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Abstract: Many image encryption schemes based on compressed sensing have the problem of poor
quality of decrypted images. To deal with this problem, this paper develops an image encryption
scheme by multiscale block compressed sensing. The image is decomposed by a three-level wavelet
transform, and the sampling rates of coefficient matrices at all levels are calculated according to
multiscale block compressed sensing theory and the given compression ratio. The first round of
permutation is performed on the internal elements of the coefficient matrices at all levels. Then the
coefficient matrix is compressed and combined. The second round of permutation is performed on the
combined matrix based on the state transition matrix. Independent diffusion and forward-backward
diffusion between pixels are used to obtain the final cipher image. Different sampling rates are set
by considering the difference of information between an image’s low- and high-frequency parts.
Therefore, the reconstruction quality of the decrypted image is better than that of other schemes,
which set one sampling rate on an entire image. The proposed scheme takes full advantage of the
randomness of the Markov model and shows an excellent encryption effect to resist various attacks.

Keywords: image encryption; multiscale block compressed sensing; state transition matrix; Markov
model

1. Introduction

With the rapid development of internet technology, digital images are widely used
in all walks of life. As images can intuitively display information, they are widely used
in banking, the military, medicine, finance, and other fields. Once images containing
important information spread on the internet, they are likely to be attacked and cracked
by hackers. To make meaningful images meaningless through encryption can effectively
protect the security of private information in transmission and storage.

Technology applied to image encryption includes chaotic systems [1–8], cellular au-
tomatons [9–11], substitution boxes [12–14], DNA encoding [15–20], elliptic curves [21–24],
finite-precision error [25], Galois field [26] and quantum computing [27,28]. The chaotic
system is most popular in the field of image encryption and is continuously improved,
such as symmetric chaotic maps [29] and adaptive chaotic maps [30,31]. In particular, the
improvement of the traditional one-dimensional chaotic system [1–3,12,32] enhances the
encryption effect. Therefore, we choose several chaotic systems with excellent encryption
effects to generate chaotic sequences.

The combination of compressed sensing (CS) theory and image encryption algorithms,
by which an image is simultaneously compressed and encrypted, has seen much research.
The most special advantage of compressed sensing is that it can reduce data redundancy.
Before data transmission, if the cipher image can be further compressed, it will not only
improve the transmission efficiency but also be more suitable for transmission channels
with limited bandwidth. Moreover, because the sampling process of compressed sensing
is a linear random projection process, in the presence of noise, the target sparse signal
can be reconstructed with high probability through a greedy algorithm or an optimized
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algorithm. This not only protects the security of information but saves bandwidth, time,
and storage space. There are both one-dimensional (1D) [33–36] and two-dimensional
(2D) compressed sensing [37], and encryption schemes for both single [33,38] and multiple
images [39,40]. Chai et al. [39] proposed a scheme to compress and encrypt two color
images at the same time through parallel operations on their RGB components, which
improves efficiency and enhances security. To further reduce the bandwidth and computing
load, Fan et al. [41] proposed an algorithm combined with vector quantization (VQ) and CS,
distinguishing important and secondary information. Important data are extracted by a VQ
compression algorithm, and the secondary data are compressed by a CS algorithm, so as to
achieve higher compression efficiency. However, many encryption schemes are generated
based on traditional compressed sensing theory, using one sampling rate for the whole
image and a single measurement matrix to measure it, which is neither efficient nor safe
enough [33–36,38,42]. Additionally, when the compression ratio is low, the reconstructed
image after decryption has a poor visual effect.

Many effective encryption schemes with improved efficiency have been proposed.
Wang et al. [43] proposed a scheme based on parallel compressive sensing (PCS) combined
with count mode, where the measurement matrix is updated by continuously updating the
key values. At the same time, the sampling object is reduced from the whole image matrix
to a single column vector. Therefore, this scheme cannot only improve the efficiency but can
effectively resist the chosen plain attack (CPA). Wen et al. [40] reduced the scale of single
sampling by applying the semi-tensor product (STP) to the process of compressed sensing,
employing the STP strategy for the sparse matrix of the plain image and measurement
matrix, and cascading multiple images after compression into the main image for image
encryption, reducing the storage scale of the measurement matrix and data transmission. To
reduce the computation scale and improve security, Zhu et al. [44] designed the BCS-CRP
framework, which divides the image coefficient matrices obtained by wavelet transform
into blocks, using the coefficient random permutation (CRP) strategy to confuse each
coefficient vector, with a good encryption effect according to simulation results.

The quality of a reconstructed image is improved mainly from two aspects. One aspect
is to change the method of wavelet decomposition and image reconstruction. Chai et al. [33]
designed a contrast experiment by combining different wavelet decomposition methods
two-dimensional discrete cosine transform (DCT2), discrete wavelet transform (DWT)
and different reconstruction algorithms smoothed l0 norm (SL0), orthogonal matching
pursuit (OMP) to encrypt and decrypt an image. Experimental results showed that the
adoption of DWT was more helpful for decryption. The other aspect is to optimize the
measurement matrix through singular value decomposition (SVD) and optimization. The
modified measurement matrix can satisfy the RIP condition of compressed sensing theory
with high probability, which greatly improves the reconstruction quality of the decrypted
image. Chai et al. [39] designed an algorithm to optimize the measurement matrix by SVD,
and verified by simulation experiments that using the optimized measurement matrix to
measure the image, the final decrypted image quality is better than without optimization.

Many encryption schemes fail to fully consider the information distribution charac-
teristics of natural images, resulting in poor reconstruction quality of decrypted images.
Gan et al. [10] used a circular matrix to construct the measurement matrix, with only one
sample rate set for sampling the whole image matrix in each encryption process. From
their experimental results, the values of the peak signal to noise ratio (PSNR) between
the plain images and corresponding decrypted images at different sampling rates were
not high enough, and as the sampling rate increased, the increase in PSNR was not large.
Luo et al. [28] decomposed the image matrix into four coefficient matrices firstly, then
retained the low-frequency matrix and used two measurement matrices generated by two
different sampling rates to compress the remaining coefficient matrices separately. Their
proposed scheme obtained the decrypted image with higher reconstruction quality under
the same compression ratio. Based on the premise that different sampling rates should
be set for coefficient matrices of different frequencies, we apply the theory of multiscale
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block compressed sensing to the design of an image encryption scheme. The low-frequency
coefficient matrix of an image is fully sampled, and different sampling rates are set for the
remaining coefficient matrices according to the amount of information they carry. There
is a significant improvement in the reconstructed image after decryption. Different from
the traditional encryption algorithms like DNA coding [15,16], cellular automata [9,10],
and substitution box [12,13] that follow generally known rules to carry out the subsequent
work, this paper introduces the Markov model in machine learning, and the scrambling
process is carried out according to the information of the plain image and chaotic sequences.
Experimental results show that the proposed scheme achieves a good encryption effect.

Our contributions are as follows.

1. An encryption architecture of permutation, compression, secondary scrambling, and
diffusion is designed, which shows good compression performance and
guarantees security;

2. A transition probability matrix in a Markov model is introduced to scramble the
image and define the state space according to the characteristics of image pixel values
in the encryption process. The state transition probability matrix is constructed based
on the distribution of pixel values. The process achieves good randomness, so it is
difficult to predict;

3. Information about plain images and chaotic sequences is used in the encryption
process, giving the scheme high plain sensitivity to resist known-plaintext attacks
(KPAs) and chosen-plaintext attacks (CPAs);

4. Multiscale block compressed sensing theory is introduced, sampling rates of images
are set by a more reasonable approach, and the reconstruction quality of decrypted
images is greatly improved.

The rest of this paper is organized as follows. Preliminaries are discussed in Section 2.
The steps of the proposed scheme are described in Section 3. Simulation results are shown
in Section 4, and a sensitivity analysis of the scheme is discussed in Section 5. Conclusions
are drawn in Section 6.

2. Materials and Methods
2.1. Multiscale Block Compressed Sensing

Fowler et al. [45] proposed a multiscale block compressed sensing algorithm based on
a wavelet domain. The MS-BCS-SPL algorithm divides the image into blocks based on the
BCS algorithm and samples each image sub-block with a different matrix. The original im-
age is decomposed by a multilayer wavelet transform, and the wavelet coefficients of each
layer are divided into blocks whose size varies with the number of layers. A measurement
matrix, determined by the sampling rate of each layer, is used for measurement. Since
the different levels of wavelet decomposition have different importance to the final image
reconstruction quality, each layer corresponds to a different sampling rate. The smooth
projection Landweber method is used to reconstruct each image block; thus, the complete
reconstructed image can be obtained.

As the main information of an image is concentrated in the low-frequency coefficient
after wavelet decomposition, its details are concentrated in high-frequency coefficients. To
improve the reconstruction quality of an image requires one to keep the low-frequency part
of the image and abandon the high-frequency part as much as possible. The measurement
matrix A of the original image is decomposed into multiscale transformation matrix Ω and
multiscale measurement matrix Φ′, and A is represented by A = Φ′Ω, so the compression
process can be expressed as

y = Ax = Φ′Ωx (1)
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The multiscale transformation matrix Ω is decomposed by an L-level wavelet transform to
form L measurement operators, which constitute the multiscale block measurement matrix
Φ′. The wavelet decomposition process of the original image x can be expressed as

x̃ = Ωx (2)

The s-th sub-band of x̃ is cut into sub-blocks of size Bl × Bl , each sampled by a
sampling matrix of corresponding size. For example, the process of compressing the j-th
sub block can be expressed as

yl,s,j = Φl x̃, s ∈ {H, V, D}, 1 ≤ l ≤ L (3)

After the original image is decomposed, the influence of the decomposition block
of each layer on the image reconstruction is different. To improve the reconstruction
quality of the image, it is necessary to set the corresponding sampling rate for each wavelet
decomposition layer. Let the baseband sampling rate of wavelet decomposition be 1, so
S0 = 1, and the wavelet decomposition sub-rate of each layer can be expressed as

Sl = WlS′ (4)

where Wl is the weight of each layer after wavelet decomposition in the whole image, i.e.,

Wl = 16L−l+1 (5)

For the whole image, the sampling rate can be expressed as

S =
1

4L S0 +
L

∑
l=1

3
4L−l+1 WlS′ (6)

If the sampling rate S of the whole image and the weight Wl of each wavelet decomposition
layer are known, then the total sampling rate S′ can be calculated by Equation (6). The
sampling rate Sl of the l-th level wavelet decomposition coefficient can be obtained by
substituting S′ in Equation (4). When solving for the sampling rate of each layer after
wavelet decomposition, there will be multiple solutions greater than 1. In practice, the
sampling rate of each layer should not be greater than 1, so such solutions should be set to
1. In this case, the sampling rate is expressed as

S =
1

4L S0 +
3

4L S1 +
L

∑
l=2

3
4L−l+1 WlS′ (7)

We recalculate Sl from Equation (7). The above process is repeated for the wavelet
decomposition of each layer l = 2, 3, . . . , L, and we check for Sl > 1 to ensure that Sl ≤ 1
in each layer.

2.2. Chaotic Systems

The tent-logistic-tent system (TLTS) and tent-sine-tent system (TSTS) are, respectively,
obtained as [32]

Xn+1 = fTLT(Xn, r) =


(

r2

2 Xn
(
1− r

2 Xn
)
+ r

2 Xn

)
r14mod1, Xn < 0.5((

r2

2 (1− Xn)
(
1− r

2 (1− Xn)
)
+ r

2 (1− Xn)
)
r14
)

mod1, Xn ≥ 0.5
(8)

Xn+1 = fTST(Xn, r) =

{ (
r
4 sin(π r

2 Xn) +
r
2 Xn

)
r14mod1, Xn < 0.5((

r
4 sin

(
π r

2 (1− Xn

))
+ r

2 (1− Xn)
)

r14
)

mod1, Xn ≥ 0.5
(9)
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where r ∈ (1.05.4] is the control parameter of the TLT and TST chaotic systems. When r
is greater than 1.05, the LE value of the chaotic system is positive, i.e., the system is in a
chaotic state.

The hybrid chaotic system [12] is defined as

H =


((

r10) r
4 sin

(
π r2

2 xi

)
(1− xi)

)
mod1, rxi(1− xi) ≤ 1

2((
r10) r

4 sin
(
π r

2 (1− rxi(1− xi))
))

mod1, rxi(1− xi) > 1
2

(10)

where r ∈ [1.4, 4] is the control parameter of the hybrid chaotic map. When r is greater
than 1.1, the LE value of the chaotic system is positive, i.e., the system is in a chaotic state.

We use the three chaotic systems to generate three measurement matrices, respectively.
A new chaotic system-improved sine-exponent-logistic(ISEL) is obtained as [46]

Xn+1 = (sin(πXn))
a ln (4bXn(1−Xn)+c) (11)

where a ∈ [0, 1], b ∈ [0, 5], c ∈ [1.5, 2.8] are the control parameters of the ISEL system. We
use this system to generate chaotic sequences for diffusion.

2.3. Markov Model

The Markov model can be used to simulate random processes [47]. In our scheme, a
Markov chain is used to construct the state transition matrix for scrambling the image matrix.

2.3.1. State Space

In the Markov chain, every variable has several possible values, and the set of all
these is called the state space. To generate this, numbers are divided into four categories in
our scheme:

If the integer part of a number is positive and odd, then it is a positive-odd
(po-od) number;

If the integer part of a number is negative and odd, then it is a negative-odd
(ne-od) number;

If the integer part of a number is positive and even, then it is a positive-even
(po-ev) number;

If the integer part of a number is negative and even, then it is a negative-even
(ne-ev) number.

2.3.2. Markov State Transition Matrix

Obviously, since there is more than one state at each time, there are several cases of
transferring from the previous to the current state. All conditional probabilities form a
transition probability matrix, as shown in Table 1. Here, ai, i = 1, 2, . . . is the state at the
previous time, aj, j = 1, 2, . . . is the state at the current time, and pij, i = 1, 2, . . . ; j = 1, 2, . . .
is the conditional probability from ai to aj.

Table 1. Transition probability matrix.

a1 a2 . . . aj . . .

a1 p11 p12 . . . p1j . . .
a2 p21 p22 . . . p2j . . .
...

...
...

...
ai pi1 pi2 . . . pij . . .
...

...
...

...

According to the above definition, the header of the state transition matrix is constructed.
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Next, we initialize a matrix f of size 4 × 4, which is used to record the frequency of
state transition. For each column vector of the matrix to be measured, we first determine
the type of the first element, i.e., the row coordinate of the state transition matrix. Then the
type of the next element is determined, i.e., the column coordinate of the state transition
matrix. The position in the matrix f corresponding to the coordinate point is incremented
by 1 to obtain the updated matrix f. For example, the matrix to record the frequency of
state transition is shown in Table 2. We calculate the sum of four frequencies in each row of
the matrix f, respectively, which means the total frequency of transitions from one type of
number to other types of number. Each element is divided by the sum of the corresponding
row to get a probability, which means the transition probability from one type of number to
another type of number. After all probabilities are calculated, the row-based state transition
probability matrix (RSTPM) is obtained, as shown in Table 3. The generation process of
the column-based state transition probability matrix (CSTPM) is similar to that of RSTPM,
where we get a row vector instead of a column vector of the matrix.

Table 2. State transition frequency matrix.

po-od Number ne-od Number po-ev Number ne-ev Number

po-od number 3696 3796 4249 3289
ne-od number 3833 3928 4409 3449
po-ev number 4217 4471 4937 3733
ne-ev number 3284 3424 3763 2962

Table 3. State transition probability matrix.

po-od Number ne-od Number po-ev Number ne-ev Number

po-od number 0.2459 0.2526 0.2827 0.2188
ne-od number 0.2454 0.2515 0.2823 0.2208
po-ev number 0.2429 0.2576 0.2844 0.2151
ne-ev number 0.2445 0.2549 0.2801 0.2205

For RSTPM, we find all positions of the probabilities greater than 0.25 of the matrix
shown in Table 3. The row coordinates indicate whether odd- or even-column vectors are
to be selected, and whether the direction of movement is up or down. If the row coordinate
is odd (even), then odd (even)-column vectors are selected; if the row coordinate is positive
(negative), then all selected elements move up (down). Specifically, if the row coordinate
is a po-od (ne-od) number, then all odd-column vectors move up (down), and if the row
coordinate is a po-ev (ne-ev) number, then all even-column vectors move up (down). The
column coordinates indicate the number of cyclic shifts, whose values are generated by the
chaotic map.

For CSTPM, we find all positions of the probabilities greater than 0.25 of the matrix
like Table 3. The row coordinates indicate whether odd- or even-row vectors are to be
selected, and whether the direction of movement is left or right. If the row coordinate
is odd (even), then the odd (even)-row vectors are selected, and if the row coordinate is
positive (negative), then all selected elements move left (right). Specifically, if the row
coordinate is a po-od (ne-od) number, then all odd-row vectors move left (right), and if the
row coordinate is a po-ev (ne-ev) number, then all even-row vectors move left (right). The
column coordinates indicate the number of cyclic shifts, whose values are generated by the
chaotic map.

3. Scheme Based on Multiscale Block Compressed Sensing

The proposed encryption scheme is shown in Figure 1. The image is decomposed
by discrete wavelet transform to get the coefficient matrices, and each coefficient matrix
is scrambled for the first time and measured by the corresponding measurement matrix.
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After compression, all matrices of measurement values are merged, and that matrix is
scrambled by state transition matrices. The final cipher image is obtained by diffusion.

Figure 1. Flowchart of image encryption process.

3.1. Encryption Process
3.1.1. Generating Parameters and Initial Values for Chaotic System

The encryption process should be closely related to plain information to make it
resistant to known- and chosen-plaintext attacks. The hash value K of the plain image is
generated by the SHA256 function. K is converted to binary numbers, and 32 groups of
these are generated by dividing every eight bits into a group,

K = k1, k2, . . . , k32 (12)
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We count the number of zeros, number L of ones, length of the longest continuous
zero sequence, and length of the longest continuous ones sequence in the hash value K as
L0, L1, l0, and l1, respectively, and

r0 =


4−

mod
((

l0
L0

+
l1
L1

)
×40,1

)
10 ,

(
l0
L0

+ l1
L1

)
× 40 > 4(

l0
L0

+ l1
L1

)
× 40,

(
l0
L0

+ l1
L1

)
× 40 ≤ 4

(13)


r1 = 1.05 + mod

((
(max(k1,k2,k3,k4,k5,k6)×t1)
(min(k1,k2,k3,k4,k5,k6)×t2)

)
× 1014, 2.95

)
r2 = 1.05 + mod

((
(max(k7,k8,k9,k10,k11,k12)×t3)
(min(k7,k8,k9,k10,k11,k12)×t4)

)
× 1014, 2.95

) (14)


a = 1.0

/(
1 + e

1
256×(−t5×(k13⊕k14⊕k15))

)
b = 5.0

/(
1 + e

1
256×(−t6×(k16⊕k17⊕k18))

)
c = 1

2 ×
(

1.5
/(

1 + e
1

256×(−t7×(k19⊕k20⊕k21))
)
+ 2.8

/(
1 + e

1
256×(−t8×(k22⊕k23⊕k24))

)) (15)

We construct 
Z1 =

[
t1 × k25 t3 × k26
t5 × k27 t7 × k28

]
Z2 =

[
t2 × k29 t4 × k30
t6 × k31 t8 × k32

] (16)

and find their Kronecker product,

Z3 = (Z1)⊗ (Z2) (17)

where ⊗ represents the Kronecker product operator,

x0 = mod
(
(Z3(1) + Z3(2)− bZ3(1) + Z3(2)c)× 1014, 1

)
x00 = mod

(
(Z3(3) + Z3(4)− bZ3(3) + Z3(4)c)× 1014, 1

)
y00 = mod

(
(Z3(1) + Z3(3)− bZ3(1) + Z3(3)c)× 1014, 1

)
v0 = mod

(
(Z3(2) + Z3(4)− bZ3(2) + Z3(4)c)× 1014, 1

) (18)

b·c represents rounding down, and Z3(i), i = 1, 2, 3, 4 represents the i-th element of
matrix Z3.

3.1.2. Calculating Sampling Rates Based on Multiscale Block Compressed Sensing Theory

Given the target sampling rate, the sampling rate sequences of the coefficient matrices
of each layer after wavelet decomposition are calculated according to Equations (4)–(7),
and denoted as subrates. In this paper, the image is decomposed by three-level wavelet
transform, and there are three sampling rates.

3.1.3. Generating the Measurement Matrix

In Section 3.1.1, all parameters and initial values of chaotic maps were generated,
then r2 and y00 were brought into Equation (9), with t + n1 × n1 iterations; r1 and x00
were brought into Equation (8), with t + n2 × n2 iterations; r0 and x0 were brought into
Equation (10), with t + n3 × n3 iterations. The sinusoidal value of the initial value is
multiplied by a small coefficient every 2000 iterations to disturb the initial value of the
next iteration, and three chaotic sequences X1, X2, X3 are finally generated after the first
t numbers are discarded. X1, X2, and X3 are one-dimensional vectors of length n1 × n1,
n2 × n2, and n3 × n3, respectively, where n1, n2, n3 are determined by the block sizes
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given in advance. To enhance the randomness of chaotic sequences, the generated chaotic
sequences are further processed as

X′1 = 1− 2× X1
X′2 = 1− 2× X2
X′3 = 1− 2× X3

(19)

The generated chaotic sequences are transformed to matrix form,

X′′1 =

 X′1(1) . . . X′1(n1)
...

. . .
...

X′1(n1 × (n1 − 1) + 1) . . . X′1(n1 × n1)


X′′2 =

 X′2(1) . . . X′2(n2)
...

. . .
...

X′2(n2 × (n2 − 1) + 1) . . . X′2(n2 × n2)


X′′3 =

 X′3(1) . . . X′3(n3)
...

. . .
...

X′3(n3 × (n3 − 1) + 1) . . . X′3(n3 × n3)


(20)

and the corresponding orthogonal bases Φ1, Φ2, Φ3 of X′′1 , X′′2 , X′′3 , respectively, are used as
redundant measurement matrices. The new row dimensions mi, i = 1, 2, 3 are obtained by
multiplying the row dimensions ni, i = 1, 2, 3 of the redundant measurement matrices by
the corresponding sampling rates. The first mi rows of Φ1, Φ2, Φ3 are extracted as formal
measurement matrices Φ1

′, Φ2
′, Φ3

′.

3.1.4. Encrypting the Plain Image

Step 1: After discrete wavelet decomposition of the original image, a low-frequency
coefficient and nine high-frequency coefficients in horizontal, vertical, and diagonal direc-
tions are obtained. After three-layer wavelet decomposition, the ratio of the original image
size M0 to the block size of each layer is M0 : M1 : M2 : M3 = 8 : 4 : 2 : 1. The three-level
wavelet decomposition is shown in Figure 2.

Figure 2. Diagram of three-level wavelet decomposition.
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Step 2: Given an array of length 3, the values of elements represent the block
sizes. The third-, second-, and first-level wavelet decomposition coefficient matrices
H3, V3, D3, H2, V2, D2, and H1, V1, D1 are divided into blocks of block_size3 × block_size3,
block_size2×block_size2, and block_size1×block_size1, respectively. Each block matrix is
expanded to a column vector after partitioning. In this way, each block matrix in the third-,
second-, and third-level wavelet decomposition coefficient matrices is transformed to a
column vector of length block_size3

2, block_size2
2, and block_size1

2, respectively, and nine
new coefficient matrices NH3, NV3, ND3, NH2, NV2, ND2,NH1, NV1, ND1 are constructed
by merging the corresponding column vectors.

Step 3: The three chaotic sequences X1
′, X2

′, X3
′ generated in Section 3.1.3 are sorted

in ascending order to obtain the corresponding index sequences Ind1, Ind2, Ind3. The
coefficient matrices A3, NH3, NV3, ND3, NH2, NV2, ND2, and NH1, NV1, ND1 of the third-
, second-, and first-level wavelet decomposition, respectively, are scrambled with Ind3, Ind2,
and Ind1, respectively, to obtain A′3, H′3, V′3, D′3, H′2, V′2, D′2, and H′1, V′1, D′1. For example, if
A3 is a matrix of size m× n, we expand it to a sequence of length m× n, i is the index of
the i-th element in the sequence, and

A′3(Ind3(m× n− i + 1)) = A3(Ind3(i)) (21)

where A′3 is the scrambled sequence of A3.
Step 4: The coefficient matrix A′3 remains unchanged. We compress the coefficient

matrices H′3, V′3, D′3, H′2, V′2, D′2, and H′1, V′1, D′1 with Φ′3, Φ′2, and Φ′1, respectively, to obtain
corresponding measurement matrice sH′′3 , V ′′3 , D′′3 , H′′2 , V ′′2 , D′′2 , and H′′1 , V ′′1 , D′′1 , calculated
by Equation (3).

Step 5: Coefficient matrices with the frequency of the three-level wavelet decomposi-
tion are combined to form the matrix to be measured,

T =


H′′1 V ′′1 D′′1
H′′2 V ′′2 D′′2
H′′3 V ′′3 D′′3

 (22)

To enhance the randomness, T is processed according to the information l0, l1, L0, L1
obtained in Section 3.1.1 to obtain

NT = −T, l0 > l1
NT = T − 0.5, L0 > L1

NT = T + 0.5, L0 < L1

(23)

Step 6: According to the method proposed in Section 2.3.2, RSTPM and CSTPM are
constructed according to the element information of matrix NT.

Step 7: The maximum and minimum values of nine coefficient matrices,H′′i , V ′′i , D′′i ,
i = 1, 2, 3, after wavelet decomposition, are obtained. The coefficient matrices are quantized
to the interval [0,255],

M′ = f loor
(

255× (M−min)
(max−min)

)
(24)

where min and max are the minimum and maximum values, respectively, of M. The
coefficient matrices H′′i , V ′′i , D′′i , i = 1, 2, 3 are quantized to obtain corresponding matrices
H′′′i , V ′′′i , D′′′i , i = 1, 2, 3. The low-frequency coefficient matrix A′3 is decomposed by SVD to
obtain three sub-matrices u,s,v of the same dimension, whose maximum and minimum
values are obtained. The sub-matrices are quantized to the interval [0,255] by Equation (24)
to obtain corresponding matrices U, S, VT.

Step 8: We combine the high frequency coefficients of each layer into groups in the
same direction: H′′′1 , H′′′2 , H′′′3 are in the first group, V ′′′1 , V ′′′2 , V ′′′3 are in the second group,
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and D′′′1 , D′′′2 , D′′′3 are in the third group. The index values are obtained using the chaotic
sequences X′1, X′2, X′3 generated in Section 3.1.3,

Lind1 =
(

X′1(n1 × n1) + X′2(n2 × n2) + X′3(n3 × n3)
)/

3

Lind′1 = f loor
(

mod
(
abs(Lind1)× 108, 6

))
+ 1

Lind2 =
(

X′1(n1 × n1 − 1) + X′2(n2 × n2 − 1) + X′3(n3 × n3 − 1)
)/

3

Lind′2 = f loor
(

mod
(
abs(Lind2)× 108, 6

))
+ 1

Lind3 =
(

X′1(n1 × n1 − 2) + X′2(n2 × n2 − 2) + X′3(n3 × n3 − 2)
)/

3

Lind′3 = f loor
(

mod
(
abs(Lind3)× 108, 6

))
+ 1

(25)

That is, the index values Lind′1, Lind′2, and Lind′3 of the first through third groups,
respectively, are determined by the last, penultimate, and antepenultimate elements of
X′1, X′2, X′3. The three index values are mapped to the interval [1,6], which indicates that
there are six possible permutations for each group,

 Y11
Y12
Y13

 =

 H′′′3
H′′′2
H′′′1

,

 Y21
Y22
Y23

 =

 V ′′′3
V ′′′2
V ′′′1

,

 Y31

Y32
Y33

 =

 D′′′3
D′′′2
D′′′1


 Y11

Y12
Y13

 =

 H′′′3
H′′′1
H′′′2

,

 Y21
Y22
Y23

 =

 V ′′′3
V ′′′1
V ′′′2

,

 Y31

Y32
Y33

 =

 D′′′3
D′′′1
D′′′2


 Y11

Y12
Y13

 =

 H′′′2
H′′′3
H′′′1

,

 Y21
Y22
Y23

 =

 V ′′′2
V ′′′3
V ′′′1

,

 Y31

Y32
Y33

 =

 D′′′2
D′′′3
D′′′1


 Y11

Y12
Y13

 =

 H′′′2
H′′′1
H′′′3

,

 Y21
Y22
Y23

 =

 V ′′′2
V ′′′1
V ′′′3

,

 Y31

Y32
Y33

 =

 D′′′2
D′′′1
D′′′3


 Y11

Y12
Y13

 =

 H′′′1
H′′′3
H′′′2

,

 Y21
Y22
Y23

 =

 V ′′′1
V ′′′3
V ′′′2

,

 Y31

Y32
Y33

 =

 D′′′1
D′′′3
D′′′2


 Y11

Y12
Y13

 =

 H′′′1
H′′′2
H′′′3

,

 Y21
Y22
Y23

 =

 V ′′′1
V ′′′2
V ′′′3

,

 Y31

Y32
Y33

 =

 D′′′1
D′′′2
D′′′3



(26)

The first through third groups after sorting are being recorded as Y1, Y2, and Y3,
respectively, whose internal three block matrices are recorded as Y11, Y12, Y13, Y21, Y22, Y23,
and Y31, Y32, Y33.

Step 9: The quantization matrices U, S, and VT obtained from Step 7 are inserted in
the first through third groups of matrices, respectively, after the first round of combination.
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The index values are obtained using the three chaotic sequences X′1, X′2, X′3 generated in
Section 3.1.3, 

Hind1 =
(

X′1(1) + X′2(1) + X′3(1)
)/

3

Hind2 =
(

X′1(2) + X′2(2) + X′3(2)
)/

3

Hind3 =
(

X′1(3) + X′2(3) + X′3(3)
)/

3

Hind′1 = f loor
(

mod
(
abs(Hind1)× 108, 4

))
+ 1

Hind′2 = f loor
(

mod
(
abs(Hind2)× 108, 4

))
+ 1

Hind′3 = f loor
(

mod
(
abs(Hind3)× 108, 4

))
+ 1

(27)

That is, the index values Hind′1, Hind′2, and Hind′3 of the first through third groups,
respectively, are determined by the first through third elements, respectively, of X′1, X′2, X′3.
At the same time, the three index values are mapped to the interval [1,4], which indicates
that there are four possible permutations for each group: the top, the gaps between two
adjacent block matrices, and the bottom,

Y′1 =


U

Y11
Y12
Y13

, Y′2 =


S

Y21
Y22
Y23

, Y′3 =


VT
Y31
Y32
Y33



Y′1 =


Y11
U

Y12
Y13

, Y′2 =


Y21
S

Y22
Y23

, Y′3 =


Y31
VT
Y32
Y33



Y′1 =


Y11
Y12
U

Y13

, Y′2 =


Y21
Y22
S

Y23

, Y′3 =


Y31
Y32
VT
Y33



Y′1 =


Y11
Y12
Y13
U

, Y′2 =


Y21
Y22
Y23
S

, Y′3 =


Y31
Y32
Y33
VT



(28)

We mark the first through third group matrices after combination as Y′1, Y′2, and Y′3,
respectively, and combine them as

T′ =
(

Y′1 Y′2 Y′3
)

(29)

Step 10: The dimension of the matrix should be adjusted to prevent attackers from
obtaining the information of the encryption scheme through the dimension of cipher
images. Suppose the dimension of the merged matrix is m× n. We find two factors m1 and
n1 of m× n such that m1 × n1 = m× n, minimize |m1 − n1|, and adjust the dimension of
the matrix to m1 × n1, obtaining the matrix information
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max = max(T′)

min = min(T′)

d1 = floor(mean(T′))

d2 = ceil((max + min)/2)

d1
′ = mod(d1, 10)

d2
′ = mod(d2, 10)

d12 = max(d1
′, d2

′)

(30)

Step 11: The parameters a, b, c and initial value v0 generated in Section 3.1.1 are
brought into Equation (11), iterating t + (d12 + 1)× m1 × n1 times, and the sinusoidal
value of the initial state is multiplied by a small coefficient every 2000 iterations to disturb
the initial value of the next iteration. The chaotic sequence V is generated after the first t
numbers are discarded. To enhance the randomness, we determine the chaotic sequence

V′ = 1− 4×V (31)

according to which we generate sub-sequences V1, V2, V3, V4,
V1 = 10×V′ − round(10×V′)

V2 = 102 ×V′ − round
(
102 ×V′

)
V3 = 103 ×V′ − round

(
103 ×V′

)
V4 = 104 ×V′ − round

(
104 ×V′

) (32)

The control parameters of the scrambling process are generated according to V1, V2, V3,
V4 as

w1 = f ix
(
mod

(
V1
(
m′1 + n′1

)
+ 1, 5

))
w2 = f ix

(
mod

(
V2

(
round

(
m′1
/

2 + n′1
/

2

)
+ 2

)
× 102, 52

))

w3 = f ix

(
mod

(
V3

(
abs

(
round

((
m′1
/

3 −
n′1
/

3

)
+ 3

)))
× 103, 53

))

w4 = f ix

(
mod

(
V4

(
abs

(
round

(
m′1
/

4 −
n′1
/

4

)
+ 4

))
× 104, 54

))
(33)

where w1 ∼ w4 are used for subsequent shift operations, fix is a function that rounds
toward zero, and m′1 and n′1 are the largest prime factors of m1 and n1, respectively.

Step 12: The scrambling operations are based on RSTPM, as generated in Step 6. The
shift numbers are w1–w4 when column coordinates are the po-od, po-ev, ne-od, and ne-ev
numbers, respectively. The scrambling operations are shown in Table 4. The up arrow
means move up, the down arrow means move down. We record the scrambled matrix as
T′′ and set the initial transition flag bit matrix and all element values to zero. If the element
of a position is shifted, then the flag bits of the corresponding position change from 0 to
1. Taking the state transition probability matrix generated in Table 3 as an example, the
positions with probability values greater than 0.25 are in the ne-od number and po-ev
number columns. That is, the probability values of the two middle columns are selected.
Therefore, the flag bits of these two columns are set to 1.
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Table 4. Rule of column vector scrambling.

po-od Number ne-od Number po-ev Number ne-ev Number

po-od number Odd column↑w1 Odd column↑w3 Odd column↑w2 Odd column↑w4
ne-od number Odd column↓w1 Odd column↓w3 Odd column↓w2 Odd column↓w4
po-ev number Even column↑w1 Even column↑w3 Even column↑w2 Even column↑w4
ne-ev number Even column↓w1 Even column↓w3 Even column↓w2 Even column↓w4

Step 13: The scrambling operations are based on CSTPM, as generated in Step 6. The
shift numbers are w1, w3, w2, and w4, if the column coordinates are the po-od, ne-od, po-ev,
and ne-ev numbers, respectively. We record the scrambled matrix as T′′′ . We set the state
transition flag bits in the same way. If the element of a position is shifted, then the flag bits
of the corresponding position change from 0 to 1.

Step 14: The chaotic sequence V′ generated in Step 11 is quantized to the interval
[0,255] to get the new matrix V ′′ . The matrix information d′1 and d′2 obtained in Step 10
is used to generate the chaotic sequences, V ′′ is sampled at an interval of d′1 to obtain
sequence V′1, and V ′′ is sampled at an interval of d′2 to obtain sequence V′1, V′1(i + 1) = V ′′

(
i× d′1 + 1

)
V′2(i + 1) = V ′′ (i× d′2 + 1)

(34)

We take the position of the last element of sequence V′2 as the start position, and take the
consecutive m1 × n1 elements from sequence V ′′ and record them as sequence V0,

V0 = V ′′
((
(m1 × n1 − 1)× d′2 + 2

)
:
(
(m1 × n1 − 1)×

(
d′2 + 1

)
+ 2
))

(35)

We perform an XOR operation between matrix T′′′ and sequence V0,

T′′′ ′(i) = T′′′ (i)⊕V0(m1 × n1 − i + 1) (36)

and denote T′′′ ′ as A.
Step 15: The matrix A is changed with front addition and a modular operation to

obtain the matrix B, using the sequence V′1 generated in Step 14. We perform a cyclic left
shift on B to obtain B′, i.e., and the definition of BitCircShift is shown in Algorithm 1. B(i) = mod

(
B(i− 1) + V′1(i) + A(i), 256

)
B′(i) = BitCircShi f t(B(i), mod(B(i− 1), 8))

(37)

B′ is changed through back addition and a modular operation to get C, using the sequence
V′2 generated in Step 14. We perform a cyclic left shift on C to obtain C′, i.e., C(i) = mod(C(i + 1) + V′2(i) + B′(i), 256)

C′(i) = BitCircShi f t(C(i), mod(C(i + 1), 8))
(38)

At this point, the final cipher image is obtained.
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Algorithm 1. The BitCircShift Operation

Input: The number to be shifted x and the shift number k.
Output: The number after shift y.
1: if abs(k)>7 || k==0 then
2: y←x
3: end if
4: if k>0 then
5: y1←2kx mod 256
6: y2← floor(x/28−k)
7: else
8: y1← floor(2kx)
6: y2←(x mod 2−k)×28+k

9: end if
10: y←y1 + y2
11: end

3.2. Decryption Process

The image decryption scheme is the reverse of image encryption. The process is
controlled by the key, including the initial values of chaotic systems, state transition flag bit
matrix, and maximum and minimum of matrices, as received by the sender. The process is
shown in Figure 3.

Figure 3. Flowchart of image decryption process.
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Step 1: The cipher image matrix is expanded to a sequence C, and then we perform a
cyclic right shift operation on C to obtain D, which is changed with inverse back addition
and a modular operation to get the sequence D′, using the sequence V2

′ generated before, D(i) = BitCircShi f t(C(i),−mod(C(i + 1), 8))

D′(i) = mod(256× 2 + D(i)− C(i + 1)−V′2(i), 256)
(39)

We perform a cyclic right shift operation on D′ to obtain E, which is changed with
inverse front addition and a modular operation to get the sequence E′ by using the sequence
V′1 generated before, E(i) = BitCircShi f t(D′(i),−mod(D′(i− 1), 8))

E′(i) = mod
(
256× 2 + E(i)− D′(i− 1)−V′1(i), 256

) (40)

Step 2: We perform an XOR operation between sequences E′ and V0 to obtain
sequence E′′ ,

E′′ (i) = E′(i)⊕V0(m1 × n1 − i + 1) (41)

and transform E′′ to a matrix of size m1 × n1.
Step 3: E′′ is inversely scrambled according to the previously generated transition

flag bit matrix, and we find the positions of its elements whose values are 1. We inversely
scramble the matrix according to the rule described in Section 2.3.2. The matrix is recorded
as E′′′ after inversely scrambling row vectors, and that matrix’s column vectors are inversely
scrambled to obtain E′′′ ′.

Step 4: Find the positions of the U, S, VT and coefficient matrices H′′i , V ′′i , D′′i , i = 1, 2, 3
in matrix E′′′ ′ according to Hind′1 ∼ Hind′3 and Lind′1 ∼ Lind′3, then we divide the
matrix E′′′ ′ into blocks to obtain them. The sub-matrices of low-frequency coefficient
matrices U,S,VT are inversely quantized to obtain corresponding matrices U′, S′, VT′, and
the coefficient matrices HH′i, VV′i, DD′i, i = 1, 2, 3 are obtained by inverse quantization of
corresponding matrices H′′i , V ′′i , D′′i , i = 1, 2, 3, where quantization is expressed as

M = M′ × (max−min)/255 + min (42)

where max and min are the maximum and minimum values, respectively, of M. The
low-frequency coefficient matrix A′3 is obtained by calculating the product of the three
sub-matrices,

A′3 = U′ × S′ ×VT′ (43)

Step 5: We first generate index vectors Ind1 ∼ Ind3. Coefficient matrices A′3, HH′3,VV′3,
DD′3, HH′2, VV′2, DD′2, and HH′1, VV′1, DD′1 are inversely scrambled with Ind3, Ind2, and
Ind1, respectively. For example, we expand A′3 of size m× n to a sequence of length m× n,
whose i-th element is

A3(Ind3(i)) = A′3(Ind3(m× n− i + 1)) (44)

where A3 is the scrambled sequence of A3
′.

Step 6: We reconstruct the image with the SPL algorithm. The column vectors of
the reconstructed coefficient matrices of each layer are restored to block matrices accord-
ing to the corresponding block size. Block matrices of size block_size3 × block_size3,
block_size2 × block_size2, and block_size1 × block_size1 are, respectively, combined into
third-, second-, and first-level wavelet decomposition coefficient matrices A3, H3, V3, D3,
H2, V2, D2, and H1, V1, D1, which are combined into a new matrix according to Figure 2.

Step 7: The matrix after inverse wavelet transform is the final decrypted image.
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4. Simulation Results
4.1. Encryption and Decryption Results

Simulation experiments were carried out on a laptop computer with an Intel Core
i5-6200U CPU at 2.3 GHz and 4 GB RAM, on the MATLAB R2015a platform. Images of
size 512 × 512, including Lena, Goldhill, Cameraman, Peppers, Barbara, and Jet, were
selected as test images. The external keys were t1 = 0.11, t2 = 0.22, t3 = 0.33, t4 = 0.44,
t5 = 2.723, t6 = 0.618, t7 = 3.141, t8 = 4.6692, t = 600. The array block_size, which
determines the block sizes of the image matrix, was set to [8,16,32], i.e., block_size1 = 32,
block_size2 = 16, block_size3 = 8. The target sampling rate was 0.25. The experimental
results of plain, cipher, and decrypted images are shown in Figure 4. The cipher images
were meaningless and unrecognizable noise-like images with little connection to the plain
images. Valid information about the original images cannot be obtained from the corre-
sponding cipher images. The encryption scheme adjusted the dimensions of cipher images
to 288 × 256, which further hid the information of the plain image and the encryption
method. The decrypted images were meaningful images that could be clearly identified
and were quite similar to the original images. Hence, the proposed scheme had good
encryption and decryption effects.

Figure 4. Cont.



Entropy 2021, 23, 1297 18 of 33

Figure 4. Experimental results: (a–f) plain images Lena, Goldhill, Cameraman, Peppers, Barbara, Jet; (g–l) corresponding
cipher images; (m–r) corresponding decrypted images.

4.2. PSNR between Plain and Decrypted Images under Different Sampling Rates

The peak signal to noise ratio (PSNR) is used to objectively judge the quality of
a decrypted image. A larger PSNR indicates a smaller difference between plain and
decrypted images, and higher reconstruction accuracy. For gray images,

PSNR = 10× log10
255×255√

MSE

MSE = 1
M×N

M
∑

i=1

N
∑

j=1
[X(i, j)− Y(i, j)]2

(45)

where M and N are the row dimension and column dimension of the image, and X(i, j)
and Y(i, j) are the pixel values of the plain image X and decrypted image Y, respectively, at
position (i, j).

In this experiment, 512 × 512 images, including Lena, Cameraman, Peppers, and
Couple, were selected as test images, and PSNR values between plain and decrypted
images were measured at different sampling rates. Table 5 compares partial experimental
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results with those in Gan et al. [10]. The scheme of Gan et al. [10] adopts traditional
compressed sensing theory, using one sampling rate for the whole image, which reveals
that the distribution differences of image information between low- and high-frequency
coefficients are not fully considered, and the resulting decrypted image does not have
high reconstruction quality. The image reconstruction effect of the proposed scheme is
better than that of the scheme in Gan et al. [10]. Table 6 compares some experimental
results with those in Luo et al. [28]. In the latter, the plain image is first decomposed into
approximate and detail components by discrete wavelet transform (DWT). All pixels in the
approximate component are retained, and the remaining detailed components are measured
by measurement matrices. A lower sampling rate is adapted to the horizontal direction
decomposition coefficient (LH) and diagonal direction decomposition coefficient (HH),
and a larger sampling rate is adapted to the vertical direction decomposition coefficient
(HL). The reconstruction quality of the decrypted image is improved. However, there
are some limitations because the sampling rates are set artificially. From Table 6, it can
be seen that the proposed algorithm can better improve the reconstruction quality of the
decrypted images.

Table 5. PSNR (dB) of decrypted images at different sampling rates compared with another scheme.

Algorithm Image
Sampling Rates

0.25 0.45 0.5 0.65 0.75 0.85 0.95

Ref. [10] Lena 31.4240 32.9660 33.2299 33.8000 34.1313 34.5656 34.9347
Ours 34.9174 37.2453 37.6716 39.0365 40.0310 41.2019 42.7182

Ref. [10] Peppers 30.6809 31.9825 32.1889 32.7692 33.1721 33.5154 33.9144
Ours 33.8452 35.9842 36.3212 37.4118 38.2535 39.2356 40.4900

Ref. [10] Cameraman 30.4164 30.7728 31.2277 32.6649 34.2180 35.0159 35.4416
Ours 36.7108 39.5282 39.9194 40.7538 41.1572 41.4790 41.7297

Ref. [10] Couple 30.1862 31.5430 31.9254 32.6734 32.8551 33.3367 33.7551
Ours 29.6688 32.7551 33.2811 35.0115 36.4607 38.3650 41.3051

Table 6. Comparison of decrypted image quality of similar scheme at the sampling rate of 0.5.

Algorithm Image PSNR(dB)

Ref. [48] Lena 34.5560
Ours 37.6716

Ref. [48] Cameraman 34.6995
Ours 39.9194

Ref. [48] Peppers 31.5132
Ours 36.3212

Ref. [48] Lake 29.2165
Ours 33.2254

4.3. Influence of Wavelet Basis on Image Reconstruction Effect (PSNR)

In this experiment, 12 images were decomposed by DWT in different wavelet bases,
including the commonly used Symlets8, Haar, and CDF9/7. The PSNR values of the
decrypted images were measured, with results as shown in Table 7. The experimental
results show that the CDF9/7 wavelet base performs better in most cases; hence, this was
chosen as the wavelet base.
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Table 7. Influence of different wavelet bases on image reconstruction effect (PSNR: dB).

Wavelet Bases
Image

Lena Goldhill Cameraman Peppers Barbara Jet

Symlets8 35.1252 30.7277 35.6823 33.5171 25.4683 32.9417
Haar 33.1509 30.3997 34.8881 29.6579 25.5130 29.8575

CDF9/7 35.0509 31.6262 36.8624 33.9987 25.2430 32.8437

Wavelet Bases
Image

Mandril Couple Private Blonde Darkhair Boat

Symlets8 29.4729 29.9571 31.6857 30.2489 38.0362 30.8929
Haar 28.9758 29.5406 30.7943 29.6424 35.2409 30.4848

CDF9/7 29.8058 29.6773 31.7861 30.9151 38.6019 30.7819

4.4. Time Complexity Analysis

An algorithm should have fast encryption and decryption speeds to meet real-time
needs. In this experiment, the plain image Lena with size of 512 × 512 was used as a
test image, the sampling rate was set to 0.25, and the running time of each process of the
scheme was measured. The results are shown in Table 8. In addition, the running times of
the whole encryption process and decryption process at different sampling rates were also
measured and the results are shown in Table 9. We can learn from the experimental result
that the processes of iteration of chaotic systems and image reconstruction consume most
of the time in the algorithm. Additionally, as the sampling rate increases, the encryption
time also increases, but the decryption time is basically the same. More concretely, in
encryption algorithm illustrated in Section 3.1, iteration of chaos includes Section 3.1.3 and
Step 11 in Section 3.1.4, the compression process is Step 4 in Section 3.1.4, the first round
of permutation is Step 3 in Section 3.1.4, the second round of permutation is Step 12 and
Step 13 in Section 3.1.4, and the diffusion includes Step 14 and Step 15. The decryption
process illustrated in Section 3.2 is the inverse process of the encryption process, and the
compression process is replaced by the reconstruction process.

Table 8. Runtime statistics of main processes at the sampling rate of 0.25.

Process Chaotic
Systems Compression Scrambling Diffusion Reconstruction

Time(s) 2.07138 0.002196 1.621437 0.994517 5.874532

Table 9. Runtime statistics of encryption process and decryption process at different sampling rates.

Sampling Rate 0.25 0.5 0.75

Encryption time(s) 5.380744 10.217306 12.060107
Decryption time(s) 12.175169 12.456957 11.085230

In what follows, we analyzed the time complexity of our encryption algorithm in
Section 3.1 in detail. Assume the size of plain image is m× n, the block sizes of the third-,
second-, and first-level wavelet decomposition coefficient matrices are n1, n2, n3, respec-
tively, and the target sampling rate is CR. Section 3.1.3 is to generate three chaotic sequences
for scrambling, and time complexity is Θ

(
n1

4 + n2
4 + n3

4).Step 11 in Section 3.1.4 is to
generate the chaotic sequence for diffusion, and time complexity is Θ(CR×m× n). Step
3 in Section 3.1.4 is to scramble the coefficient matrices with index sequences, and time
complexity is Θ(m× n). Step 6 in Section 3.1.4 is to generate the RSTPM and CSTPM,
and time complexity is Θ(2×CR×m× n). Step 12 and Step 13 in Section 3.1.4 are to
scramble the matrix of measurement values after CS with RSTPM and CSTPM, and time
complexity is Θ(CR×m× n). Step 14 and Step 15 in Section 3.1.4 are to diffuse the ma-
trix after scrambling, and time complexity is Θ(3×CR×m× n). For the computational
cost of the proposed method determined in other steps, the time complexity is about
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Θ(3×CR×m× n). From the result shown in Table 8, the total time complexity is approxi-
mately equal to Θ(5×m× n). Comparing with the encryption algorithms in [49,50] listed
in Table 10, our scheme has a smaller time complexity. However, the time complexity of
our scheme is equal to that of [10].

Table 10. Comparison results on time complexity of Encryption algorithm.

Algorithm Time Complexity

Ours Θ(5×m× n)
Ref. [10] Θ(5×m× n)
Ref. [49] 2×Θ(4×m× n)
Ref. [50] Θ(8×m× n) + Θ(m× n)

5. Security Analysis
5.1. Key Space

To withstand a brute-force attack, an encryption scheme should have a large key space.
If the calculation accuracy of the computer is 10−14, the external key is t1 ∼ t8, accounted
for
(
1014)8

= 10112 key space. Table 11 compares the proposed scheme and other schemes.
Since the ideal key space is suggested to be at least 2100 < 1031 for a good cryptosystem [9],
the result illustrates that the key space of the proposed scheme is large enough to resist all
kinds of attacks.

Table 11. Key space comparison.

Scheme Ours Ref. [10] Ref. [40] Ref. [43] Ref. [44]

Key space 10112 >1079 1080 1075 2.56× 1059

5.2. Histogram Analysis

A histogram is an effective index to evaluate the distribution of pixel values. With
an effective image encryption scheme, the histogram of a cipher image should be evenly
distributed, so as to effectively resist statistical attacks. In this experiment, the histograms
of the images in Figure 4 were drawn, with results as shown in Figure 5, from which it can
be seen that the pixels of cipher images are uniformly distributed, and are quite different
from those of the original images, making it impossible to obtain useful information. The
histograms of the reconstructed images are similar to those of the corresponding plain
images, which indicates that the reconstruction effect of decrypted images is good. All
in all, attackers can obtain no useful information about plain images through statistical
attacks when the proposed scheme is used.

5.3. Sensitivity Analysis

Key sensitivity and plain sensitivity are important metrics to evaluate cryptosystems.
Weak sensitivity enables the easy attack of a cryptosystem. We tested the key sensitivity
and plain sensitivity of our scheme.
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Figure 5. Histograms of (a–f) plain images Lena, Goldhill, Cameraman, Peppers, Barbara, Jet; (g–l) corresponding cipher
images; (m–r) corresponding decrypted images.
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5.3.1. Plain Sensitivity

In a differential attack, the attacker encrypts an original and modified plain image with
the same key and determines the relationship between the plain and encrypted images
by comparing the corresponding cipher images. To resist such attacks, an encryption
algorithm should have strong plain sensitivity, i.e., two plain images with small differences
should have significant differences after encryption. The main indicators to measure the
difference between two images include number of pixels change rate (NPCR) and unified
average changing intensity (UACI) [51], which respectively reflect the proportion of the
number of different pixels to the size of the image and the average ratio of the differences
between pixels at corresponding positions and 255. These are expressed as

NPCR(P1, P2) =
1

MN

M

∑
i=1

N

∑
j=1
|sgn(P1(i, j)− P2(i, j))| × 100% (46)

where sgn(·) is the sign function,

sgn(x) =


1, x > 0
0, x = 0
−1, x < 0

(47)

and

UACI(P1, P2) =
1

MN

M

∑
i=1

N

∑
j=1

|P1(i, j)− P2(i, j)|
255− 0

× 100% (48)

The critical values of NPCR and UACI of the two random images were 99.6094% and
33.4635%, respectively. For NPCR, the more the critical value is exceeded, the stronger
the plain sensitivity of the encryption scheme. For UACI, the closer to the critical value,
the stronger the plain image sensitivity of the encryption scheme. In the experiment,
one pixel in plain image P1 was randomly selected and the change of its pixel value was
set to 1 to obtain the modified plain image P2. Cipher images C1 and C2 were obtained
by encrypting plain images P1 and P2, respectively, with the same key, and NPCR and
UACI were calculated, as shown in Table 12. The experimental results show that NPCR
exceeded the critical value for all images except Peppers, and UACI was close to the critical
value for all images. Hence, the proposed encryption scheme has a strong resistance to
differential attacks.

Table 12. Calculation results of NPCR and UACI.

Image Lena Baboon Barbara Boat Goldhill Peppers Random
Image

NPCR(%) 99.6202 99.6257 99.6162 99.6297 99.6446 99.6039 99.6094
UACI(%) 33.4682 33.4758 33.4320 33.4897 33.4698 33.4500 33.4635

5.3.2. Key Sensitivity

An encryption scheme should have high sensitivity to the secret key in both the
encryption and decryption processes [9], i.e., a small change of the secret key should
produce a completely different cipher image. Similarly, in decryption, the plain image
should not be recovered by a decryption key differing slightly from the encryption key. We
tested the key sensitivity from the aspects of sensitivity in both encryption and decryption.
The initial values of the four chaotic systems used in this paper were changed slightly from
K =

(
x0, x00, y00, v0

)
to K1 =

(
x0 + 10−14, x00, y00, v0

)
, K2 =

(
x0, x00 + 10−14, y00, v0

)
,

K3 =
(
x0, x00, y00 + 10−14, v0

)
, and K4 =

(
x0, x00, y00, v0 + 10−14). The Lena image was

encrypted with the correct and wrong keys, with results as shown in Figure 6. From the
experimental results, it can be seen that a small change in the key can cause a huge change
in the cipher image but will not reveal information related to the plain image. To quantify
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the differences between cipher images obtained from the same plain image, NPCR and
UACI were calculated using the correct and wrong keys to encrypt images, with results as
shown in Table 13. It can be seen that NPCI and UACI are all close to the theoretical values,
and more than 99.5% of pixels were modified, which implies that the encryption process is
highly sensitive to the secret key.

Figure 6. Experimental results of key sensitivity in encryption process: (a) cipher image using correct
key K; (b,d,f,h) cipher images using wrong keys K1–K4, respectively; (c,e,g,i) differential images
between (a,b), (a,d), (a,f), (a,h), respectively.

Table 13. NPCR and UACI of cipher images with the correct key and different wrong keys.

Secret Keys K and K1 K and K2 K and K3 K and K4

NPCR (%) 99.5985 99.6053 99.6243 99.6134
UACI (%) 33.4227 33.5085 33.4998 33.3888

Next, a cipher image was decrypted with both the correct and wrong keys, with results
as shown in Figure 7, from which it can be seen that only through the correct key can we
get the correct decrypted image. Even a slight key change produces a visually meaningless
image. Table 14 lists the values of NPCR from Figure 7b–f. When the key has a tiny change,
more than 99.8% of pixels are altered, which indicates that the decryption process is highly
sensitive to the secret key.
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Figure 7. Experimental results of key sensitivity in decryption process: (a) cipher image using correct
key K; (b–f) decrypted images of (a) obtained using K, K1, K2, K3, K4, respectively.

Table 14. NPCR of decrypted images with the correct key and different wrong keys.

Secret Keys K and K1 K and K2 K and K3 K and K4

NPCR (%) 99.9298 99.8577 99.9943 99.9981

5.4. Correlation Coefficients

Strong correlations, close to 1, exist between the pixels of natural images. The correla-
tion coefficient reflects the linear relationship between adjacent pixels and is an important
index to evaluate image encryption schemes. For a good encryption algorithm, correlations
between adjacent pixels of cipher images should be very weak, tending to zero, which
means that the correlation between pixels is largely eliminated. The correlation coefficient
of u and v is calculated as [52]

rxy = cov(u,v)√
D(u)
√

D(v)

cov(u, v) = 1
N

N
∑

i=1
(xi − E(u))(yi − E(v))

D(u) = 1
N

N
∑

i=1
(ui − E(u))2

E(u) = 1
N

N
∑

i=1
ui

(49)

where N is the number of adjacent pixel pairs from the image, and (ui, vi), i = 1, 2, . . . , N is
the gray value of a pair.

In this experiment, 512 × 512 images Lena, Goldhill, and Peppers were selected
as test images, and 5000, 6000 or 8000 pairs of adjacent pixels were randomly selected
from the cipher images in the horizontal, vertical and diagonal directions for calculation.
To reduce randomness, each calculation was carried out 100 times, the final result was
taken as the average value, and this was compared with other schemes. The experimental
results are shown in Table 15, and show that the correlations between adjacent pixels of the
cipher images were small. We also determined adjacent pixel distributions for plain and
cipher images, with results as shown in Figure 8, showing that adjacent pixels of the plain



Entropy 2021, 23, 1297 26 of 33

images were basically linearly distributed. However, there were weak correlations between
adjacent pixels of the compressed cipher images, with correlation coefficients close to 0,
showing that the proposed scheme has a good encryption effect.

Table 15. Correlation coefficients of adjacent pixels in cipher images.

Algorithm Image Horizontal Vertical Diagonal

Ref. [10] Lena −0.0029 0.0058 −0.0025
Ours −0.0049 −0.0036 0.0002

Ref. [44] Lena −0.0022 0.0023 0.0034
Ours 0.0074 0.0015 0.0010

Ref. [53] Lena 0.0020 0.0033 0.0005
Ref. [14] 0.0081 0.0065 0.0182

Ours 0.0002 −0.0021 0.0037
Ref. [43] Goldhill 0.0062 −0.0107 0.0052

Ours −0.0039 −0.0047 0.0003
Ref. [10] Peppers −0.00072 −0.0155 0.00036
Ref. [14] 0.0082 0.0002 0.0088
Ref. [28] 0.01484 −0.1164 −0.0023

Ours −0.0004 −0.0017 0.0053

5.5. Information Entropy

Information entropy reflects the randomness of the distribution of image pixels and is
calculated as [37]

H(s) = −
2n−1

∑
i=0

p(si) log2 p(i) (50)

where p(si) is the probability of the i-th pixel value si of image p, and n is its total number of
digits. For an 8-bit grayscale image, its cipher image should have information entropy near
8 bits. In this experiment, the 512 × 512 images Lena, Peppers, Cameraman, Barbara, and
Jet were selected as test images. The experiment was carried out at sampling rates of 0.5
and 0.25, with results as shown in Table 16, from which it can be seen that the information
entropies of cipher images were all greater than 7.99. The results show the encryption
effect of the proposed scheme was better than that of comparison schemes [10,40,43], which
indicates that our scheme has better randomness than other schemes based on compressed
sensing. Besides, compared to the algorithm proposed by Brindha et al. [53], our scheme
can achieve higher information entropy. It shows that although our lossy compression
algorithm using compressed sensing cannot fully restore the original image from the cipher
image, it can obtain more secure cipher images than the lossless compression algorithm.
What is more, it can be seen that the cipher images generated from our encryption scheme
have greater information entropies than those of schemes based on substitution box [14]
and quantum key image [28] in most instances, which means our scheme is more resistant
to entropy attack than some encryption schemes based on non-chaotic techniques.

Table 16. Comparison of information entropy of cipher images.

Image Ref. [10] Ref. [40] Ref. [43] Ref. [53] Ref. [14] Ref. [28] Ours

Lena 7.9986 7.9575 7.9973 7.9022 7.9987
Cameraman 7.9987 7.9853 7.9988

Peppers 7.9986 7.9975 7.9513 7.9938 7.9987
Couple 7.9987 7.9981
Barbara 7.9970 7.9975 7.9974

Jet 7.9970 7.9978 7.9975
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Figure 8. Histogram analysis. Horizontal, vertical, and diagonal pixel distributions of (a–c) 5000 pairs of adjacent pixels in
plain image Lena at sampling rate of 0.75; (d–f) corresponding cipher image; (g–i) 8000 pairs of adjacent pixels in plain
image Lena at sampling rate of 0.25; (j–l) corresponding cipher image; (m–o) plain image Goldhill; (p–r) corresponding
cipher image; (s–u) plain image Peppers; (v–x) corresponding cipher image.

5.6. Robustness Analysis

During the transmission process, cipher images can be contaminated by noises and
data loss, making it hard to decrypt them and recover the corresponding plain images.
In this experiment, noise and crop attacks were utilized to test the robustness of the
proposed scheme.

5.6.1. Noise Attack

Common types of noise include Gaussian noise (GN), speckle noise (SN), and salt-and-
pepper noise (SPN). To evaluate the robustness of the proposed scheme to noise attacks,
Lena was encrypted as the test image, different levels of three noises were added, and
decrypted images were obtained, with experimental results as shown in Figure 9 from
which it can be seen that the proposed scheme has a stronger resistance to speckle noise
and salt-and-pepper noise than Gaussian noise.

5.6.2. Crop Attack

Different areas of cipher images were randomly selected after encrypting Lena, cutting
image blocks of size 16× 16, 32× 32, 64× 64, 288× 16,16× 256 to obtain cipher images
with some data loss, along with corresponding decrypted images. The results are shown in
Figure 10, and numerical quantization results of decrypted images are shown in Table 17.
From the results, although a crop attack will worsen the visual effect of decrypted images,
the proposed scheme still retains most information of the image, i.e., the scheme has a
certain robustness to crop attacks.
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Figure 9. Cont.
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Figure 9. (a–c) Cipher images contaminated by Gaussian noise; (d–f) corresponding decrypted
images; (g–i) cipher images contaminated by speckle noise; (j–l) corresponding decrypted images;
(m–o) cipher images contaminated by salt-and-pepper noise; (p–r) corresponding decrypted images.

Figure 10. (a–e) Cipher images after cutting blocks of size 16 × 16, 32 × 32, 64 × 64, 288 × 16,
16 × 256, respectively; (f–j) corresponding decrypted images.
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Table 17. Influence of different data loss on image reconstruction effect (PSNR).

Data Loss 0 16 × 16 32 × 32 64 × 64 288 × 16 16 × 256

PSNR (dB) 35.0509 32.0300 23.3382 20.8193 24.2573 11.4978

6. Conclusions

An image encryption scheme based on multiscale block compressed sensing theory
was proposed. In the scheme, considering that different information is carried by the low-
and high-frequency coefficients of an image, different sampling rates were set for the low-
and high-frequency coefficients of the image, so as to improve the reconstruction quality
of decrypted images. Our scheme was experimentally compared with a scheme using
the traditional compressed sensing theory and setting a sampling rate in each encryption
process. Under the same compression ratio, the PSNR values between natural images
and corresponding decrypted images of our scheme were better by more than 8 dB and
were better by about 3–5 dB over a scheme that sets different sampling rates. Therefore,
the proposed encryption scheme is suitable for natural image transmission with complex
structures and large amounts of information. The safety of images is ensured, image
information can be better preserved, and better visual effects can be obtained. With the
combination of chaotic systems and a Markov model, the image is scrambled inside each
coefficient matrix and is then scrambled among the coefficient matrices, and the encryption
is completed by the strategies of independent and global diffusion. Experimental results
show that the proposed scheme has a large key space, high plain sensitivity, and high key
sensitivity in both the encryption and decryption processes. In particular, compared with an
encryption scheme designed for problems of low entropy, the experimental scheme in this
paper has a certain increase in information entropy values of most natural images, which
shows the Markov probability model has certain advantages over traditional scrambling
methods in simulating random processes. Therefore, the scheme has a certain guiding role
for our future research work. At the same time, the scheme can effectively resist brute-force,
differential, and statistical attacks. It also has a certain robustness to noise and crop attacks.
However, high-intensity attacks cause large information loss, resulting in a poor visual
effect. Hence, the design of a more robust encryption scheme warrants further study. Due
to the use of multiscale block compressed sensing theory that better suits images, this
scheme is suitable for mass image data transmission and can effectively save transmission
space. To be honest, the times of the encryption and decryption processes in our scheme
are long. Therefore, it remains to study the replacement of existing methods by more
efficient chaotic systems and reconstruction methods while maintaining good encryption
and decryption effects.
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