures; extension to stoma-supported
culture or in vivo hematopoiesis would require additional
complexities such as direct cell–cell contact, blood–stroma
interactions, and/or hormonal regulatory mechanisms to be
incorporated.

Earlier models of in vivo hematopoiesis incorporating cell–
cell feedback have set kinetic parameters (or probability
functions) as directly responsive to neighbouring cell densities
(Wichmann and Loeffler, 1985; Roeder and Loeffler, 2002).
The limited number of models of in vitro hematopoiesis have

either ignored intercellular feedback (Varma et al, 1992) or
considered it indirectly by setting proliferation kinetics as cell
density dependant, assumed to be a result of nutrient depletion
as in microbial fermentations (Peng et al, 1996). Hence, our
model is the first to explicitly consider a mechanism (secreted
regulatory molecules) whereby cells are capable of sensing
local cell densities and differentiation status, and applying this
regulatory feature to in vitro culture.

Numerous molecular genetic studies have identified a
negative relationship between stem cell proliferation and
self-renewal—genetic mutations that constitutively enhance
HSC cycling generally result in a loss of long-term repopulating
cells, and vice versa (Orford and Scadden, 2008). Our findings
suggest that this antagonistic relationship may be mediated (at
least partially) by non-cell autonomous effects—rapid cycling
results in the accumulation of progenitors that inhibit self-
renewal through feedback signalling. This is supported by
recent demonstrations that normally quiescent stem cells are
induced to rapidly proliferate in response to progenitor
depletion in vivo (Wilson et al, 2008). Data from various in
vitro culture systems are also consistent with our model,
indicating that soluble endogenous factors limit stem cell
amplification, and progenitor re-enrichment and media
exchange/dilution enhance stem and progenitor cell growth
(Eaves and Eaves, 1988; Gammaitoni et al, 2004; Flores-
Guzman et al, 2006). The antagonistic relationship between
mature and primitive cell output hence has direct implications
for bioprocess design studies.

Our analysis suggests two complementary approaches to
control the intercellular signalling networks established in
culture. If the molecular regulators are known in sufficient
detail, they may be targeted through the use of blocking
antibodies or receptor antagonists against inhibitory factors,
the exogenous addition of competing stimulatory factors, or by
direct modulation of intracellular signalling pathways using
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small molecules. The specific inhibitory/stimulatory factors
may change over time as the culture evolves, likely necessitat-
ing dynamic media supplementation. Conversely, a global
culture manipulation strategy may be used, wherein media
exchange or dilution and cell subpopulation-specific selection
procedures are performed to indirectly control the intercellular
signalling network dynamics.

Although there are likely to be many exogenous and
endogenous sources of culture variability, we demonstrate
that variabilities in the secretion rates of the endogenous
regulators are sufficient to reproduce the variability observed
in culture outputs. It has been reported that donor-to-donor
variability in culture output is reduced though the use of
stromal feeder cells (Koller et al, 1996), and wide distributions
in stem and progenitors numbers is not observed between
individuals in vivo under normal physiological conditions. The
lack of additional regulatory controls in liquid cultures may
result in the amplification of initial biological differences,
which would be compensated for by stromal cells in vitro and
in vivo. Understanding the emergence of such biological noise
in culture will be important for the design of robust cell therapy
bioprocesses.

A main limitation of the model in its present form is that the
secreted regulators SF1-4 remain largely theoretical. We have,
nonetheless, identified a limited number of candidate regula-
tory factors, that is, TGF-b1, MIP-1b (CCL4), IL-8 (CXCL8), and
RANTES (CCL5). It is notable that TGF-b1 is a well-established
inhibitor of stem and progenitor expansion in vitro and in vivo
(Yamazaki et al, 2009), and IL-8 suppresses myeloid colony
formation in vitro (Broxmeyer and Kim, 1999). Many
molecules with stimulatory effects on proliferation and self-
renewal have been reported as being expressed by hemato-
poietic cells. Importantly, it is unlikely that any one or even a
few of these molecules could be added or blocked to simulate
model predictions. Instead, we propose that it is the net
balance of opposing signals, integrated by the cell through
intracellular signalling pathways, which regulates cell fate
decisions.

Our simulations show that while perturbing kinetic
constants has little effect on long-term system dynamics,
modifying the network structure (deleting the self-renewal
negative feedback loop) is both necessary and sufficient to
induce leukemic transformation. This is consistent with
experimental data, as leukemic cells are known to display
abnormal growth-factor response characteristics, and
specifically to be resistant to TGF-b1 inhibition (Lin et al,
2005). A number of other groups have modelled leukaemia
using both differential equation- and stochastic single cell-
based models. Although all models rely on a basic assumption
that LSCs have a competitive advantage against normal HSCs
in vivo, the cell-level parameters responsible for this compe-
titive advantage have yet to be conclusively defined. Either
LSCs are assumed to be unresponsive to an intrinsic limit in the
stem cell reserve size (Michor et al, 2005) or to have an
increased amplification rate (Roeder et al, 2006), both
possibilities being conceptually consistent with our model.
Unresponsiveness to inhibitory signals would allow the LSCs
to expand above their normal physiological limit, resulting in
an increased amplification rate and selective advantage
against normal HSCs.

The large uncertainties associated with some of the
parameter estimates indicate that the model is parametrically
non-identifiable, an outcome consistent with the structure of
the cellular network (i.e. ratios of competitive interactions may
be conserved rather than their characteristic values). Non-
identifiability appears to be a universal feature of many
systems-level models, and does not necessarily limit their
predictive value (Gutenkunst et al, 2007). Consistent with
recent models of intracellular signalling in mammalian (Chen
et al, 2009) and bacterial systems (Barkai and Leibler, 1997),
our analysis indicates that key system behaviours are
determined primarily by network structure rather than the
precise tuning of kinetic parameters.

In summary, our intercellular feedback model of blood stem
cell growth predictively simulates the dynamic characteristics
of both normal and malignant hematopoiesis in vitro. This
model may, therefore, serve as a platform for further
experimental interrogation of the regulatory mechanisms
controlling stem cell fate in vitro and in vivo, and as a tool
for the rational design of stem cell-therapy bioprocesses.

Computational methods

The hematopoietic hierarchy can be divided into a number of
discrete compartments, from long-term repopulating HSCs
(LT-HSCs) to fully differentiated mature cells. Each compart-
ment can be viewed as representing a cell population at a
distinct state of maturation, with unidirectional transition
between compartments (differentiation) associated with cell
cycling. Although recent evidence shows that LT-HSCs may
undergo functional transitions (differentiation) before mitosis
(Kent et al, 2008), differentiation is generally co-incident with
population amplifying cell divisions. For simplicity, lineage
specification is considered only after differentiation (Linþ ).
A cell population balance can be constructed around each
compartment (i) in which the number of cells in the
compartment (Xi) is dependant on the number of cells entering
from the earlier compartment (Xi�1), the cell proliferation
rate (ui), and the probability of self-renewal (fi). This is
a deterministic model, which nonetheless can be viewed as
incorporating stochastic elements whose impacts are negli-
gible at the population level.

The cellular growth rate for compartment i is given by the
equation:

dXi

dt
¼ ð1� fi�1Þui�1Xi�1 þ ð2fi � 1ÞuiXi

for i ¼ ½1; 2; 3; . . . ; n�
ð1Þ

A system of ordinary differential equations (ODEs) is therefore
constructed, which describes the growth of each cellular
compartment for a total of n compartments, with compartment
1 (X1) representing LT-HSCs (X0 is non-existent, hence set
as¼0), and terminally differentiated mature cells represented
by compartment n (Xn). Specific compartments can be
ascribed to experimentally measurable cellular assays. The
functional measures considered are long-term NOD-SRC, LTC-
IC, and CFCs, which readout stem cells, primitive progenitors,
and mature progenitors, respectively. We additionally char-
acterise the cells phenotypically as undifferentiated Lin� or
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differentiated Linþ . Starting with a stem cell (i¼1), the
number of cells in compartment i that can be generated
through symmetric differentiation divisions is given by:

Xi ¼ 2i�1 ð2Þ

And subsequently the total number of cells (XT) in all
compartments, up to and including differentiation stage n
generated from a stem cell is given by:

XTX

Xn

1

Xi ¼ 2n � 1 ð3Þ

Hence the total number of compartments (n) readout in a
given functional assay can be estimated through rearrange-
ment of equation (3):

nX
lnðXT þ 1Þ

lnð2Þ � lnðXTÞ
lnð2Þ ð4Þ

Model assumptions

We assume that the SRC assay quantifies LT-HSCs with
absolute accuracy, although this assumption may be disputed.
Estimates derived directly from equation (4) based on
experimentally measured frequencies in UCB TNCs are
presented in Table I. Only the last compartment within a given
population is considered, and the first compartment is set to 1
(LT-HSC). Although LT-HSCs will not readout in the CFC assay,
and it is unclear whether LT-HSCs readout in the LTC-IC assay
(Coulombel, 2004), placement of the first compartment has
negligible impact on resulting calculations. Similarly, account-
ing for the self-renewal potential associated with HSCs and
immediate descendants will increase the calculated total
number of compartments (n); however, a few additional
divisions in the early stages of the hierarchy will have
negligible effect on the population balance calculations. The
simplifying assumption that Xiþ 1¼2Xi will likely not hold true
across all compartments for a system in steady state, and this
amplification coefficient may in fact be a dynamic parameter.
However, in lieu of experimentally defined in vivo kinetic
parameters, it is a reasonable estimate supported by our
analyses (see Supplementary text and Supplementary Figure
S4) and other experimental data. It is notable that our
calculation of n¼20 is consistent with earlier theoretical and
experimental-based estimates ranging from 17 to 30 (MacKey,
2001; Shochat et al, 2002).

The self-renewal probabilities (fi), proliferation rates (ui),
and cell death rates must be specified for each compartment to
solve the cell population balance ODEs defined in equation
(1). As these internal variables are inaccessible to experi-
mental measurement, we chose to estimate parameters based
on generalised functions and a reverse engineering strategy to
estimate specific values within experimentally or biological
constraints.

Stimulation with high concentrations of hematopoietic
growth factors such as stem cell factor (SCF), Flt3 ligand
(FL), and thrombopoietin (TPO) are known to inhibit
apoptosis, and cultures are maintained such that concentra-
tions of nutrients (i.e. amino acids) and waste products (i.e.

lactate) are not limiting. It is, therefore, reasonable to assume
the cellular death rate to be negligible.

It has been documented that the proliferation rate (ui) of
hematopoietic cells varies with the stage of maturation such
that the proliferation rate (ui) of mature progenitors
(CFC)4primitive progenitors (LTC-IC)4stem cells (SRC)
(Mobest et al, 1999). The in vitro conditions under study do
not allow for the functional maturation of differentiating cells,
and this can be accounted for by a setting a lower proliferation/
differentiation rate for the Linþ cells. We define the prolifera-
tion rate of Lin� cells as a function of compartment number by
a Gaussian-type function:

ui � uMAX exp
�ði� nMAXÞ2

2DGR
2

" #
ð5Þ

where nMAX is the compartment with the maximum prolifera-
tion rate (analogous to the mean), uMAX is the proliferation rate
of this compartment, and DGR is the growth rate decay term
(analogous to the variance), which defines the steepness of the
change in cycle rates between successive compartments.
Physiological limits bound all the three parameters between
1 and 10.

By definition, only the LT-HSC population has the capacity
for self-renewal probability (fi) to exceed 50% in vivo;
however, ST-HSCs must by definition also have some capacity
to self-renew (o50% in vivo), and downstream progenitor
populations have also been documented to undergo limited
self-renewal divisions (Marley et al, 2003). Self-renewal
probabilities (fi) should, therefore, diminish with the stage of
differentiation, as described theoretically in Roeder and
Loeffler (2002). We define the probability of self-renewal (fi)
as a function of compartment number by a Gaussian-type
function with maximum set at i¼1:

fi � fMAX exp
�ði� 1Þ2

2DSR
2

" #
ð6Þ

where fMAX is the maximal self-renewal probability of the LT-
HSC compartment (X1), (limited to [0 1]) and DSR is the self-
renewal decay term (analogous to the variance), which defines
the steepness of the change in self-renewal probabilities
between successive compartments, bounded between 1 and
10 based on physiological limits.

Explicit time-dependent terms

When purified hematopoietic progenitor cells are placed in
culture, there is an initial lag time before the cells enter cycle
(G0 to S/G2/M/G1 transition), after which cells cycle with
approximately constant doubling time. A lag phase is therefore
introduced into the system through the explicit time-depen-
dant function:

ui �
tkt

tkt
D þ tkt

� �
ð7Þ

where t is the culture duration (days), tD is the time for 50% of
the cells to enter cycle, and kt is the Hill coefficient defining the
rate at which cells are induced to cycle (approaching a step
function at tD as kt-N). On the basis of experimental
observations (Ko et al, 2007), setting tD¼2 days and kt¼4
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produces a reasonable kinetic response. For simplicity, this lag-
phase term is applied equally to all the cell compartments,
whereas in reality there would likely be differences among
HSCs, progenitors, and mature cells in their rate of entry to
cycle on stimulation (Punzel et al, 2002).

Non-linear terms

It was our goal to incorporate as few structural assumptions as
possible into the model so as to minimise any systemic bias.
For models containing few compartments (i.e. 3 or 4), it is
possible to use random methods to structure the intercellular
regulatory relationships (positive feedback, negative feed-
back, feed-forward), followed by optimisation algorithms to
select the top performing network topologies (Socolovsky
et al, 2007). However, for a 20-compartment model this
approach would be computationally unfeasible due to the
combinatorial explosion of possible topologies. Hence, we
used the wealth of experimental and theoretical literature on
hematopoietic regulation to define a candidate intercellular
network topology.

Murine HSC transplantation studies demonstrate that
numbers of stem cells, progenitors, and total cells in the bone
marrow and circulation are regulated through feedback
control mechanisms. Feedback control is inferred from
observations that there exist non-autonomous established
‘set points’ for cell numbers in each compartment, such that
cellular expansion in vivo correlates negatively with cell dose
transplanted (Iscove and Nawa, 1997). More recently, in vivo
imaging studies have demonstrated directly that normally
quiescent LT-HSCs are induced to rapidly enter cycle and self-
renew in response to chemical or radiation-induced progenitor
depletion, returning to quiescence after regeneration of the
bone marrow (Wilson et al, 2008; Xie et al, 2009). Appropriate
hematopoietic regeneration requires independent regulation
of stem cell proliferation and self-renewal, and evidence
suggests that these processes are in fact regulated indepen-
dently by distinct cell compartments in vivo; bone marrow
progenitors (CFU) inhibit self-renewal independent of prolif-
eration effects (Blackett and Botnick, 1981), whereas mature
cells in the circulation normally suppress stem and progenitor
cell proliferation in the bone marrow (Cheshier et al, 2007).
However, under appropriate circumstances (i.e. infection),
circulating white blood cells can directly induce the prolifera-
tion of HSCs through the secretion of inflammatory cytokines
(Essers et al, 2009).

Mature cell populations in fact display lineage-specific
functional effects on stem and progenitor cells; platelets (Foss
et al, 2008) and NK cells (Fardoun-Joalland et al, 1994) both
secrete factors that enhance progenitor expansion, whereas
macrophages (Xu et al, 2000) and red blood cells (Cheshier
et al, 2007) secrete factors that inhibit progenitor expansion.
Stem and progenitor cell fate decisions are regulated by a
balance of antagonistic stimulatory versus inhibitory soluble
factors (Cashman et al, 1990; Jacobsen et al, 1994) produced
by distinct cell populations in the microenvironment (Wright
et al, 1979). Importantly, these feedback mechanisms seem to
be (at least partially) reconstituted in vitro, as progenitor
output in both stroma supported (Oh et al, 1994) and liquid
suspension cultures (Kohler et al, 1999) is enhanced by

frequent media exchange, cell-density reduction, and progeni-
tor re-selection (Gilmore et al, 2000; Flores-Guzman et al,
2006).

The intercellular regulatory network topology described in
Wichmann and Loeffler (1985) consisting of three inter-related
negative feedback control loops is capable of simulating in vivo
hematopoietic response to multiple perturbations. The
topology consists of (1) auto-regulatory HSC feedback, (2)
intramedulary short-range feedback, and (3) blood–bone
marrow feedback. Although the mechanisms of feedback
control are suggested to be soluble factors, the model is
formulated by setting proliferation and self-renewal rates as
directly responsive to cell densities, implying a linear relation-
ship between cells and secreted factor concentrations. We
expanded on this concept by considering proliferation rates
(ui) and self-renewal probabilities (fi) as regulated by a balance
of secreted inhibitory and stimulatory factors (SF1-4). Mature
(Linþ ) cell subpopulations secrete factors (SF1) that inhibit
the proliferation of progenitors (Lin�), and progenitors (Lin�)
in turn secrete factors (SF2) that inhibit the probability of self-
renewal of stem and primitive progenitor cells. These negative
feedback loops are coupled as SF2 secretion is induced by SF1.
We additionally consider two factors secreted by mature
(Linþ ) cell subpopulations, SF3 and SF4, which stimulate
progenitor proliferation and self-renewal, respectively (posi-
tive feedback). This regulatory architecture is described by the
following set of ODEs; secretion of SF1 through SF4 is given by:

d SF1½ �
dt

¼ sr1
X20

14

Xi

 !
ð8Þ

d SF2½ �
dt

¼ sr2
SF1½ �Ks

LsKs þ SF1½ �Ks

 ! X13

1

Xi

 !
ð9Þ

d SF3½ �
dt

¼ sr3
X20

14

Xi

 !
ð10Þ

d SF4½ �
dt

¼ sr4
X20

14

Xi

 !
ð11Þ

And the dose–response effects on proliferation rates and self-
renewal probabilities given by coupled Hill-type functions:

ui �
LK1

1

LK1
1 þ SF1½ �K1 LK3

3

LK3
3 þ SF3½ �K3

� �
0
BB@

1
CCA ð12Þ

fi �
LK2

2

LK2
2 þ SF2½ �K2 LK4

4

LK4
4 þ SF4½ �K4

� �
0
BB@

1
CCA ð13Þ

As factors SF1 through SF4 are theoretical, the corresponding
terms L1 through L4, representing ligand concentrations
producing half-maximal dose response, are arbitrary and
hence set to 1 for simplicity. Equations (13) and (14) then
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reduce to:

ui �
1þ SF3½ �K3

1þ SF1½ �K1þ SF3½ �K3

 !
ð14Þ

fi �
1þ SF4½ �K4

1þ SF2½ �K2þ SF4½ �K4

 !
ð15Þ

We can then set practical bounds on secretion rates sr1 though
sr4 based on dynamic dose–response relationships. For cell
densities in the range of 5�105 cell/ml, secretion rates of 10�7

to 10�5 pg/cell/day result in 50% maximal response reached
between 0.5 and 50 days, and we similarly set Ls¼10�2 to 101.
Hill coefficients (k1–4 and ks) for the terms are set between
0.1 and 10, covering the range of relevant sigmoidal dose–
response curves. Combining equations (5), (7), and (14),
and (6) and (15) to define ui and fi, respectively, as functions
of compartment number (i), time (t) and secreted factor
concentrations (SF1–4) generates the functions:

ui ¼uMAX exp
�ði� nMAXÞ2

2DGR
2

" #
� tkt

tkt
D þ tkt

� �

� 1þ SF3½ �K3

1þ SF1½ �K1þ SF3½ �K3

 ! ð16Þ

fi ¼ fMAX exp
�ði� 1Þ2

2DSR
2

" #
� 1þ SF4½ �K4

1þ SF2½ �K2þ SF4½ �K4

 !
ð17Þ

Such that (0puipuMAX) and (0pfipfMAX). It should be noted
that SF1 through SF4 most likely represent groups of ligands
rather than single factors. Additionally, secretion of SF1, SF3,
and SF4 by Linþ cells can be equivalently interpreted as a
single homogenous population secreting all three factors, three
distinct populations each secreting a single factor, or more
likely, a combination thereof. Within the heterogeneous Linþ

population, there are likely subpopulations biased towards
SF1, SF3, and SF4-type secretion profiles; however, this
additional complexity is not considered. Proliferation rates
and self-renewal probabilities of the progenitor populations
will hence be dependent on the exogenous growth factor(s)
provided (setting uMAX, uþ , nMAX, fMAX) and the balance
between inhibitory and stimulatory factor accumulation in the
culture microenvironment (SF1:SF3, SF2:SF4).

Parameter estimation

The resulting model contains 16 undefined parameters (P1

through P16) (see Table II). Data from Madlambayan et al
(2005) (see Table III) was used as a training set to estimate
parameters through a reverse engineering strategy.
The proportion of differentiated (Linþ ) cells produced
(%Linþ ) and cell population fold-expansion values
(TNCX¼total nucleated cell, CFCX¼colony forming cell,
LTC-ICX¼long term culture-initiating cell, SRCX¼scid
repopulating cell) represent observable functions (Oi) of

system variables (Xi);

%jLinþ ¼

P20

i¼14

Xijt¼tf

P20

i¼1

Xijt¼tf

�100 ð18Þ

TNCX ¼

P20

i¼1

Xijt¼tf

P20

i¼1

Xijt¼t0

ð19Þ

CFCX ¼

P10

i¼1

Xijt¼tf

P10

i¼1

Xijt¼t0

ð20Þ

LTC-ICX ¼

P8
i¼1

Xijt¼tf

P8
i¼1

Xijt¼t0

ð21Þ

SRCX ¼ X1jt¼tf

X1jt¼t0

ð22Þ

where t0 and tf represent culture initiation and analysis time
points, respectively. The observable variables may be repre-
sented as terms in the observation vector (O):

O ¼ ½%Linþ TNCX CFCX LTC-ICX SRCX� ð23Þ
Which defines the system output (O). A cost function (J) to be
minimised was defined as a weighted (w) sum of squared
residuals between experimental (Oe) and simulated (Os)
system outputs:

J ¼
X

wi
ðOei � OsiÞ2

Oei
ð24Þ

A total of 20 system outputs (%Linþ , TNC, CFC, LTC-IC, and
SRC expansion � 4 culture conditions) are therefore used to fit
the 16 internal parameters. Each term in the equation J is
normalised (division by Oe2), and a weighting factor (wi) is
included (set to 1 for all terms initially) introducing a user-
defined bias based on which terms are deemed more or less
important.

Because of the highly non-linear and multi-modal nature of
the cost function (J), a hybrid stochastic method was used to
solve this non-linear programming problem. A genetic algo-
rithm was first used as a global method to search the entire
parameter space, followed by the Nelder–Mead Simplex
algorithm to search for a local minimum in the vicinity of
output from the genetic algorithm. These were implemented
using the MATLAB gatool and fminsearch functions, respec-
tively. Multiple settings for the genetic algorithm were tested
and the following were selected, producing a solution that
converges within 150 generations; population size¼160 [10�
number of parameters (Np)], initialised as a random log-
uniform distribution; elite count¼8; crossover fraction¼0.5;
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mutation rate¼0.5. After model validation studies, objective
functions were created based on the new data, and a
generalised pattern search algorithm (psearchtool) was used
to adjust parameter values within 95% confidence intervals
(±2 s.d.) of the estimates defined in Table III.

Model analysis—local parameter sensitivities

To understand the relationship between system responses and
variations in individual parameter values, local parameter
sensitivity analysis was performed. The sensitivity coefficient
(S) is defined as:

SO
P ¼

qO=O

qP=P
ffi DO=O

DP=P
for smallDP ð25Þ

which is defined for each system output (Oi) and system
parameter (Pj). Individual parameters were altered individu-
ally by 1% (DP¼0.01) from their estimated values, and
resulting changes in system outputs (DO) were determined.
The resulting expression essentially denotes the percentage
change in output Oi resulting from a 1% change in parameter
Pj. This analysis produces a 5�16 sensitivity coefficient (S)
matrix.

SOi
Pj for i ¼ ½1 : 1 : 5� and j ¼ ½1 : 1 : 16� ð26Þ

To quantify relationships between parameters and system
outputs, this matrix was converted to a heat-map image for
visualisation, and 2D, unsupervised hierarchical clustering
used to organise rows (Pj) and columns (Oi). Clustering and
visualisation was performed using dChip v2006 software
(www.dChip.org). Sensitivity values were normalised
(mean¼0, s.d.¼±1, across rows) and rows/columns clustered
through the centroid-linkage method with a distance metric of
1�r (Pearson correlation coefficient) as described in Eisen et al
(1998).

Model analysis—parameter identifiability

Parameter estimation accuracies are central to measuring
identifiability of mechanistic models. The Fisher information
matrix and Cramer–Rao theorem are commonly used to
estimate the lower bound of parameter estimation errors.
However, this approach assumes that the model is linear with
respect to parameters, whereas our model is highly non-linear.
We, therefore, implemented a bootstrapping approach as
described in Kremling et al (2004), which is more computa-
tionally intensive but requires no underlying assumptions. On
the basis of experiments and results described in Figure 2, we
generated a synthetic data set of 50 experiments from the
distributions reported in Table III. We then ran our parameter
estimation algorithm on each individual data set, resulting in
50 estimated parameter vectors (P). We filtered the results for
parameter vectors (P) producing cost functions (J) o5, and
characterise the distribution of individual parameter estimates
(Pi) by their CV. Non-identifiable parameters are defined
as those for which it is not possible to determine with
95% confidence (estimated as ±2 s.d.) that their values are
non-zero (Zak et al, 2003).

Model analysis—structural discrimination

The large number of non-identifiable free parameters per-
suaded us to examine the sensitivity of model simulations to
structural alterations of the regulatory network. The regula-
tory architecture is based on theoretical and experimental
evidence rather than an exhaustive search of all possible
topologies due to computational limitations. We chose to
systematically ‘re-wire’ intracellular network connections by
perturbing the sign of interactions (stimulatory2inhibitory)
while conserving the number of free parameters. The
following perturbations are defined as A, B, and C:

A: SF2 effect on fi—inhibitory-stimulatory
B: SF4 effect on fi—stimulatory-inhibitory
C: SF1 effect on sr2—stimulatory-inhibitory

These perturbations were implemented alone and combi-
natorially, and the resulting structurally altered models
defined as S1 through S7:

S1: A
S2: B
S3: C
S4: AB
S5: AC
S6: BC
S7: ABC

Perturbing the sign of interaction for the effect of SF1 and
SF3 on progenitor proliferation rate (ui) is equivalent to simply
deleting one of the feedback connections; hence, we con-
sidered two additional structural alterations that have the
effect of reducing the number of free parameters:

S8: delete SF1 functional effects (k1¼�N)
S9: delete SF3 functional effects (sr3¼0, k3¼0)

We ran the parameter estimation algorithm on each of the
structurally altered models (S1–S9) in addition to our original
model [control (C)] using an extended objective function (J)
incorporating experimental data reported in Figures 3B, 6A, D,
and 7A. The Akaike Information Criterion (AIC) was then
computed for each:

AIC ¼ 2Npþ Ne ln
2p � J
Ne

� �
þ 1

� �
ð27Þ

where Np¼number of parameters and Ne¼number of in-
dependent experimental measurements. Alternate models are
then ranked, with the lowest AIC corresponding to the model
best able to describe the data with minimum free parameters
(Landaw and DiStefano, 1984).

Software

All model simulations and computational analysis was
performed using MATLAB R2008a software (The Mathworks,
Natick, MA, USA), and differential equations were solved
using the non-stiff numerical solver ode23 with default error
tolerances. To ensure that results were not affected by the
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propagation of rounding errors, select simulations were
performed using the non-stiff solver ode45 and the stiff solver
ode15s with different error tolerances, and the results were
unaffected.

Materials and methods

Cell sample collection and processing

UCB samples were obtained from consenting donors according to
procedures accepted by the ethics boards of Mt Sinai hospital (Toronto,
ON, Canada), Joseph Brandt hospital (Burlington, ON, Canada), and
Credit Valley Hospital (Mississauga, ON, Canada). Mononuclear cells
were obtained by first mixing the UCB sample with 10% pentastarch
(Bristol-Myers Squibb Canada, Montreal, QC, Canada) at a 1:5
volumetric ratio. The sample was then centrifuged for 10 min at 50 g,
and the upper (leukocyte rich) plasma layer was removed and
centrifuged for 10 min at 400 g to obtain a cell pellet. Red blood cells
were depleted by suspending the cells for 10 min in red blood cell lysis
buffer (0.15 M NH4Cl, 0.01 M KHCO3, 0.1 mM EDTA). Lineage depleted
(Lin�) cells were isolated from the mononuclear cell fraction using the
StemSep system (Stem Cell Technologies, Vancouver, BC, Canada).
This process depletes cells expressing cell surface antigens CD2, CD3,
CD14, CD16, CD19, CD24, CD56, CD66b, and CD235a.

Cell culture

UCB Lin� cells were seeded at 105 cells/ml (unless otherwise noted) in
serum-free Stem Span media (Stem Cell Technologies, Vancouver, BC,
Canada) supplemented with 100 ng/ml SCF (Amgen, Thousand Oaks,
CA, USA), 100 ng/ml FL (Amgen), and 50 ng/ml TPO (R&D Systems,
Minneapolis, MN, USA), 1mg/ml low-density lipoproteins (Calbio-
chem, La Jolla, CA, USA), and penicillin-streptomycin at 100 U/ml and
100mg/ml, respectively (Invitrogen, Carlsbad, CA, USA). The cell
suspension either injected into a cell culture bag of appropriate volume
(2, 7, or 12 ml) through the self-sealing rubber septum using a sterile
syringe attached to a threaded cannula, or placed into wells of a 24-
well tissue culture plate (Corning Inc, Corning, NY, USA). Cultures
were carried out using a culture bag-based bioprocess (described
below) for experiments requiring Linþ cell depletion, otherwise 24-
well tissue culture plates were used. Cultures were maintained on an
orbital shaker at 371C in a humidified atmosphere of 5% CO2 in air.

Subpopulation selection and media dilution

The bioprocess used in these studies for depletion of in vitro-generated
Linþ cells was described in Madlambayan et al (2006). It consists of
two gas-permeable cell culture begs connected through a magnetic
selection element, used to remove the Linþ cells (or any other
antibody-labelled cell subpopulation). The system is completely
closed, sterile, autoclavable, and disposable (single use), making it
attractive for clinical applications. Cell selection in the bioprocess was
performed in a similar manner to the StemSep system using the
reagents provided with the kit, as described in Madlambayan et al
(2006). The cell culture bag was flushed with Linþ antibody cocktail
and magnetic colloid (dextran-coated iron particles) as per manufac-
turer’s instructions. This effectively attached the dextran-coated iron
particles to the Linþ cells. The cell culture was subsequently allowed
to flow the selection element that was placed in a magnetic field,
allowing the iron-labelled Linþ to be retained in the element, whereas
non-labelled Lin� cells flow through to the secondary culture bag. For
flow rate control, a peristaltic pump was attached upstream of the cell
culture bag using a septum/cannula connection, and used to drive the
cell solution through the selection element at a flow rate of 1.3 ml/min.

Media dilution was performed on the enriched Lin� cells by
removing the secondary culture bag from the selection element and
placing it into a 50 mL conical centrifuge tube. Paper batting was used
to stabilise the culture bag during centrifugation. The bag was
centrifuged for 7 min at 200 g, after which a cell pellet was visible at
the bottom. Conditioned media was then removed through the self-

sealing septum using a sterile syringe and fresh media was added
through the same septum. The cell culture bag was then placed back
into the incubator.

Phenotypic analysis

Staining for Linþ marker expression on culture-generated cells was
accomplished by suspending 5�104 cells in 100ml ice cold Hank’s
balanced saline solution containing 2% (v/v) human UCB serum
(HBSS-HS). The cells were then incubated with Linþ antibody cocktail
followed by magnetic colloid (dextran-coated iron beads) as described,
washed twice in HBSS-HS, and finally stained with saturating amounts
of FITC-labelled anti-dextran antibody (Stem Cell Technologies) for
30 min on ice. For isotype controls, the Linþ antibody incubation step
was not performed. All samples were washed in HBSS-HS and stored
on ice before analysis either on a FACSCanto (BD Biosciences, San
Jose, CA, USA) or Coulter EPICS XL (Beckman Coulter, Fullerton, CA,
USA) flow cytometer.

Progenitor cell assays

Cells were assayed for CFC frequency by plating 500 cells into 1.5 ml
methylcellulose-based medium (MethoCult H4434, Stem Cell Tech-
nologies) containing 1% methylcellulose in Iscove’s Modified Dul-
becco’s Medium, 30% fetal bovine serum, 1% bovine serum albumin
10�4 M 2-mercaptoethanol, 2 mM L-glutamine, 50 ng/ml SCF, 10 ng/ml
granuloctye-macrophage colony stimulating factor, 10 ng/ml IL-3, and
3 U/ml erythropoietin. After 14 days of incubation at 371C in a
humidified atmosphere of 5% CO2 in air, duplicate cultures were
visually scored for CFC content (colony number and lineage
composition). Cells were assayed for LTC-IC frequency by plating 103

freshly isolated Lin� cells, or 5�103 to 2�104 culture-generated cells
in triplicate onto irradiated (6000 rad) murine stromal cells (M2-10B4)
on collagen-coated six-well plates in MyeloCult H5100 medium
containing 10�6 M hydrocortisone (Stem Cell Technologies). After 5
weeks of culture at 371C with weekly half-media exchanges, the
contents of each well were harvested using 0.25% Trypsin with 0.38 g/
l EDTA in HBSS (Invitrogen, Carlsbad, CA, USA), and plated into
methylcellulose-based media. LTC-IC content was determined by
enumerating CFCs present after 14 days of incubation.

Conditioned media proteome analysis—luminex
liquid chips and ELISA

Conditioned media samples were assayed in triplicate using the
Biosource Human Cytokine 30-Plex detection kit (Invitrogen, Carls-
bad, CA, USA). These kits use Luminex (Luminex Co, Austin, TX, USA)
microspheres as a fluid platform for multiplex sandwich ELISA. The
‘microspheres’ consist of 5mm polysytene beads bar-coded through
unique ratios of APC: APC-Cy7 dye. Each colour-coded microsphere
contains primary capture antibody against an individual ligand, which
in combination with secondary PE-conjugated detection antibody, can
be used to quantify the concentration proteins in a test sample through
flow cytometry. Briefly, 50 ml antibody-coated microspheres per test
were suspended and aliquoted into wells of a 96-well filter plate
(Millipore, Billerica, MA, USA) and washed in wash buffer. A measure
of 50ml of incubation buffer plus 100ml of culture media sample (or
appropriately diluted standard) was then added to each well, and the
plate was covered and incubated on an orbital shaker at room
temperature for 2 h. After sample incubation, the wells were washed
and 100ml of detection antibody mixture was added to each well and
incubated on an orbital shaker at room temperature for 1 h. After
incubation, wells were washed and incubated with 100ml streptavidin-
PE for 30 min. After this final incubation, wells were washed and
resuspended in 5 ml polystyrene falcon tubes (BD Biosciences, San
Jose, CA, USA) for analysis using a BD FACSCanto flow cytometer (BD
Biosciences, San Jose, CA, USA). APC versus APC-Cy7 gates for each
of the 30 cytokine-specific bead regions were defined based on
manufacturer’s datasheets, and cytokine signals quantified by
comparing PE fluorescence levels to standard dilution curves prepared
using the Human Cytokine 30-Plex Standard mixture provided.
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Cytokine-specific standard curve equations were developed by fitting
data to a four-parameter logistic curve:

logðPEÞ ¼ A

1þ exp �BðlogðxiÞ þ CÞ½ � þ D ð28Þ

where PE is the raw PE-fluorescence intensity, xi is the cytokine
concentration, and A, B, C, and D are the unknown parameters, fit
using the Nelder–Mead Simplex non-linear optimisation algorithm.

TGF-b1 is not one of the molecules included in the kit, hence
conditioned media samples were separately analysed using a human
TGF-b1 Quantikine ELISA Kit (R&D Systems, Minneapolis, MN, USA)
as per manufacturer’s instructions.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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