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Abstract: The capacity to regenerate lost or injured body parts is a widespread feature within
metazoans and has intrigued scientists for centuries. One of the most extreme types of regeneration
is the so-called whole body regenerative capacity, which enables regeneration of fully functional
organisms from isolated body parts. While not exclusive to this habitat, whole body regeneration is
widespread in aquatic/marine invertebrates. Over the past decade, new whole-body research models
have emerged that complement the historical models Hydra and planarians. Among these, the sea
anemone Nematostella vectensis has attracted increasing interest in regard to deciphering the cellular
and molecular mechanisms underlying the whole-body regeneration process. This manuscript will
present an overview of the biological features of this anthozoan cnidarian as well as the available
tools and resources that have been developed by the scientific community studying Nematostella. I
will further review our current understanding of the cellular and molecular mechanisms underlying
whole-body regeneration in this marine organism, with emphasis on how comparing embryonic
development and regeneration in the same organism provides insight into regeneration specific
elements.

Keywords: whole-body regeneration; regeneration; functional genomics; stress response; Nematostella
vectensis; cnidaria; anthozoa; sea anemone; marine organism

1. Introduction

Regeneration is the capacity of tissues, organs, or even entire organisms to regrow lost
or injured body parts and, therefore, maintain function and extend longevity. Regenera-
tion is widespread, yet highly variable among animals and has intrigued scientists and
philosophers for centuries [1], as some organisms can and others, such as humans, cannot
(or can, but to a lesser extent) [2]. This particular developmental trajectory involves various
cellular processes, such as reprogramming, de-differentiation or trans-differentiation that
can operate in different tissues of the same animal [3].

During the multi-factorial process of aging, certain tissues, organs, or body parts lose
their capacities to regenerate, leading to age-related diseases, like organ failures. Interest-
ingly, in some organisms, whole-body regeneration (WBR) is associated with extended
longevity [4,5]. In fact, these latter animals are able to reform fully functional organisms
from small body fragments within days after injury and display no naturally occurring
age-related diseases.

The aquatic/marine biodiversity harbors a large array of invertebrates that possess
these fascinating WBR capacities that are absent or limited in most established invertebrate
or vertebrate research models, such as Drosophila, Caenorhabditis elegans, or mice. While
Hydra (hydrozoan cnidarian) and planarians (Platyhelminthes) are the historical WBR
research models [6,7], over the past decades, additional and complementary WBR research

Cells 2021, 10, 2692. https://doi.org/10.3390/cells10102692 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-2938-6774
https://doi.org/10.3390/cells10102692
https://doi.org/10.3390/cells10102692
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10102692
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10102692?type=check_update&version=2


Cells 2021, 10, 2692 2 of 18

models spanning the metazoan tree of life have (re-)emerged [2]. Scientists working on the
latter have benefitted from the development of new sequencing, imaging, and functional
genomics technologies [2,8–16].

Among these emerging WBR models, the anthozoan cnidarian Nematostella vectensis
has attracted increasing interest, in regard to deciphering the cellular and molecular mech-
anisms underlying the reformation of after injury. The reasons are multiple, and include its
phylogenetic position [17], a conserved gene content and genome architecture compared
to vertebrates [18], its relatively simple morphology, the handiness to rear them under
laboratory conditions as well as a wealth of resources, and tools, such as CRISPR/Cas9-
mediated genome editing [19]. Another interesting aspect of this model is that it is suitable
to compare the molecular mechanisms underlying embryonic development and regener-
ation within the same organism in order to highlight similarities as well as regeneration
specific features [19–21].

In this review, I will provide a general presentation of this emerging research model,
the available resources, techniques and tools for functional genomics, as well as an up-
to-date view of the tissular, cellular, and molecular events that trigger and drive WBR in
Nematostella.

2. Phylogeny, Morphology, Reproduction, and Homeostatic Plasticity of
Nematostella vectensis

Cnidarians (jellyfish, Hydra, corals, gorgonians, sea anemones) are strictly aquatic
animals and considered the “sister taxon” to bilaterians (Figure 1A). As such, they hold an
important phylogenic position for studying the evolution of developmental processes and
the emergence of biological novelties [22]. Cnidarians are diploblastic animals formed by
two germ layers, the ectoderm and the endoderm (also called endomesoderm, gastrodermis,
or entoderm), lacking a well-defined and segregated mesoderm [23,24].

During the early phase of the evo–devo field [25], the scientific community was
in search for cnidarian models (i) that complement the historical hydrozoan cnidarian,
Hydra [26,27], and (ii) with access to embryonic material and the development of functional
genomic tools. In this context, in the 1990s, Hand and Uhlinger published a protocol
for rearing, induction of spawning, and completing the entire life cycle under laboratory
conditions of the anthozoan cnidarian sea anemone Nematostella vectensis [28]. Since then,
scientists have adopted this new cnidarian research model for gaining insight into the evo-
lution of genomes as well as molecular mechanisms underlying embryonic development,
i.e., germ layer formation, axial patterning, or cell-type specification, leading to a wealth of
publications (reviewed in [19,29,30], resources, and tools (Table 1).

Adult Nematostella polyps are translucent and approximatively 1–3 cm in size (Figure 1B).
In the wild, they are found in estuarine environments, buried in the sand/mud with only
the head region/tentacles extruding from the surface to catch food from the water column.
Once paralyzed by toxins present in the cnidocytes (stinging cells present throughout
the body and very abundant in the tentacles), the prey is brought to the mouth, ingested,
and then digested within the body cavity via secreted enzymes and continuous peristaltic
movements. The digestive enzymes are secreted by cells located in the mesenteries, internal
structures that also serve as lipid storage and that harbor the gonads [83]. Unlike most sea
anemones that have a foot to attach to the substrate, the aboral extremity of Nematostella
is a non-adhesive structure called the physa that together with muscle-driven peristaltic
movements facilitates burrowing in the mud.

A recent study revealed that Nematostella is composed of at least eight cell classes
(myoepithelial cells, neuronal cells, gland cells, digestive filaments, cnidocytes, ectodermal
and endodermal epithelial cells, and progenitor cells), each of which comprises different
class-specific subtypes totaling more than 100 cell states [55]. As in all diploblastic animals,
all body structures of Nematostella, including the mesenteries, are composed of only two
germ layers, ectoderm (also called epidermis) and endoderm (also called endomesoderm
or gastrodermis). These two epithelial layers are separated by the mesoglea, a largely
acellular matrix containing a sparse number of amoeboid cells [86].
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Table 1. Overview of techniques, resources, tools, and lines available for functional genomics studies in Nematostella.
Updated and extended from [19].

Culture and Experimentation

Rearing and spawning [28,31,32]
Inducing and assessing regeneration [33–35]

Microinjection and micromanipulation [36–47]

Genome, Resources, and Protocols for -Omics Analyses

Annotated genome—V1.0 [18] https://mycocosm.jgi.doe.gov/Nemve1/Nemve1.home.html
(accessed on 5 October 2021)

Annotated genome—V2.0 [48] https://genomes.stowers.org/starletseaanemone (accessed on 5
October 2021)

Microarrays [49–52]
RNA-seq/transcriptomes [20,53,54] http://nvertx.kahikai.org (accessed on 5 October 2021)

scRNA-seq [55]
ATAC-seq [55]
ChIP-seq [56]

Spatio–Temporal Gene Expression Analysis

mRNA in situ [57–64]
Immunohistochemistry [36,37,39,40,46,65–67]

Transgenic reporter [68–73]

Tools to Study Gene Function

mRNA over-expression [40,47,49,51,65]
Morpholino [36,39,41,46,47,49,51,63,65]

Short hairpin RNA [74,75]
TALEN/Fok1, CRISPR/Cas9 [69]

Heat-shock inducible promoters [69]
Pharmaceutical treatments [21,39,51,71,76–80]

Available Stable Reporter Lines

NvMyHC::mCherry [68]
NvElav::mOrange [81]
NvElav::Cerulean [82]

NvLWamide:mCherry [73]
NvEf1a::mOrange-CAAX [83]

NvFoxQ2d::mOrange-CAAX [82]
NvNcol-3::memOrange2 [84]

NvAnthox8::Gfp [74]
NvPou4::mCherry [70]
NvTBP::mCherry [85]

Available Stable KO Lines

NvAnthox1a−/− [74]
NvAnthox6−/− [74]

NvAnthox8a−/− [74]
NvFgfrB+/− [71]
NvPou4+/− [70]

The body wall ectoderm serves as a protective barrier between the animal and its
environment and is made up mostly of ectodermal epithelial cells, neurons, gland cells
and cnidocytes. The body wall endoderm harbors myoepithelial cells that form the cir-
cular muscles and neurons. The endodermal component of the eight mesenteries (tissue
infoldings) is formed during larval development [36,37,74,83]. In polyps, this mesenterial
endoderm contains myoepithelial cells that form the retractor and parietal muscles, the
gonad, as well as cells involved in nutrient absorption and storage (Figure 1C) [83,87]. Fate
mapping experiments using transgenic grafting experiments, have shown the ectodermal
origin of the pharynx and the septal filaments. The septal filaments that correspond to the
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mesenterial ectoderm are primarily composed of epithelial cells, cnidocytes, and gland
cells that secrete the digestive enzymes (Figure 1C) [83].

Nematostella possesses a diffuse nerve net formed by a variety of interconnected
neuronal sub-types (e.g., sensory or motor-sensory cells, glandular cells, cnidocytes) that
originate from both the ectoderm and the endomesoderm [49,81]. Although primarily
diffuse, the nervous system is nonetheless organized in visible structures such as neuronal
condensations along the mesenteries, or nerve rings around the mouth and pharynx [76,88].

Cells 2021, 10, x  4 of 18 
 

 

Fate mapping experiments using transgenic grafting experiments, have shown the ecto-

dermal origin of the pharynx and the septal filaments. The septal filaments that corre-

spond to the mesenterial ectoderm are primarily composed of epithelial cells, cnidocytes, 

and gland cells that secrete the digestive enzymes (Figure 1C) [83]. 

Nematostella possesses a diffuse nerve net formed by a variety of interconnected neu-

ronal sub-types (e.g., sensory or motor-sensory cells, glandular cells, cnidocytes) that orig-

inate from both the ectoderm and the endomesoderm [49,81]. Although primarily diffuse, 

the nervous system is nonetheless organized in visible structures such as neuronal con-

densations along the mesenteries, or nerve rings around the mouth and pharynx [88,76].  

 

Figure 1. (A) Simplified metazoan phylogeny, emphasizing the position of cnidaria as a sister group to bilaterians as well 

as the cnidarian phylogeny highlighting the relationships between the major groups. CBA (cnidarian-bilaterian ancestor). 

Data based on [89,90]. (B) Adult Nematostella polyp. (*) mouth, (ten) tentacles, (pha) pharynx, (mes) mesenteries (phy) 

physa. Figure modified from [91,92]. (C) Schematic cross section of a complete/adult mesenteries at the gonadal section 

(adapted from [83,93]). (p-ecto) pharyngeal ectoderm, (ecto) ectoderm, (rM) retractor muscle, (pM) parietal muscle, (cM) 

circular muscle. 

While there is no sexual dimorphism in Nematostella, this sea anemone is gonochoric 

(sexes are separate) and able to reproduce sexually. In addition, Nematostella can also re-

Figure 1. (A) Simplified metazoan phylogeny, emphasizing the position of cnidaria as a sister
group to bilaterians as well as the cnidarian phylogeny highlighting the relationships between the
major groups. CBA (cnidarian-bilaterian ancestor). Data based on [89,90]. (B) Adult Nematostella
polyp. (*) mouth, (ten) tentacles, (pha) pharynx, (mes) mesenteries (phy) physa. Figure modified
from [91,92]. (C) Schematic cross section of a complete/adult mesenteries at the gonadal section
(adapted from [83,93]). (p-ecto) pharyngeal ectoderm, (ecto) ectoderm, (rM) retractor muscle, (pM)
parietal muscle, (cM) circular muscle.

While there is no sexual dimorphism in Nematostella, this sea anemone is gonochoric
(sexes are separate) and able to reproduce sexually. In addition, Nematostella can also repro-
duce asexually via two specific types of budding (polarity reversal and physal pinching, see
below), undergo whole body regeneration upon injury and is able to cope phenotypically
with environmental variations, in particular in response to food availability (Figure 2A).
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Upon stimulation, gametes are released into the water column where the sperm fertilizes
the mature egg. Under laboratory conditions, one can select females by sorting out the
polyps that release egg masses. In addition, spawning can be induced via a light and
temperature stimulus and fertilization can be precisely controlled by spawning sexes sepa-
rately [28,31,33]. After fertilization, the egg begins to cleave, develop into a blastula that
gastrulates at the animal pole [38], resulting in a swimming planula larva that gradually
metamorphoses after a few days to give rise to a juvenile Nematostella polyp [94]. Meta-
morphosis in Nematostella consists in reducing/stopping its natatory behavior, loss of its
apical tuft, formation of the tentacle crown, and initiating the final steps of pharynx and
mouth formation [28,39]. Primary juvenile polyps possess four tentacles and two complete
mesenteries (endodermal + ectodermal component). Both progressively increase in number
during the growth of the polyp resulting in at least 16 tentacles and 8 mesenteries when
the animals are sexually mature. The growth of the polyp to reach adult characteristics is
nutrient- and temperature-dependent. When those conditions are optimized, the entire life
cycle can be completed in about 8 weeks (Carvalho, Amiel, and Röttinger, unpublished).

In addition to embryonic development, asexual developmental trajectories, such as po-
larity reversal and physal pinching (Figure 2B), have been reported in Nematostella [28,95,96].
During polarity reversal, a second oral crown forms at the aboral site where the physa is
located. This process that can take up to several months and leads to the development
of two fused individuals, that feed independently and eventually separate to form two
clonal polyps [28,95,96]. Physal pinching also leads to the formation of two clonal polyps;
however, the starting point is the physa. A constriction appears at the aboral-most region
of the body column that leads to the separation of this body part. The isolated physa
contains portions of one or more parental mesenteries; mouth, pharynx and tentacles are
absent. After separation, the number of complete mesenteries grows back to eight, and the
pharynx, mouth, and tentacles form, enabling the pinched physa to begin feeding 3–5 days
after separation [28,95,96]. Unfortunately, very little is known about the stimuli that trigger
one or the other type of asexual reproduction.

The few studies that investigated this phenomenon suggest that this might be linked
to food availability and the feeding regime [95]. However, pinching was also observed
under starved conditions. Different populations fed under equal conditions lead to various
number or clones. Thus, genetic or epigenetic factors might be involved in this process as
well [96]. In regards to feeding regime, it is important to note that the phenotypic plasticity
of Nematostella enables this sea anemone to adapt to the food availability not only by
producing new clones when food is abundant, but also by reducing its mitotic activity [97]
and de-growing in size when food is absent (Röttinger, unpublished). As soon as food
becomes available, mitotic activity is reactivated and the regrowth of the polyp starts over
again (Figure 2C). A recent study, using a transgenic reporter line (NvLWamide-likemCherry)
that labels neuronal sub-types has shown that, in response to the feeding/starvation regime,
the body not only alters its body size, but also alters the numbers of neurons to reflect the
resulting size without affecting the polyp behavior [98].

Finally, upon physical stresses, such as injury or bisection, Nematostella’s whole-body
regenerative capacity (Figure 2D) enables it to regrow lost/missing body parts within days,
even from small, isolated fragments [96,99]. While the developmental and genomics aspects
of Nematostella have been the subjects of a fair number of studies (444 publications according
to PubMed as of April 2021) since its initial developmental description in 1992 (Hand),
whole-body regeneration in Nematostella has been investigated in less than 15 studies since
2006 when this topic had reemerged. The current knowledge of the tissular, cellular, and
molecular mechanism underlying whole-body regeneration from these studies will be
covered in detail in the sections below.
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from [92]).

3. Available Resources, Techniques, and Tools to Study Nematostella vectensis

Table 1 summarizes current resources, techniques, and tools available for studying Ne-
matostella. The first non-bilaterian genome that was sequenced and published was the one
from Nematostella in 2007 [18] (Table 1). Unexpectedly, this genome revealed an astonishing
conservation with vertebrates (i.e., human frog and pufferfish genomes) in terms of gene
content, gene synteny, as well as intron/exon organization of orthologous genes [18]. A
genome-wide map of gene regulatory elements revealed that the epigenetic regulation is
also more conserved with bilaterians than initially expected [56]. In fact, this study showed
that enhancers of developmental genes in Nematostella share the same/similar combination
of histone modifications as the ones found in enhancers in bilaterians. However, posttran-
scriptional regulation appears to be different from bilaterians but similar to plants [100].
An updated and improved version of the genome using long-read sequencing approaches
was recently released [48] (Table 1).

Since the initial genome sequencing, a wealth of studies have assessed spatial gene ex-
pression of developmental/axial patterning genes as well as members of evolutionarily con-
served signaling pathways during embryonic and larval development [50,51,57,58,65,101]
(and references in Table 1). More recently, a variety of -omics data were produced for
Nematostella including RNA-seq, ChIP-seq, as well as ATAC-seq from either whole or-
ganisms or single cells [20,55,56], as well as references in Table 1. At the same time, the
scientific community has developed a variety of functional genomics tools that range from
mRNA or morpholino injection to meganuclease-based transgenesis or CRISPR/Cas9-
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induced knock-in (KI) and knock-out (KO) approaches [39–41,68–70,74] and references in
Table 1. The latter approaches have led to the development of a growing number of KO
lines that are primarily useful to study the roles of the genes of interest during embryonic
development, as well as genetic reporter lines useful for a variety of global or cell-type
specific analysis [68–70,74,84], as well as references in Table 1.

4. The Morphological, Cellular, and Molecular Basis of Regeneration in Nematostella

Following natural (predation) or artificially induced (bisection) injury that can lead
to the loss of body parts, Nematostella is able to regrow the latter within a few days. This
regenerative capacity was initially described by Hand and Uhlinger, and only periodically
investigated since then [96,99]. The adaptation and development of new techniques/tools
to investigate regeneration in Nematostella, have recently provided new insights into this
process at the morphological, cellular, and molecular levels.

4.1. Morphological and Tissular Dynamics

The original description of regeneration in Nematostella referred to the reformation
of missing body parts following physal pinching (also named posterior budding, [95]).
This physiological type of regeneration appears to be variable in regard to the timing
between the detachment and first ingestion of food that can vary between 3 days and
several weeks [95]. The different types of asexual reproduction, i.e., physal pinching and
injury-induced regeneration, were investigated a decade later, showing that, independent
of the location of the bisection site, adult polyps are able to regrow missing body parts
within weeks. This study emphasized on the difference between (i) endogenously triggered
constriction at the pinching site, and (ii) exogenously triggered constriction/wound healing
at the injury site, which appear to be two distinct onsets of the regenerative process. In
addition, the authors described irregular/incomplete regeneration leading to the formation
of ectopic heads that could be associated to the dissection plane [96].

An in-depth investigation of the ultrastructure of the mesoglea (the extracellular ma-
trix separating the epidermis and endodermis) revealed modifications of the basal lamina
and fibril depositions at early phases of the regeneration process that are completely recov-
ered after 5 days following amputation [86]. To develop a universal protocol that describes
the morphological dynamics underlying regeneration in Nematostella, Bossert and col-
leagues described a staging system following supra-physal bisection in adult polyps [102].
In addition to highlighting discernable morphological features for the progression of re-
generation, the authors also show that wound healing is temperature independent, while
subsequent progression varies according to the temperature that the regenerating polyps
are maintained at. The described stages correspond to morphological events that likely
also happen during physal pinching making this study a very interesting basis for com-
paring asexual propagation trajectories once the induction of budding can be controlled.
However, the size and opacity of adult tissues make them more difficult to analyze using
microscopic imaging approaches. Furthermore, the majority of regeneration studies in
Nematostella have focused on mid-body or sub-pharyngeal amputations in either adults or
juveniles [13,97,103].

To set a common groundwork for comparing regeneration studies in Nematostella,
Amiel and colleagues compared oral regeneration in juveniles and adults revealing that
the regenerative capacity and the timing of regeneration are age-independent following
sub-pharyngeal amputation [77]. A detailed analysis of the morphological events that are
triggered by the amputation have highlighted four characteristic stages of regeneration
in Nematostella (Figure 3). Following injury (step 0), the wound heals (step 0.5), and the
mesenteries contact one another as well as the amputation site (step 1). Simultaneously with
the moment that the tentacle buds appear, a gap between the oral part of the mesenteries
and the amputation site becomes visible (step 2), which corresponds to a highly proliferative
region where the pharyngeal lip develops (step 3) followed by the reformation of the
pharynx and the re-opening of the mouth (step 4). This study has highlighted that the early
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steps (0, 1) are proliferation independent, while later steps (2–4) require mitotic activity.
The authors also developed in vivo assays to assess (i) completion of wound healing
that is terminated by 6 h post amputation (hpa)); (ii) the reformation of the pharyngeal
lip/pharynx that is initiated at 72 hpa and visible via the reappearance of autofluorescence
in that region; as well as (iii) the contribution of pre-existing tissue to the reformation of
lost body parts. The latter has revealed that the remaining oral part of the mesenteries
contribute in large part to the reformation of the pharynx, while the body wall epithelium
of the amputation site is at the origin of the mouth opening and the tentacles [77].

The oral regeneration process occurs without the intake of major nutrients as the
mouth is absent until day 7. Thus, regeneration results in polyps that are smaller in
size than the pre-amputated animal [98]. In line with the results observed in de-grown
animals mentioned above, the number of LWamide positive neurons is also reduced in
these regenerates [98]. Interestingly, different LWamide neuronal subtypes displayed
subtype-specific responses during regeneration. In fact, this study shows that there are
at least three distinct neuronal responses after the onset of regeneration; (i) continuous
increase of pharyngeal and tentacular neurons; (ii) invariable tripolar neurons; and (iii)
longitudinal neurons that decrease during the first 24 hpa, then increase to recover numbers
present in the 0 hpa fragments [98].
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Figure 3. Overview of the morphological hallmarks characterizing whole-body regeneration in Nematostella. Confocal
images of DAPI (nuclei in cyan) stained regenerating oral regions of juvenile Nematostella polyps (a–e) represent the
characteristic phenotype of a given regeneration step. The panel spans 144 hours of regeneration and indicates the
proliferation independent (steps 0, 1) and dependent (steps 2–4) steps of the process. The arrows below indicate the
beginning of measurable tissular, cellular, and molecular events. The red dashed line indicates the amputation plane and the
yellow arrow heads highlight tentacle buds/elongating tentacles; (m) mesenteries, (pha lip) pharyngeal lip, (pha) pharynx,
(*) mouth opening (modified from [21,77,99]).

Although Hydra and planarians are considered to regenerate all body parts, certain
regions, such as the tentacles or the foot in Hydra as well as the pharynx in planarians, are
incapable of regenerating when isolated. This is due to fact that those regions are highly
differentiated and lack adult stem cells, namely i-cells and neoblast in Hydra and planarians,
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respectively [104,105]. Adults stem cells have yet to be described in anthozoan cnidarians
(sea anemones and corals), including Nematostella. To initiate a study determining the
existence of adult stem cells in Nematostella, Amiel and colleagues have assessed the limits
of the regenerative capacity in this anthozoan model [99]. Surprisingly, this study has
revealed that supra-physal amputation leads to the regeneration of lost body parts in an
age-dependent manner, i.e., isolated adult physa regenerate, while isolated juvenile physa
cannot regenerate. The lack of properly formed mesenteries in the physa of juveniles
indicate that these internal structures are required for regeneration to occur. In fact, when
the mesenteries are experimentally removed from the body column the remaining tissue
(isolated body wall epithelia) fails to regenerate lost body parts. When the mesenteries are
grafted back into the isolated body wall epithelia, proliferation is induced, and the regen-
eration process reactivated [99]. This is in line with the staging system that described the
contact between the mesenteries and the amputation site at the earliest step of regeneration
(step 1) following amputation and wound healing [77]. The molecular signal emitted by
the mesenteries and received by the body wall epithelia at the amputation site is yet to be
identified and characterized.

4.2. Cellular Dynamics Underlying Nematostella Regeneration

Similar to all metazoans that possess regenerative capacities [106], cellular prolifera-
tion is also crucial for regenerating lost body parts in Nematostella. In fact, while homeostatic
proliferation increases after feeding and reduces over time in starving animals, the amputa-
tion stress in the latter triggers a regeneration-specific proliferative response independent of
the starvation state [77,97]. Prior to a burst of cell proliferation at 18–24 hpa [77,97], mitotic
activity is detected at the amputation site as soon as 12 hpa in juveniles and adults [35,97].
Furthermore, blocking cell proliferation using Hydroxyurea (HU) completely arrests regen-
eration [77,97], and this at a very early stage, i.e., step 0.5 [77,97]. Inhibition of regeneration
by HU treatments is similar in juveniles and adults [77,97], further confirming that regener-
ation in Nematostella is age-independent following sub-pharyngeal amputation [77].

A study in Hydra has revealed that injury-induced apoptosis is crucial for the activation
of cell proliferation in neighboring i-cells [107], a process that has also been described in
other regeneration models [108]. In a similar manner, apoptosis in Nematostella is activated
shortly after puncture [13] or amputation [21] in cells close to the injury site. Apoptotic
cells remain at the amputation site until at least 12 hpa when cellular proliferation becomes
visible in the same region. At later regeneration time points, apoptotic cells are detected
more broadly in the body with an increased occurrence in the mesenteries [21]. Inhibition
of apoptosis using a pan-caspase inhibitor inhibits the initiation of cell proliferation and
blocks regeneration at a very early stage, just after wound-healing (step 0.5). In fact,
when apoptosis is blocked, the contact between the mesenteries and the epithelia of the
amputation site does not occur [21]; thus, preventing the tissue crosstalk required for
initiating a regenerative response [99] (Figure 4).

Irradiation in Nematostella affects homeostatic proliferating cells and blocks regener-
ation at an early step [99]. This observation is consistent with what has been described
in other whole-body regeneration models such as planarians [6]. However, the study in
Nematostella has also revealed that a population of small cells with compact DNA, located at
the tip of the mesenteries, escaped irradiation, and re-entered mitosis 48 after amputation.
This observation suggested the presence of slow-cycling or quiescent cells similar to adult
stem cells in bilaterians. Combining a series of EdU pulse and chase with grafting and am-
putation experiments, this study identified two populations of cells that i) are fast or slow
cycling/quiescent, predominantly present in the body wall epithelia and the mesenteries,
respectively; ii) are stimulated upon injury; and iii) migrate towards the amputation site
and participate in the reformation of lost body parts [99] (Figure 4). While those popula-
tions of cells share certain characteristics of adult stem cells, their capacity to self-renew,
their molecular identity, and potency remain unknown. Interestingly, a recent scRNA-seq
study performed on adult Nematostella polyps has revealed a set of genes (e.g., piwi, myc,
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nanos) expressed in specific cell populations and that define so-called “progenitor” cell
states [55]. These genes have been described as germ/stem cell markers in other marine
invertebrates [109–117], suggesting that they might be expressed in either one or both of
the above-mentioned potential stem cell populations in Nematostella.
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4.3. Molecular Wound-Healing Response and Patterning during Nematostella Regeneration

To investigate the roles of MEK/ERK, Notch, and TGFβ signaling on the wound-
healing response and regeneration, Dubuc and colleagues performed a series of exper-
iments with pharmacological inhibition of these signaling pathways. Wound-healing
was assessed following puncture in the body wall epithelia and regeneration following
sub-pharyngeal amputation. They showed that i) inhibiting TGFβ has no effect either
on wound-healing or regeneration; ii) the inhibition of Notch signaling only blocks re-
generation, while iii) inhibiting MEK/ERK signaling prevents wound-healing following
puncturing the body wall epithelium as well as oral regeneration [13]. A recent study has
confirmed the role of this pathway in regeneration that is blocked at a very early phase
(step 0.5) after the inhibition of MEK/ERK signaling. However, this study has also shown
that wound-healing following sub-pharyngeal amputation is not blocked but significantly
delayed [21]. Although important to mention, this difference might simply be due to the
different types of injuries (puncture vs bisection) in those two studies.

Interestingly, unlike in Hydra, where MAPK signaling activates apoptosis [118], inhibi-
tion of MEK/ERK does not affect apoptosis in Nematostella following puncture-induced
injury [13]. Whether this is also the case following sub-pharyngeal amputation is yet to be
determined. Furthermore, this study has revealed a set of MEK/ERK downstream targets
during wound-healing including matrix metalloproteinases that might be responsible for
the activation of growth factors involved in later stages of the wound-healing process
and potentially at the onset of regeneration [13]. Another study, discussed below in the
context of comparing embryonic development and regeneration at the Gene Regulatory
Network (GRN) level, has determined MEK/ERK downstream targets during the onset of
regeneration [21].

The canonical Wnt (cWnt) pathway has been shown to be involved in regeneration
and patterning the reformation of lost body parts in a large variety of organisms [119]
including the whole-body regeneration models Hydra and planarians [120–124]. In a similar
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manner, cWnt in Nematostella is involved in specifying oral fates during regeneration as
hyperactivation of this signaling pathway is sufficient to induce the formation of ectopic
oral structures [78]. Strikingly, this global role appears to be conserved between embryonic
development and regeneration [40,51,78].

While most of the studies in Nematostella focused on regenerating the lost oral body
parts, a study in 2016 compared the transcriptional dynamics following the amputation
of oral vs aboral body parts [125]. The authors performed a transcriptomic time course
spanning five time points over the course of five days [125]. While the genes dynamically
expressed during early time points appear closely related between the oral and the aboral
regenerating regions, at later time points becomes more divergent in each fragment. The
latter seems to reflect the onset of differentiation of oral or physal fates. While the similar
transcriptional responses at early time points likely reflects similarity of wound-healing
mechanisms [125]. The characterization of the isolated body part specific gene response
revealed that several GO groups are enriched during oral regeneration, including those
that involve cWnt signaling, chitin metabolic process, as well as microtubule and cilia-
associated genes. The authors propose that the latter group could contain novel players
responsible for the induction of polarization of the regenerating body parts in Nematostella
or more broadly in whole body regenerating organisms [125].

4.4. Regeneration-Specific Genes and Gene Modules

One of the interesting features of Nematostella is that one can access and study embry-
onic development as well as whole body regeneration. Thus, unlike Hydra and planarians
in which embryonic development is more difficult to study, Nematostella is well suited to
investigate the historical question about the relationship between embryonic development
and regeneration, two developmental trajectories that lead to a fully functional organism
in less than a week. The available functional genomics tools as well as the blueprints
of embryonic gene regulatory networks [51,65,76], makes this sea anemone particularly
interesting to compare the gene regulatory networks (GRN) underlying embryonic devel-
opment and regeneration to decipher shared as well as regeneration-specific gene modules
and genes [19]. The first study that investigated the molecular relationship between em-
bryonic development and regeneration in Nematostella was carried out by Burton and
colleagues [103]. In this study, the authors compared in situ hybridization gene expression
patterns of the transcription factors otxC, anthox1, anthox6, anthox8, and foxA. While some
of these genes displayed expression during regeneration that may resemble the one of
embryonic development (ex. foxA), other genes were not detected or expressed in a dif-
ferent manner (ex. otxC), suggesting a partial reactivation of developmental genes during
regeneration [103].

Warner and colleagues performed an extensive transcriptomic analysis during oral
regeneration to investigate this question more globally at the transcriptomic and gene regu-
latory network levels. The authors also complemented existing transcriptomic data from
embryonic and larval development, metamorphosis, and post-metamorphic growth [20,21].
A global comparison of these data revealed that transcriptional changes caused by regen-
eration are modest compared to those observed during embryogenesis. This study also
identified a set of genes with regeneration-specific expression dynamics. Some of these
genes were associated with apoptosis (e.g., bax, Figure 5, [21]). Genes associated to apopto-
sis were also detected in a co-expression module whose gene content and expression pattern
was coregulated during regeneration, but not during embryonic development. Inhibition of
apoptosis following fertilization did not affect embryonic development or metamorphosis.
However, as indicated above, inhibition of apoptosis following sub-pharyngeal amputation
blocked regeneration just after the wound has healed. Those results further support the
idea that apoptosis in Nematostella is a regeneration-specific process [21]. The precise mode
of activation of apoptosis and the mechanism by which apoptotic cells control the tissue
crosstalk and the onset of regeneration remains to be elucidated.
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Figure 5. Regeneration is a modest transcriptomic event compared to embryonic development. Comparison of the
transcriptomic time series during embryonic development and regeneration revealed that regeneration is reactivating
a modest number of genes transcriptionally dynamic during embryonic development. Interestingly, this comparative
approach also enables the identification of genes with a regeneration-specific expression dynamics (adapted from [21,35,56]).

From a GRN point of view, this comparative work suggested that regeneration de-
ploys a novel GRN logic to activate the regeneration process. Thus, the authors tested this
hypothesis by comparing the GRN modules mediated by MEK/ERK signaling during em-
bryonic development [65,76] with the ones deployed during regeneration [21]. Molecular
analysis following inhibition of MEK/ERK signaling at the onset of regeneration revealed
that this pathway controls only a subset of embryonic MEK/ERK downstream targets.
Furthermore, MEK/ERK signaling also integrates additional genes in its regeneration GRN
that were not part of the embryonic GRN. In particular, downstream targets controlled
by cWNT signaling during embryonic development as well as genes that belong to the
above-mentioned set of “regeneration-specific” genes [21]. While this work lays down the
framework for a regeneration GRN in Nematostella, the molecular elements, i.e., enhancers
and transcription factors responsible for such a regeneration-specific network, remain
unknown.

5. Conclusions and Future Directions

The development of novel and original research models, in particular marine organ-
isms with extraordinary properties, such as whole-body regeneration and an extended
lifespan, are crucial to increase our basic understanding underlying these features. The
anthozoan sea anemone, Nematostella vectensis, is such an example. Thanks to (i) its “simple”
morphology; (ii) the vast functional toolkit developed by the community working on this
model; (iii) the shared genomic organization and gene content with vertebrates; as well as
(iv) the accessibility to study embryonic development and whole body regeneration, could
help us to understand the cellular and molecular mechanisms underlying this biological
feature, which is largely absent in “classical” research models, such as the fruit fly, nema-
todes, or mammals. Gaining insight into these mechanisms, combined with a comparative
approach, including regenerating as well as non-regenerating metazoans, may also yield
an increased understanding of why certain animals regenerate while others do not, or have
reduced regenerative capacity.

Although studies investigating the whole-body regenerative capacity in Nematostella
are sparse, the above-mentioned studies provide first hints into the tissular, cellular, and
molecular dynamics underlying this process, and pave the way for future work exploiting
this exciting research model. Not only are apoptosis and cell proliferation crucial for induc-
ing a regenerative response in Nematostella, but apoptosis is also a regeneration-specific
event that is crucial to enable a tissue crosstalk between the mesenteries and the amputation
site that triggers a cellular response involving potential stem cell populations [21]. The
regeneration-specific role of apoptosis was revealed by taking advantage of the capacity
to compare embryonic development and whole-body regeneration in Nematostella at the
molecular levels. Comparing oral vs. aboral regeneration, or embryonic development vs.
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regeneration in Nematostella provides a specific entry point into the molecular aspects of
regeneration in this model. The latter approach provides a first glimpse into how the em-
bryonic GRN is rewired and interconnected with regeneration specific components in order
to quickly regenerate lost body parts. Other whole-body regeneration models, such as the
acoel Hofstenia miamia [10], have emerged in recent years to decipher the GRNs underlying
this process, enabling the community to compare the data between species, understand the
shared regulatory mechanisms by which regeneration-specific gene expression occurs, and
potentially identify shared core modules conserved in whole-body regeneration models.

Much remains to be studied in Nematostella to gain a broader understanding, not only
on the whole-body regeneration capacity and stem cell biology of this sea anemone, but also
on the general phenotypic plasticity and capacity to respond to environmental variations
and stresses (e.g., starving, salinity variations) and how these mechanisms are linked to
its potentially extended lifespan and longevity. Extensive tools exist to study embryonic
and larval development, and the Nematostella community is actively developing functional
tools, such as biosensors or conditional KO approaches, which are required to perturb
and study gene functions in juveniles and adults during homeostasis and regeneration.
Unconventional research models, in particular marine organisms with fascinating biological
features, enable us not only to tackle historical questions from a different angle, but also
fuel our research with original biological questions that inform us about the fundamentals
of metazoan biology and evolution.
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