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Ecologia de Anuros Neotropicais, Universidade Federal de Uberlândia, Ituiutaba, Minas

Gerais, Brazil
4Departamento de Biologia, Programa de Pós-Graduação em Biologia Comparada, Universidade

de São Paulo, Ribeirão Preto, São Paulo, Brazil

ABSTRACT
Background:Many amphibian species are negatively affected by habitat change due

to anthropogenic activities. Populations distributed over modified landscapes may

be subject to local extinction or may be relegated to the remaining—likely isolated

and possibly degraded—patches of available habitat. Isolation without gene flow

could lead to variability in phenotypic traits owing to differences in local selective

pressures such as environmental structure, microclimate, or site-specific species

assemblages.

Methods: Here, we tested the microevolution hypothesis by evaluating the acoustic

parameters of 349 advertisement calls from 15 males from six populations of the

endangered amphibian species Proceratophrys moratoi. In addition, we analyzed

the genetic distances among populations and the genetic diversity with a haplotype

network analysis. We performed cluster analysis on acoustic data based on the Bray-

Curtis index of similarity, using the UPGMA method. We correlated acoustic

dissimilarities (calculated by Euclidean distance) with geographical and genetic

distances among populations.

Results: Spectral traits of the advertisement call of P. moratoi presented lower

coefficients of variation than did temporal traits, both within and among

males. Cluster analyses placed individuals without congruence in population or

geographical distance, but recovered the species topology in relation to sister species.

The genetic distance among populations was low; it did not exceed 0.4% for the

most distant populations, and was not correlated with acoustic distance.

Discussion: Both acoustic features and genetic sequences are highly conserved,

suggesting that populations could be connected by recent migrations, and that they

are subject to stabilizing selective forces. Although further studies are required, these

findings add to a growing body of literature suggesting that this species would be

a good candidate for a reintroduction program without negative effects

on communication or genetic impact.
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INTRODUCTION
The greatest threat to endangered amphibians is habitat change caused by anthropogenic

activities, which alters resource availability, environmental quality, and ecological

processes (Metzger, 2001; Stuart et al., 2004). Such negative impacts have important

implications for organisms that face new selective pressures exerted by habitat conversion

(Forman, 1995). In addition, habitat fragmentation causes isolation of populations,

and places them at risk of extinction towing to demographic stochasticity, genetic

depression, social dysfunction, and exogenous factors such as strong climatic variations

and disasters (Simberloff, 1986). Therefore, it is predicted that species affected by these

changes would (1) migrate to appropriate adjacent areas; (2) undergo local decline and

extinction; or (3) undergo local adaptation.

Surprisingly, several species thrive in modified sites even after profound anthropogenic

transformation. Because these landscapes often exhibit physical, climatic, and biological

(e.g., species assemblage) shifts, the ability of the remaining species to persist is likely a

consequence of phenotypic plasticity in traits such as behavior, morphology, and

reproduction (Mayr, 1963; Pulido & Berthold, 2004; Merckx & Dyck, 2006).

One of the most important phenotypic traits in evolutionary studies of anurans is

the male advertisement call, because components of these calls are fundamental to

species recognition and mate choice, and are thus under sexual selection (Ryan, 1991;

Wycherley, Doran & Beebee, 2002; Smith, Osborne & Hunter, 2003; Kaefer & Lima, 2012;

Grenat, Valetti & Martino, 2013). Moreover, calls are subject to natural selection over larger

geographic ranges, mainly when populations are isolated by physical barriers (Simões

et al., 2008; Kaefer, Tsuji-Nishikido & Lima, 2012; Tsuji-Nishikido et al., 2012). Because

anurans tend to not disperse over long distances (Blaustein, Wake & Sousa, 1994; Tozetti &

Toledo, 2005; Lougheed et al., 2006), sexual phenotypic traits in anurans are likely influenced

by local environmental conditions (Bosch & De la Riva, 2004; Ey & Fischer, 2009).

The anuran advertisement call is a multidimensional signal that can be viewed as a

collection of spectral and temporal acoustic traits that are influenced, for example, by

body size, air temperature, and social context (Wells & Taigen, 1986; Gerhardt, 1991;

Bee, 2002; Gerhardt & Huber, 2002; Wong et al., 2004; Toledo et al., 2015a). Therefore,

sexual selection, habitat structure, and climatic conditions might all cause variation in

call traits among populations (Jang et al., 2011; Faria et al., 2009; Kaefer & Lima, 2012;

Kaefer, Tsuji-Nishikido & Lima, 2012; Narins & Meenderink, 2014). In addition, other

biotic processes, such as interspecific acoustic interactions, which generate distinctive

background noise, can affect call variation among populations (Littlejohn, 1976; Höbel &

Gerhardt, 2003).

Different traits of advertisement calls may have distinct roles in anuran communication

and, therefore,may evolve bydistinct selective pressures (Cocroft&Ryan, 1995;Erdtmann&

Amézquita, 2009; Goicoechea, De La Riva & Padial, 2010). As a result, call traits should

vary in unique and predictable ways. Gerhardt (1991) classified these traits as static or
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dynamic acoustic traits. Typically, spectral acoustic traits show low variability (static) and

are related to conspecific recognition. Consequently, static traits are subject to stabilizing or

weakly directional selection by female choice. On the other hand, most temporal acoustic

traits show higher variability (dynamic) and are thought to indicate a male’s investment in

reproduction; these may be subject to directional selection by females for values above

species means (Gerhardt, 1991; Gerhardt & Bee, 2007).

However, acoustic variation is not always related to genetic variation at the population

level (Heyer & Reid, 2003; Lougheed et al., 2006; Kaefer et al., 2013). In these cases,

despite some phylogenetic signal being recorded in vocalizations (Erdtmann &

Amézquita, 2009; Goicoechea, De La Riva & Padial, 2010; Tobias, Evans & Kelley, 2011;

Gingras et al., 2013), the evolution of genotypes and phenotypes (as acoustic traits) may

be decoupled (Lougheed et al., 2006) or asynchronous (Kaefer et al., 2013).

Herein, we speculated that historical modification of landscapes by agricultural

crops has created barriers among persistent populations, and affected phenotypic and

genetic traits in an endangered (Assembleia Legislativa do Estado de São Paulo, 2014)

Neotropical frog, Proceratophrys moratoi. We tested the hypothesis that unique selective

pressures among these remaining populations have led to divergence in acoustic traits and

increased genetic structure.

METHODS
Species
The genus Proceratophrys includes 40 South American frog species (Frost, 2015).

Proceratophrys moratoi, originally described in the genus Odontophrynus (Jim &

Caramaschi, 1980), is a member of the P. cristiceps species group (Giaretta, Bernarde &

Kokubum, 2000), lacking palpebral appendages and postocular swellings. It was described

from the municipality of Botucatu, state of São Paulo (Jim & Caramaschi, 1980), from

where it is now extirpated (Brasileiro, Martins & Jim, 2008). Despite recent reports of

new populations outside Botucatu (Brasileiro, Martins & Jim, 2008; Rolim et al., 2010;

Maffei, Ubaid & Jim, 2011; Martins & Giaretta, 2012), according to the current Brazilian

red list, the species is endangered (EN) (Ministério do Meio Ambiente, 2014).

Proceratophrys moratoi is endemic to the Brazilian Cerrado and is found in open

grasslands near small streams or swamps (Rolim et al., 2010; Maffei, Ubaid & Jim, 2011;

Martins & Giaretta, 2012). Males call during the rainy season (generally from October to

February). The advertisement call of P. moratoi is characterized by a single train of

regularly repeated pulses. Call duration is approximately 250 ms, and the frequency

ranges from 700–1,900 Hz (Brasileiro, Martins & Jim, 2008; Martins & Giaretta, 2012).

Sites
We studied six populations of P. moratoi, which represent almost its entire known

geographic distribution (Martins & Giaretta, 2012). We sampled the populations in two

southeastern Brazilian states (Fig. 1): São Paulo (Avaré, Bauru, Itirapina and São

Carlos) and Minas Gerais (Ituiutaba and Uberlândia). These regions represent an

important center of agricultural and livestock production (Ministério do Meio
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Ambiente, 2005) with a remarkable history of land use modification and natural habitat

devastation (Dean, 1995). With the exception of the populations from Itirapina, Bauru,

and Uberlândia, which were in protected natural reserves, all populations inhabited

modified landscapes.

Acoustic analyses
We analyzed 349 calls from 15 males of P. moratoi from 6 localities, 18 calls from 2 males

of Odontophrynus americanus and 6 calls from one male of Proceratophrys boiei. Calls

were recorded using the following combinations of microphones and recorders: (1) an

Audiotechnica AT 835b microphone and a Marantz PMD-222 recorder, (2) a Dynamic

microphone and an Uher 4000 recorder, (3) a Sennheiser ME67/K6 microphone and a

Boss 864 recorder, (4) a Sennheiser ME67/K6 microphone and a Marantz PMD671

recorder, or (5) a Sennheiser ME66/K6 microphone and an M–audio Microtrack II

recorder. All recordings were made with sample rate of 44.1 or 48 kHz, and at 16-bit

resolution. Acoustic recordings used in the present study are available in the Fonoteca

Neotropical Jacques Vielliard, with collection numbers FNJV 10498, 10577, 12222–12224,

12228, the Smithsonian Institution website (http://vertebrates.si.edu/herps/frogs_

boraceia/list.htm), and the personal collection of Ariovaldo A. Giaretta, which are detailed

in the appendix of Martins & Giaretta (2012).

Acoustic analyses were performed in Raven Pro 64 1.4 for Windows (Cornell Lab

of Ornithology), with the following settings: FFT (Fast Fourier Transformation) = 1,024;

Overlap = 50 for spectral evaluations; and FFT = 256 and Overlap = 50 for temporal

variables. Both temporal and spectral values were extracted from the spectrogram.

We analyzed the following quantitative traits: frequency range, maximum frequency,

Figure 1 Geographic distribution of Proceratophrys moratoi. State of São Paulo: 1) Avaré, 2) Bauru,

3) Botucatu (type locality–black dot), 4) Itirapina, 5) São Carlos; state of Minas Gerais: 6) Ituiutaba, and

7) Uberlândia. Map data: Google Earth, CNES Astrium, Digital Globe.
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minimum frequency, peak of dominant frequency, call duration, number of pulses per

note, and pulse rate (pulses per second). Spectral measurements were obtained by

selecting four variables in the source “choose measurements” in Raven: (1) Frequency

5% (Hz); (2) Frequency 95% (Hz)—these two measures include maximum frequency

and minimum frequency, ignoring 5% below and above the total energy in the selected

call; (3) Bandwidth 90% (Hz)—frequency range that included 90% of the energy

distribution, i.e., the difference between Frequency 95% and Frequency 5%; (4) Max

Frequency (Hz)—peak of dominant frequency (the frequency in which the power is

maximum within the call). For temporal properties, we made precise selections on calls

in the spectrogram, and visually counted the pulses.

We calculated the variation in quantitative acoustic variables through the coefficient of

variation (CV; SD/mean) for both the among-males and within-males level. As defined

by Gerhardt (1991), CVs can be used to determine if a call trait is static (CV < 5%) or

dynamic (CV > 12%).

Genetic analyses
Liver and muscle samples from 26 P. moratoi individuals from six populations were

collected: four populations in the state of São Paulo: Itirapina (n = 5), São Carlos (n = 5),

Bauru (n = 5), and Avaré (n = 2); and two populations in the state of Minas Gerais:

Ituiutaba (n = 4) and Uberlândia (n = 5). This small sample size is in part attributable to

the rarity of the species, and collection restrictions, as it is endangered and apparently

extinct in at least two populations. Tissues were preserved in 95% ethanol. Voucher

specimens were deposited in the Coleção Cientı́fica Jorge Jim indexed in Museu Nacional,

Rio de Janeiro, Brazil (CCJJ 7925, 7928–7938, 7944, 7950–7952, 7958). Tissue collection

can be found in the Collection of tissue and chromosome preparation Shirlei Maria

Recco Pimentel, Universidade Estadual de Campinas (UNICAMP), Campinas, São

Paulo, Brazil (SMRP 469.01–469.14, 469.26–469.42). Total genomic DNA was extracted

according to Veiga-Menocello et al. (2014). We targeted a 650-bp region of the 16S

mitochondrial gene using the primers 16Sar and 16Sbr (Palumbi et al., 1991). Fragments

were purified using a purification kit (GE Healthcare Life Science, São Paulo, SP, Brazil);

sequences were obtained using the same primers and BigDyeTM 3.1 cycle sequencing

kits (Applied Biosystems Foster City, CA, USA), and were read on an ABI 3700/Prism.

Sequences were checked by eye using BioEdit v.5.0.9 and aligned with Muscle

(Edgar, 2004). Genetic distances (p distances) were computed from mitochondrial loci

using MEGA 5.1 (Tamura et al., 2011).

We verified haplotypes using DnaSP v. 5.10.01 (Librado & Rozas, 2009). We obtained

a haplotype network using the Median-joining network method (Bandelt, Forster &

Rohl, 1999) with NETWORK 4.6.1.2.

Statistical analyses
We performed cluster analyses based on acoustic similarities using the Bray-Curtis

index, through the UPGMA method and bootstrap with 1000 randomizations (see

Toledo et al., 2015b). We calculated the values for Euclidean distance among populations
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for acoustic traits, and correlated them with the values for geographical and genetic

distance through Mantel tests with 1000 permutations. Geographical distance was

estimated in Google Earth as the straight-line distance between two sites. We conducted

statistical analyses in Past 2.17 (Hammer, Harper & Ryan, 2001).

RESULTS
Acoustic similarities and variability
The structure of calls from all individuals presented the same pattern of a single periodic

pulse train (Fig. 2A). However, we found slight differences in spectral and temporal traits

among calls from distinct localities (Table 1). Male calls from Avaré had the lowest

frequencies, whereas calls from Ituiutaba had the highest frequencies. The individual from

São Carlos presented the longest calls, whereas the individual from Bauru emitted the

shortest calls. Males from Itirapina emitted calls with the highest pulse rates; the call

from the male from Avaré had the lowest pulse rate. Temporal traits of the advertisement

call presented high coefficients of variation among males (above 12%), and were

considered dynamic (Fig. 2B). Among the spectral traits, frequency range showed the

highest coefficient of variation among males, whereas the other three spectral traits

presented an intermediate variation (between 5 and 12%; Fig. 2B). All call traits presented

low variation within males, with CVs of lower than 8% (Fig. 2C), and the majority

was considered static, with < 5% variation.

Cluster analysis placed O. americanus and P. boiei as outgroups in relation to the

focal P. moratoi individuals (Fig. 3). Individuals were not grouped by population, except

for the males from Itirapina. The male from Avaré had the most distinct call, and was

grouped with two individuals from Uberlândia. However, other males from Uberlândia

were placed in the other two major groups, and individuals were not organized according

to geographical distance among populations. This was confirmed by the absence of a

correlation between geographical distance and the acoustic distance between populations

(r = -0.23; p = 0.73).

Haplotype network and genetic distance
We found 7 haplotypes in the 26 partial sequences of the mitochondrial 16S gene

(Fig. 4). Most haplotypes (H1–H4) were shared among multiple populations, but

three haplotypes (H5–H7) were found in one individual each, and were limited to

Uberlândia (H5, H6) or Ituiutaba (H7). Genetic distances of P. moratoi averaged 0.2%

(0.0–0.4) between populations (Table 2) and 0.25% (0.0–0.5) within populations.

Acoustic and geographical distance between populations was not correlated with genetic

distance (r = -0.32; p = 0.86; and r = -0.32; p = 0.87).

DISCUSSION
In the present study, we found a common structural pattern (a single periodic pulse train;

Fig. 1) for all individuals, which is consistent with the findings of previous reports on the

advertisement call of P. moratoi (Brasileiro, Martins & Jim, 2008;Martins & Giaretta, 2012).
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Figure 2 Call traits of the frog Proceratophrys moratoi. (A) Waveform of the call. The call is composed

of a single pulse-train structure; (B) among-male and (C) within-male coefficients of variation of

advertisement traits. The horizontal continuous line represents the lower limit for dynamic traits (above

12%) in (B) and the dashed line represents the limit for static acoustic traits (below 5% of variation) in

(C). Dynamic and static traits according to Gerhardt (1991).
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The variability in the advertisement call of P. moratoi follows a general pattern among

anurans; spectral traits exhibit lower variation than do temporal ones, with the exception of

frequency range (Gerhardt, 1991;Gerhardt&Huber, 2002). The low coefficients of variation

in call traits we observed among males (showing highly stereotyped signals) could be

attributed to stabilizing selection (Kaefer & Lima, 2012; Kaefer, Tsuji-Nishikido & Lima,

2012), which is usually a result of generalized female choice (Jennions & Petrie, 1997).

Alternatively, it could reflect the absence of selection and the presence of neutral/stochastic

processes (Erdtmann & Amézquita, 2009; Kaefer et al., 2013; Toledo et al., 2015b). Because

sexual signals carry important information for mate recognition (Ryan, 1991), spectral

traits would not be expected to diverge rapidly. Temporal traits, which are generally

dynamic, have been shown to vary with social or environmental conditions (Bosch & de la

Riva, 2004; Ey&Fischer, 2009). For example, some species respond to vocal interactions and

chorus composition with rapid temporal adjustments in their calling behavior (Schwartz,

2001). Therefore, temporal traits such as pulse rate and call duration may be affected by

social context. In species wherein females make choices based on temporal traits alone

(Littlejohn, 1965), these temporal traits would be predicted to minimize the patterns

observed in spectral traits. However, we observed that mate choice by acoustic properties

remains to be tested, since we do not know how female P. moratoi individuals select males.

Habitat structure, background noise, and other environmental differences are pivotal

in the evolution of acoustic communication in frogs (Goutte, Dubois & Legendre, 2013;

Table 1 Acoustic traits (mean ± SD, range) of seven populations of Proceratophrys moratoi from southeastern Brazil and two close species as

outgroups. Data from the population of Botucatu were extracted from Brasileiro, Martins & Jim (2008).

Groups Population

(n = calls,

M = males)

Frequency

range (Hz)

Minimum

frequency (Hz)

Peak of

dominant

frequency (Hz)

Maximum

frequency (Hz)

Call

duration (s)

Pulses per

note

Pulses

rate (p/s)

Proceratophrys

moratoi

Avaré

(n = 8; M = 1)

291 ± 20

(258–301)

980 ± 20

(947–990)

1,184 ± 23

(1,163–1,206)

1,270 ± 23

(1,249–1,292)

0.297 ± 0.01

(0.277–0.315)

20 ± 0.9

(19–22)

69 ± 1.6

(66–71)

Bauru

(n = 29; M = 1)

423 ± 23

(387–474)

1,029 ± 13

(990–1,034)

1,314 ± 73

(1,077–1,378)

1,452 ± 20

(1,421–1,464)

0.227 ± 0.02

(0.160–0.260)

21 ± 2.2

(15–24)

92 ± 2.8

(81–96)

Botucatu

(n = 59; M = 2)

730 928 1,348 ± 86.6

(1,153–1,420)

1,659 0.207 ± 17.6

(146–238)

17.5 ± 1.5

(12–20)

–

Itirapina

(n = 78; M = 3)

353 ± 32

(281–388)

1,092 ± 34

(1,077–1,206)

1,317 ± 38

(1,265–1,421)

1,445 ± 27

(1,406–1,507)

0.245 ± 0.02

(0.183–0.288)

23 ± 2.4

(17–27)

94 ± 3.2

(85–103)

Ituiutaba

(n = 54; M = 2)

433 ± 66

(301–517)

1,129 ± 57

(1,077–1,249)

1,440 ± 26

(1,378–1,464)

1,562 ± 19

(1,550–1,593)

0.240 ± 0.01

(0.196–0.263)

19 ± 2

(14–22)

81 ± 4.9

(67–87)

São Carlos

(n = 26; M = 1)

288 ± 20

(258–301)

1,206 ± 0

(1,206)

1,386 ± 24

(1,335–1,464)

1,494 ± 20

(1,464–1,507)

0.307 ± 0.02

(0.274–0.382)

25 ± 1.4

(23–28)

83 ± 4.5

(71–89)

Uberlândia

(n = 141; M = 7)

343 ± 95

(215–474)

1,054 ± 70

(947–1,206)

1,286 ± 90

(1,120–1,464)

1,397 ± 92

(1,249–1,550)

0.262 ± 0.03

(0.186–0.316)

18 ± 1.3

(15–22)

71 ± 9.5

(60–97)

Outgroup Proceratophrys

boiei

(n = 5; M = 1)

577 ± 38

(517–603)

474 ± 0

(474)

637 ± 19

(603–646)

1,051 ± 38

(990–1,077)

0.743 ± 0.05

(0.666–0.795)

32 ± 1.4

(30–34)

43.1 ± 1.1

(42–45)

Odontophrynus

americanus

(n = 15; M = 2)

287 ± 24

(234–328)

681 ± 24

(656–703)

825 ± 43

(750–890)

968 ± 38

(937–1,031)

0.664 ± 0.10

(0.508–0.816)

57 ± 4.6

(49–65)

86 ± 9.5

(79–103)

Forti et al. (2016), PeerJ, DOI 10.7717/peerj.2014 8/16

http://dx.doi.org/10.7717/peerj.2014
https://peerj.com/


Schwartz & Bee, 2013). These factors certainly contribute to regional divergence in call

traits among individuals (Amézquita et al., 2006). Each reproductive environment

could present distinct species composition and considerably different acoustic qualities.

Based on this ecophenotypic hypothesis, we expected that local pressures would

modulate call features in P. moratoi males from distinct localities, because populations

of this threatened species surrounded by human-transformed landscapes could show

Figure 3 Dendrogram of two outgroup species (other Odontophrynidae) and 15 males of

Proceratophrys moratoi from different localities resulting from a hierarchical cluster analysis

based on similarity in call traits.
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low connectivity. In contrast, cluster analyses failed to group individuals by population

(geographical context). Taken together, these results indicate minimal pressure for

signal divergence, which could be explained by the following, non-exclusive hypotheses:

(1) the reproductive environment in the sampled localities is similar with respect to

habitat structure and background noise; (2) the female choice drives stable selection,

which equalizes the general acoustic features of males from different localities; (3) the

populations were recently connected, presenting traces of recent genetic flow; and

(4) random evolutionary processes act on the calls (Toledo et al., 2015b). We did not test

these hypotheses, but it is unlikely that populations were recently connected, as genetic

distance was not correlated with acoustic distance among populations. Furthermore,

although some studies have reported a correlation between genetic and acoustic

distances (Smith, Osborne & Hunter, 2003; Amézquita et al., 2009), many others have

shown that geographical variation in sexual signals and genetic distances among

populations do not co-vary (Heyer & Reid, 2003; Lougheed et al., 2006; Pröhl et al., 2007).

In these cases, it is possible that evolution has been decoupled for genotypic and

phenotypic features (Lougheed et al., 2006). Cluster analysis demonstrated that a

phylogenetic signal in anuran advertisement call (as a phenotypic trait) might not

evolve as rapidly as DNA differences appear, a finding corroborated by Kaefer et al.

(2013). Consequently, our results suggest that a phylogenetic signal would be apparent

Table 2 Genetic distances (p-distance) based on 16S mitochondrial genes between individuals of six Proceratophrys moratoi populations in
the upper matrix and the respective geographic distance (in km) in the lower matrix.

Interpopulation variation (%)

Intrapopulation variation (%)Itirapina São Carlos Bauru Avaré Uberlândia Ituiutaba

Itirapina – 0.2 0.4 0.2 0.2 0.0 Itirapina 0.0

São Carlos 21.65 – 0.3 0.3 0.2 0.3 São Carlos 0.1

Bauru 114.54 116.59 – 0.2 0.4 0.4 Bauru 0.2

Avaré 129.93 141.36 59 – 0.4 0.3 Avaré 0.5

Uberlândia 354.97 331.88 375.50 437.27 – 0.3 Uberlândia 0.3

Ituiutaba 392.80 372.92 375.45 437.25 119.44 – Ituiutaba 0.1

Figure 4 Haplotype network of Proceratophrys moratoi populations. The size and color of each ellipse
indicate the frequency and geographic origin of the individuals.
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only when higher taxonomic levels are compared, for example, different species, genera,

or families. This finding could be explained, in part, by the conservative nature of the

molecular marker used—the 16S gene—which is commonly employed to separate

different species (Fouquet et al., 2007; Brusquetti et al., 2014; Yang et al., 2014;

Lourenço et al., 2015).

Although our dataset is limited, we observed that acoustic and genetic variation

appears to be conserved among individuals distributed across human-altered landscapes.

Our preliminary results showed similar call types and genotypes (also presenting low

genetic divergence) among different populations. Such reduced acoustic and possible

genetic structure could be considered in future conservation actions; for example, these

findings suggest that communication barriers (prezygotic) would pose no obstacle to

reproduction (Dobzhansky, 1951; Tucker & Gerhardt, 2011) if a reintroduction program

were initiated for this species. Nevertheless, playback experiments are required for

testing this hypothesis first. From the genetic point of view, if the actual molecular marker

used in the present study could represent the genomes of all individuals, the genetic

barrier (postzygotic) would pose no obstacle to reproduction too (Dobzhansky, 1951;

Tucker & Gerhardt, 2011). The type locality of this species (Botucatu) is still preserved,

and a reintroduction could be considered after complementary genetic, natural history,

and experimental research. The causes of the decline of this population are unknown,

and therefore, a reintroduction initiative could also aid in understanding past decline

(if the cause is still active) and help to prevent further decline here (for example, of

Bokermannohyla izecksohni—another species that could be threatened in Botucatu; L.

F. Toledo & C. Z. Torres, 2015, unpublished data) and elsewhere. Thus, the findings of the

present study add to the growing body of literature supporting P. moratoi as a potential

candidate for conservation actions, although additional work is necessary before an

action plan could be initiated.
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Ministério do Meio Ambiente. 2005. In: Victor MAM, ed. Cem Anos de Devastação:

Revisitada 30 Anos Depois. Brası́lia: Secretaria de Biodiversidade e Florestas.
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