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In the early 90s, Manfred Eigen lectured at Hoffman-La
Roche and explained that a gene of 1,000 base pairs has
10605 combinations. This number suggests that the
Human Genome cannot be randomly created in time.1

In order to give human beings the power to control any
disease including aging, we must, first, accept the defini-
tion that the Human Genome contains an infinite
amount of information (nonlocal) that morphs into an
infinite number of genes (local) as reflected in origami
shapes and fractal2,3 structures.4-11 Based on this view-
point, the Human Genome, which consists of 3 billion
bps, is categorized into 2 parts. The expression (local)
part consists of the 20,687 known protein-coding genes
that occupy 2.94% of the Human Genome12; whereas,
the remaining 97% is referred to as the unknown crea-
tion (nonlocal) part. The 20,687 functional genes are
developed through unknown processes and mecha-
nisms within the creation part. We postulate that nature
not only uses the 1,000 gene-regulating proteins (tran-
scription factor)13 to regulate the 20,687 known genes,
but also that a proportion of these genes are potentially
involved in the unknown processes and mechanisms
within the Human Genome’s 97% creation part. From
these 1,000 gene-regulating proteins, the zinc finger
domains with 3 fingers recognize 9 base pairs that occur
10,000 times in the Human Genome. In addition, such
domains identify specific 9 base pairs which vary under
different conditions.14 Therefore, it is plausible that 3-
finger-domains are involved in the unknown processes
and mechanisms of the creation part. Further research
is necessary to explore how and why nature uses small,
3-finger-domains. If we understand how nature uses
these 3-finger-domains to regulate genes, then we might
begin to comprehend how nature controls the unknown

parts of the Human Genome.14 Since each single zinc
finger binds to a variety of the 64 possible trinucleotide
combinations, we can anticipate that a 3-finger-domain
binds to numerous 9-base-pair sequences. When a zinc
finger protein binds to numerous sequences, it is only
active at the desired target locations; whereas, if the pro-
tein binds at off-target locations, then it is not active. In
addition, when the protein is active at a target location,
the binding must be reversible in a very timely manner
to avoid over- or under-expression that lead to patho-
genic side-effects.13 Although, if the natural process
only guides and binds the protein to a targeted location
and further prevents the domain from binding at off-
target locations, then the process becomes too complex
and inefficient for nature to control. So, why then, does
nature rely on 3-finger-domains? We propose that 3-
finger-domains are versatile15 and that the same domain
can be used to bind in different conditions to other 9-
base-pair sequences in order to execute diverse func-
tions in both the 3% and the 97% sections of the Human
Genome. In contrast, domains with 6 or more fingers
are not versatile because such domains would bind to
limited locations in the 3% section of the Human
Genome. Moreover, an increased number of fingers in a
domain decrease the control of the reversibility of the
binding.14 In order to explain how nature controls 3-fin-
ger-domains, we should develop methods that distin-
guish between active target sequences and inactive off-
target sequences. Out of the 262,144 combinations of a
9 base pair sequence, the active target sequences are
those where a domain induces gene expression in an in-
vivo model or a human cell based assay. A more practi-
cal approach would be to test each finger with the 64
trinucleotide combinations in order to determine active
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9-base-pair sequences.14 Each of these identified active
target sequences occur 10,000 times in the Human
Genome. This vast quantity of sequences must be
mapped.14 Then, the surrounding sequences should be
analyzed to determine similarities, patterns, and struc-
tures that are clustered in certain areas in the Human
Genome. David Bohm’s theory states that nature is an
infinite wholeness with an implicate order created
neither randomly nor planned by outside forces.16 His
theory supports our premise that the Human Genome
infinitely creates from within itself. Genes instan-
taneously appear1,17-19 and nature directs their place-
ment.15 Once we discover how these underlying
processes and mechanisms operate such as how nature
regulates 3 finger domains, then researchers can identify
techniques to regulate the Human Genome.
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