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Abstract: Toll-like receptor 7 (TLR?) is activated in response to the binding of single-stranded RNA.
Its over-activation has been implicated in several autoimmune disorders, and thus, it is an established
therapeutic target in such circumstances. TLR7 small-molecule antagonists are not yet available
for therapeutic use. We conducted a ligand-based drug design of new TLR7 antagonists through a
concerted effort encompassing 2D-QSAR, 3D-QSAR, and pharmacophore modelling of 54 reported
TLR7 antagonists. The developed 2D-QSAR model depicted an excellent correlation coefficient
(thraining: 0.86 and R2yest: 0.78) between the experimental and estimated activities. The ligand-based
drug design approach utilizing the 3D-QSAR model (thrainmg: 0.95 and RZieqt: 0.84) demonstrated a
significant contribution of electrostatic potential and steric fields towards the TLR7 antagonism. This
consolidated approach, along with a pharmacophore model with high correlation (Reraining: 0.94 and
Reest: 0.92), was used to design quinazoline-core-based hTLR7 antagonists. Subsequently, the newly
designed molecules were subjected to molecular docking onto the previously proposed binding
model and a molecular dynamics study for a better understanding of their binding pattern. The
toxicity profiles and drug-likeness characteristics of the designed compounds were evaluated with in
silico ADMET predictions. This ligand-based study contributes towards a better understanding of
lead optimization and the future development of potent TLR7 antagonists.
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1. Introduction

The innate immune system serves as the initial line of nonspecific evolutionary de-
fensive approach against the entrance of pathogenic microorganisms. The innate immune
system is a complex and ancient system of defense that includes pathogen recognition
using germ-line-encoded pathogen receptors. Toll-like receptors (TLRs) are evolutionarily
conserved pattern recognition receptors that play a pivotal role in sensing the invading
pathogens by regulating inflammation [1-4]. In both healthy and disease conditions, these
innate receptors play a significant role in identifying conserved pathogen-associated molec-
ular patterns (PAMPs) associated with microbes, viz. bacteria, and viruses, as well as sub-
sequently activating downstream pathways, resulting in innate immune responses [2,5,6].
The majority of the TLR family members are expressed on the surfaces of various immune
cell subsets, except for TLR7, TLR8, and TLR9, which are found in the acidic environments
(pH = 4.5 to 6.5) of endosomal compartments [7-10]. In the steady-state, TLR7 is exclusively
expressed by plasmacytoid dendritic cells and B lymphocytes in humans [11].
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TLRs are transmembrane proteins composed of 1049 amino acids and divided into
three different structural domains: a ligand-binding ectodomain (ECD) with 27 leucine-
rich repeats (LRRs) motifs, a cytoplasmic TIR (Toll/IL-1 receptor) domain responsible for
downstream signalling, and a transmembrane domain that links the extracellular LRR
ectodomain with the intracellular TIR domains. Unlike TLRS8, which appears as a dimeric
form [12], TLR7 exists as a monomer in the absence of ligands but is converted into
a homodimeric arrangement in the presence of ligands. Another important conserved
structural domain among TLR7, TLRS8, and TLR9 is the Z-loop region (between the LRR14
and LRR15 interface of the ectodomain), which is important for homodimeric formation.
TLR7, TLRS, and TLRY are endosomal TLRs that specialize in recognizing nucleic acids
of both pathogen origins acquired from phagocytosed microorganisms on their entry
into acidic (pH < 6.5) endolysosomal compartments [1,5]. Both TLR7 and TLR8, which
are structurally very similar, share the same immuno-cellular niche, and both recognize
single-stranded RNA, while TLR9 recognizes unmethylated CpG DNA motifs. Upon
activation, endosomal TLRs trigger a common cascade of downstream signalling pathways
that results in the activation of NF«kB transcription factors or mitogen-activated protein
kinases (MAPKs), followed by the expression of different proinflammatory cytokines and
IEN regulatory factors (IRFs) necessary for eventual recruitment functioning for acquired
immunity [1,3,5,11,13,14].

Interestingly, different groups have also established that aberrant or over-endosomal
TLR activation in response to self-nucleic acids, which can access the endosomal compart-
ments of pDCs in different contexts (mostly in cases of the death of host cells and the
subsequent extracellular release of nucleic acids in different forms), is a crucial pathogenic
event in a wide range of autoimmune and metabolic disorders, including psoriasis [15,16],
systemic lupus erythematosus (SLE) [17], scleroderma, rheumatoid arthritis (RA) [18],
Sjogren’s syndrome [19], type 1 diabetes [20], type 2 diabetes [21], etc., all of which are
characterized by extensive tissue damage. Revelations have been made about discoveries
of pathological functions of endosomal TLRs in several chronic inflammatory and autoim-
mune disorders, and the inhibition of endosomal TLRs has been considered as a possible
therapeutic strategy in these clinical contexts [22-27].

Naturally, the development of potent and specific small-molecule TLR7 antagonists as
therapeutic agents is of significant interest, although none is currently available for clinical
use. The antimalarial agent hydroxychloroquine (HCQ), which operates as a nonselec-
tive endosomal TLR inhibitor, is widely utilized in the treatment of various autoimmune
disorders [28]. Various researchers have reported molecules with quinazoline [29,30], ben-
zoxazole [31-33], imidazopyridine [34,35], purine [36-38], and other varied scaffolds [39,40]
that have been significantly investigated for the development of selective small-molecule
TLR7 antagonists in several recent studies through empirical screenings and activity-guided
strategies.

In our previous structure-based drug design approach, we demonstrated a universal
binding model hypothesis by exploiting a library of all the reported TLR7 antagonists from
different chemotypes [41]. Based on our universal model, we displayed the role-specific
substituents in TLR7 antagonism, thus, experimentally validating our model. The structure-
based exploration revealed critical structural attributes and their importance in terms of
engaging various pockets and grooves in the binding model. The goal of the present
manuscript is to extend the exploration of ligand-based drug development through a QSAR
model by correlating physicochemical properties with corresponding experimental activi-
ties. It involves the development of such models by systematically exploiting both 2D and
3D molecular features and also including a 3D-QSAR-based pharmacophore substructure.
The validated models further pave the development of potent hit compounds by using the
underlying insights derived from the models. We seek to investigate several substitutions
at the C2, C4, and C7 positions on the quinazoline scaffold in a concerted way to affect TLR7
antagonism for the future development of novel compounds with potential therapeutic
applications. We also evaluate the probable probe-receptor interactions of newly developed



Molecules 2022, 27, 4026

3 of 40

hit compounds by performing a molecular docking study against the TLR7 receptor. The
docking study, utilizing our previously proposed binding model hypothesis, culminates in
a satisfactory agreement between the structure-based and ligand-based approaches. We
also evaluate the stability of the docked complexes with a subsequent molecular dynamics
study. The manuscript reports in silico ADME, drug-likeness, and toxicities of the selected
lead compounds that highlight the legitimacy of the whole approach of rational design of
TLR7 antagonists and their target-binding in terms of physiological simulation.

2. Results

The important structural attributes responsible for the potent TLR7 antagonistic activi-
ties were determined through a ligand-based study including 2D-QSAR, 3D-QSAR, and
pharmacophore modeling. The input dataset consisted of a diverse set of 54 small-molecule
TLR7 antagonists having different chemotypes, along with their diverse biological activities,
from the previously reported literature (Figure S1) [29,32,33,35,41]. All the experimental
activity values were collected by following a similar biological assay procedure against the
HEK?293 reporter cell line.

2.1. 2D-QSAR Model
2.1.1. Development of 2D-QSAR Model

The 2D-QSAR model, employing a dataset of 54 molecules split in a 70:30% ratio,
was primarily developed to establish a quantitative correlation between the 2D structural
features and the corresponding experimental activities. It was computed with a multiple
linear regression (MLR) approach involving various 2D descriptors available within the
AlvaDesc v2.0.4 tool via an online chemical database v4.2.131 (https://ochem.eu, accessed
on 7 February 2022) [42]. The model, which satisfied the external and internal validation
criteria, was subsequently chosen, and a linear relation between the activity (expressed
as the negative logarithm of ICs or pICsp) and the values of the five descriptors of the
chosen model was established, represented as the following equation. The corresponding
standardized coefficient of the descriptors is provided in Figure S2 and represents their
significance towards their activities.

PICsp = —6.2155 + 01409 x VE3sign_D/Dt + 41832 x SpMin2_Bh(s) +0.0366 x |,
P_VSA_logP_5 — 0.9329 x Eig02_EA(dm) — 0.1016 x CATS2D_09_AA

e VE3sign_D/Dt: the logarithmic coefficient sum of the last eigenvector from the
distance—detour matrix [43].

e  SpMin2_Bh(s): the second-smallest eigenvalue of the Burden Matrix of the H-filled
molecular graph weighted by intrinsic state [44].

e P_VSA_logP_5: the sum of Van der Waals surface area of atoms having a logP value in
the range from 0 to 0.25 [43,45].

e Eig02_EA(dm): second eigenvalue from the edge adjacency matrix weighted by the
dipole moment [43,46].

o  CATS2d_09_AA: the number of hydrogen bond acceptors at an in-between topological
distance of nine bonds [43,47].

The following are the statistical fitting parameters: coefficient of multiple determina-
tion (R?): 0.86; adjusted R? (R?,g;): 0.84; R? - R?,g;: 0.02; lack of fit (LOF): 0.17; root mean
square error in training set prediction (RMSEy): 0.30; mean absolute error on training set
(MAEy): 0.22; concordance correlation coefficient (CCCy): 0.93; standard error of estimate
(s): 0.33; and F-statistics value: 40.80.

Apart from the above five-descriptor model, several other models were also generated
that could not attain either a satisfactorily high fit value, expressed as R?, or robustness,
expressed as the cross-validation correlation coefficient using the leave-one-out method
(Q*L00), or that failed to achieve the criteria of the external validation parameters. The
statistical significance of the selected model was supported by the high correlation coeffi-
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cient between the experimental versus predicted activities with a value of 0.86 (Figure 1)
and an almost equally high R2adj value (0.84, difference: 0.02), which eliminated the scopes
of over-fitting [48]. The error or deviation values, such as LOF (0.17), RMSE: 0.30, MAE
(0.22), and the s value (0.33), were all below 0.5, indicating a satisfactory reliability of
prediction [49].
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Figure 1. Observed and predicted TLR7 antagonistic activities of (A) training set and (B) test set
compounds for the developed 2D-QSAR model.

In addition, the frequency of the descriptors comprised in the selected model was
evaluated among all the generated five-descriptor models. All the top-occurring descriptors
were found to be comprised in our selected model (Figure 2). This showed that the selected
descriptors were chosen according to their consistent importance.
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Figure 2. Occurrence of descriptors in the generated 5-descriptor models. BAC: Balaban centric index;
VE3sign_Dz(p): logarithmic coefficient sum of the last eigenvector from Barysz matrix weighted by
polarizability; P_VSA_logP_4: the sum of Van der Waals surface area of atoms having a logP value in
the range from —0.25 to 0; minaaN: minimum E-state value of aromatic N; CATS2D_08_AA: number
of hydrogen bond acceptors at in-between topological distance of 8 bonds; SaaN: sum of E-states of
aromatic N.
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2.1.2. Validation of 2D-QSAR Model

Apart from the fitting criteria explained above, which elucidated the quality of the
correlation, additional cross-validation technique (internal validation) parameters such as
variance in prediction using leave-one-out (Q%.00: 0.83), leave-many-out (Q% Mmo: 0.80),
and Y-scramble (R?Yeer: 0.13; Q?Yeer: —0.28) methods were employed for better assessment
of the precision and robustness of the model. The high average Q*1mo value of the random
models generated from 2000 iterations with larger perturbations was quite close to the R?
and Q21 oo values, indicating the stability of the selected model [50] (Figure 3A). The doubt
of chance correlation was eliminated, as demonstrated from the Y-scramble plot when the
R2 and Q? values of the selected model were far and much greater than the average R2Yer
and Q?Y,. values, respectively (Figure 3B) [51].
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Figure 3. Leave-many-out (LMO) plot (A) and Y-randomization plot (B) of 2000 iterations for internal
validation of the developed model.

Internal Validation

The following values were achieved for internal validation: Q%100: 0.83; R2 — Q%1 00:
0.03; root for cross-validation (RMSEy): 0.34; mean absolute error of cross-validation
(MAE): 0.26; predictive residual sum of squares of cross-validation (PRESS.y): 4.31;
concordance correlation coefficient (CCCey): 0.91; Q%1 amo: 0.80; RZYer: 0.13; Q2 Yeer: —0.28;
and root mean square error for scrambled predictions (RMSE sy Yscr): 0.77.

The external validation of the model showed a high squared correlation coefficient of
the predicted and experimental activities (R%ext: 0.78). The predictive squared correlation
coefficient (Q%p;) [52,53], which acted as the LOO cross-validation for the test set, along
with other variance parameters for external predictions such as Q?py [54] and Q%3 [55], all
measured values greater than the threshold of 0.6 [56]. The validation parameters of CCC
and R?m,yer also passed the criteria of being greater than 0.85 and 0.5, respectively [56].

External Validation

The following values were achieved for external validation: root mean square error for
external prediction (RMSE¢yt): 0.37; mean absolute error for external prediction (MAEey:):
0.30; predictive residual sum of squares for external prediction (PRESSeyt): 2.21; R2et: 0.78;
Q?r1: 0.71; Q%pp: 0.71; Q%p3: 0.80; CCCoeyt: 0.86; closeness between R? and origin forcing R?
determination coefficient (R?mayer): 0.66; and closeness between R? and origin forcing R?
(R?mggjga): 0.15.
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2.1.3. Applicability Domain

The applicability domain is a region within a Williams Plot (scatter plot of standard
residual response and leverage values) bounded by 2.5 standard deviation units in the
ordinate and a HAT leverage threshold value in the abscissa side [57]. The 2.50 limit was
chosen to narrow the domain even more than 3o, which covered 99% of the distributed
data [58]. The applicability domain as expressed in the William Plot (Figure 4) indicated
a threshold leverage value (h*) of 0.474, which encompassed a majority of the molecules
within the domain, with leverage values lower than that, except for only three compounds
of the training set as outliers (compounds 26, 40, and 44). Even a stringent standardized
residual threshold of 2.50 managed to embrace all the molecules, except only a single
outlier (compound 9), indicating that the model could be considered for the design of new
TLR7 antagonists with improved activities.
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Figure 4. Willams plot to assess the applicability domain of the developed model. The threshold
leverage value (h*) of the model is indicated by the green line which signified the majority of the
molecules within the acceptable domain.

2.2. Pharmacophore Model
2.2.1. Development of Pharmacophore Models

The entire molecule dataset randomly split into 70:30% (training: test set) resulted
in 37 molecules in the training set and the remaining 17 molecules in the test set. Using
the training set of 37 compounds from four activity sets, 10 pharmacophore models were
created by combining the hydrogen bond acceptor (HBA), hydrophobic (HY), hydrophobic
aromatic (HYA), positive ionizable (PI), and ring aromatic (RA) features, as recommended
by feature mapping methodology. The top-ranked, best pharmacophore, Hypol, was
selected from the ten developed pharmacophores based on lowest total cost, highest
cost difference, high correlation, and the low RMSD value exposed (Table 1). The ten
developed pharmacophore hypotheses had total cost values ranging from 81.50 to 99.54 bits.
One hydrogen bond acceptor (HBA) feature, one hydrophobic aromatic (HYA) feature,
one positive ionizable (PI) feature, and one ring aromatic (RA) feature were the four
pharmacophore features that built the basis of Hypol (Figure 5).
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Table 1. Statistical outcomes of the top 10 pharmacophore hypotheses generated by the HypoGen

algorithm.
Hl\};g.o' Fl(;oot:: Di ffeorsetnce RMSD Correlation Max. Fit Features
1 141.90 89.77 0.87 0.94 5.40 HBA, HYA, PI, RA
2 146.16 85.50 0.99 0.92 5.29 HBA, HBA, HYA, PI
3 146.47 85.19 1.02 0.92 5.77 HBA, HYA, PI, RA
4 148.27 83.40 1.03 0.92 6.10 HBA, HBA, HYA, PI, PI
5 148.27 83.40 1.03 0.92 5.01 HBA, HBA, HYA, PI
6 149.04 82.63 0.99 0.92 4.00 HYA, PI, PI, RA
7 149.04 82.62 1.05 0.91 493 HBA, HYA, PI, RA
8 149.11 82.55 1.07 0.91 5.34 HBA, HYA, PI, RA
9 149.13 82.53 0.97 0.93 3.78 HYA, PI, PI, RA
10 149.48 82.19 1.03 0.92 5.55 HBA, HBA, HYA, PI, PI

The table lists all the generated pharmacophore models and indicates their corresponding features that positively
formed their properties and structural bases. The best model, Hypol, was chosen based on cost, correlation,
RMSD, and fit value for further studies.

Ring
Aromatic

Hydrogen Bond Hydrogen Bond
Acceptor Acceptor
i <
8 ! N
os S %
%
© © ,
¥ 02 A .
393 Hydrophobic
‘ . Ay - YW Aromatic 385
Il)tlropho_blc A A N Ring
Aromatic X Aromatic ‘
Positve Positive
lonizable lonizable

Figure 5. The best HypoGen pharmacophore model: Hypol. (A) Chemical features present in
Hypol; (B) 3D spatial arrangement and the distance constraints between the chemical features. The
green color represents HBA, the red color indicates the positive ionizable (PI) feature, the blue color
represents the hydrophobic aromatic (HYA) feature, and the orange centroid represents the ring
aromaticity (RA).

In the overview of all ten generated pharmacophore models, the corresponding cor-
relation values between the experimental and predicted activity values were found to be
quite consistent and higher than 0.9. This implied that each of them was individually quite
reliable in predicting the activity values with their corresponding pharmacophore features.
Among them, the significance of the top-ranked pharmacophore model, Hypol, with a
correlation coefficient of 0.94 and a RMSD of 0.87 (Table 1), was our model of choice for
pharmacophore generation.

All the compounds were categorized into four different groups depending upon their
experimental activities (ICsp): most active (ICs59 < 2 pM, ++++), active (2 uM to 10 uM,
+++), moderately active (10 uM to 20 uM, ++), and inactive- (IC59 > 20.0 uM, +). The
predictive capability of the training set compounds is shown in Table 2. The activity levels
of the most active compounds in the training set were all predicted extremely precisely,
which demonstrated the predictive power of the Hypol model.
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Table 2. Experimental and estimated activity values of the training set compounds based on best
pharmacophore hypothesis, Hypol.

ICs9 (uM) s . Activity Scale ¢
Comp No. Experimental Estimated Errors Fit Value Experimental Estimated
32 0.43 0.63 +1.47 5.06 ++++ ++++
33 0.5 0.75 +1.5 498 ++++ +4+++
14 0.7 1.7 +2.43 4.64 ++++ ++++
38 0.8 0.73 —-1.1 5.00 ++++ ++++
36 0.98 0.91 —1.08 4.92 ++++ ++++
35 0.99 0.73 —1.36 4.99 ++++ ++++
37 1.14 0.84 —1.36 4.95 ++++ ++++
19 1.2 3.1 +2.58 4.37 ++++ +++
39 14 3.1 +2.21 4.88 ++++ +++
13 14 1 —14 4.37 ++++ ++++
34 1.55 0.99 —1.57 4.88 ++++ ++++
15 4.4 8.3 +1.89 3.95 +++ +++
53 4.57 5.8 +1.27 4.11 +++ +++
48 4.71 54 +1.15 4.12 +++ +++
24 49 5.6 +1.14 4.13 +++ +++
50 4.99 5.7 +1.14 4.10 +++ +++
17 54 7.3 +1.35 4.01 +++ +++
22 57 8.1 +1.42 3.96 +++ +++
12 5.8 2.7 —2.15 4.44 +++ +++
52 8.09 7.8 —1.04 3.98 +++ +++
HCQ 8.2 17 +2.07 3.62 +++ ++
49 8.3 11 +1.33 3.83 +++ ++
21 8.7 4.1 —2.12 4.25 +++ +++
18 9.6 6.9 —1.39 4.03 +++ +++
16 11 8.6 —1.28 3.94 ++ +++
26 16 8.1 —1.98 3.97 ++ +++
27 17 7.6 —2.24 3.99 ++ +++
25 17 7.5 —2.27 3.97 ++ +++
7 20.7 37 +1.79 3.30 + +
5 22 9.1 —2.42 3.91 + +++
4 31 31 +1 3.36 + +
45 37 160 +4.32 2.67 + +
1 53 37 —1.43 3.30 + +
41 185 190 +1.03 2.60 + +
42 253 530 +2.09 2.15 + +
43 272 160 -1.7 2.66 + +
44 684 180 -3.8 2.62 + +

2 Error factor was calculated as the ratio of the measured activity to the estimated activity in a way that the
higher activity value was in the numerator and the smaller in the denominator; a positive value indicates that
the estimated IC5p was higher than the experimental ICsp; a negative value indicates that the estimated ICsy was
lower than the experimental ICsy value. b Fit value indicates how well the features in the pharmacophore map fit
with the chemical features present in the compound. ¢ Activity scale: ++++, IC59 < 2 pM (most active); +++, ICs:
2 to 10 uM (active); ++, ICsp: 10 to 20 uM (moderately active); and +, ICsp > 20 uM (inactive).

In the training set, compound 32 (ICsp: 0.43 uM) and compound 14 (ICsy: 0.7 uM)
(Figure 6A,B), belonging to the most active set, overlapped with the pharmacophore
hypothesis of Hypol. The justification for this lies in the fact that they were satisfactorily
mapped with all the significant features of the pharmacophore; however, in the case of the
other molecules, some of the essential features were not mapped. Figure 6C depicts the
mapping of Hypol with inactive compound 44 (ICsy: 684 pM), which was not properly
placed in the distantly located PI feature, and the HYA feature, despite being adjacent to
the molecule, overlapped with a nonaromatic point of the molecule.
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Figure 6. Ligand pharmacophore mapping of training set: (A) most active compound 32 (ICs:
0.43 uM), (B) most active compound 14 (ICsp: 0.7 uM), and (C) inactive compound 44 (ICsy: 684 uM).
The pharmacophoric features HBA, HYA, PI, and RA are signified with green, blue, red, and orange,
respectively.

2.2.2. Pharmacophore Validation

Three evaluation procedures, namely a cost analysis, a test set analysis, and Fischer’s
randomization tests, were implemented for the validation of the best pharmacophore model

(Hypol).

Cost Analysis Method

In our study, the fixed cost and the null cost values of 10 generated hypotheses
estimated with the Hypogen algorithm were 105.134 of 215.593 bits, respectively. A total
cost value of 123.676 bits was observed for the selected Hypol model. Compared to the
total cost values of the ten developed pharmacophore models, the first model possessed a
value that was closer to the fixed value. The cost difference was computed with a distinction
between the total cost and null cost that ought to be greater and be between the total cost
and fixed cost values for a significant pharmacophore model. A cost difference of 40 to
60 indicated that the corresponding pharmacophore model was more than 90% reliable
in correlating the experimental and predicted activity values. Among the 10 generated
pharmacophore models, the highest cost difference value of 91.917 bits was observed
for the Hypol model, along with the lowest root mean square deviation of 0.998167 A
(Table 1). Due to the high value of cost difference, Hypol was the most significant model for
predicting the experimental activities (ICsg) of the training set compounds with a precision
of >95% statistical significance.

Test Set Analysis

The degree of effectiveness of the selected pharmacophore model was dependent on
the capability to estimate the biological activity of 17 test set compounds, along with the
training set molecules. The same four orders of magnitude were applied against the test set
molecules. To evaluate the significance of the pharmacophore model, Hypol was mapped
with the bound conformation of the test set compounds, which unveiled the probable
estimated activity of the test set compounds. Most of the molecules in the test set with
diverse structural features were correctly predicted (Table 3).

The ligand pharmacophore mapping provided one of the most active compounds,
31 (IC5p = 0.46 pM), from the benzoxazole core, which was highly correlated with all the
essential features of the Hypol pharmacophore model (Figure S3A). From the quinazoline
core, compound 29 (ICsg = 1.83 uM) was also perfectly mapped with all the pharmacophoric
features (Figure S3B). However, the positive ionizable (PI) and HBA feature location
vector maps were not able to map inactive compound 46 (ICsy = 660 uM) (Figure S3C),
which illustrated a satisfactory correlation between the features of the test set and their
corresponding biological activities.
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Experimental pICsq

Table 3. Experimental and estimated activity values of the test set compounds based on the Hypol

pharmacophore.
ICs59 (uM) Activity Scale b
Comp No. - - Errors ? 3 .
Experimental  Estimated Experimental  Estimated
31 0.46 0.92 +2.01 ++++ ++++
28 1.03 10.47 +10.17 ++++ ++
23 1.2 4.27 +3.55 ++++ +++
9 1.3 8.69 +6.68 ++++ +++
2 1.4 8.69 +6.21 ++++ +++
29 1.83 5.89 +3.22 ++++ +++
30 2.16 7.59 +3.63 +++ +++
20 4.2 6.17 +1.47 +++ +++
6 4.6 8.71 +1.89 +++ +++
11 5.6 6.61 +1.18 +++ +++
51 7.55 5.62 —1.34 +++ +++
10 11 39.81 +3.62 ++ +
8 17 38.90 +2.29 ++ +
40 23 157.04 +6.83 + +
3 52 36.31 —1.43 + +
47 110 190.55 +1.73 + +

2 Error factor was calculated as the ratio of the measured activity to the estimated activity in a way that the
higher activity value was in the numerator and the smaller in the denominator; a positive value indicates that
the estimated IC5p was higher than the experimental ICsp; a negative value indicates that the estimated ICsy was
lower than the experimental ICsj value. b Activity scale: ++++, IC5p < 2 uM (most active); +++, IC5¢: 2 to 10 uM
(active); ++, IC50: 10 to 20 uM (moderately active); and +, ICs > 20 uM (inactive).

The estimated activities of both the training and test set compounds were correlated
with their experimental activities using a regression analysis with the correlation values of
0.94 and 0.92, respectively (Figure 7).

B

4_
—s— Training Set (corr = 0.94) ’ —e— Test Set (corr = 0.92)
(o] 3_
S
o
5 27
= =
£
q:J 1
o
x
i
0_
T T | -1 | 1 T T ]
-1 1 2 3 -1 0 1 2 3 4
Predicted pICsy Predicted pICsgq

Figure 7. Observed and predicted activities of (A) training set and (B) test set compounds for the
developed pharmacophore model.

Fischer Randomization

In this approach, 19 random, different spreadsheets were prepared while maintaining
95% statistical confidence with randomly scrambled training set activities by utilizing
similar parameters to those used to prepare the actual pharmacophore model [59]. If
the randomized generated hypothesis possessed similar or better statistical confidence, it
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indicated that the actual hypothesis was built in an unbiased manner [60,61]. High cost
values of 19 individual spreadsheets were observed for the total cost of the Hypol model,
and the correlation value was less than that of the Hypol model (Table S3) (Figure 8).
These results signified that Hypol was more statistically significant than other randomly
generated pharmacophore models and that Hypol can be used as a validated model for
developing a chemical library of TLR? inhibitors with a variety of structural features.
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Figure 8. Difference in correlation (A) and cost values (B) of hypotheses between the selected
pharmacophore models: Hypol and 19 random spreadsheets.

2.3. 3D-QSAR
2.3.1. Development of the 3D-QSAR Model

A robust 3D-QSAR model was created to attain a structure—-activity relationship profile
of 54 energy-minimized TLR7 antagonist compounds (Table S5), as well as to evaluate the
role of potential electrostatic and steric fields responsible for TLR7 antagonistic activity.
To calculate the activities (pICsg) of the newly developed compounds, the best 3D-QSAR
model was used. A good alignment of the 54 TLR? inhibitors is essential for molecular field
analysis in 3D-QSAR modelling. A molecular overlay tool was adopted to superimpose
54 inhibitors with energy-minimized conformations. In the 3D-QSAR analysis, the negative
logarithm of the ICs (pICsp) of those inhibitors was used as a dependent variable (Table S5).

The training set and test set molecules were chosen randomly to reflect the variability
in structure and activity throughout the whole dataset by considering that the test set
molecules reflected a biological activity scale that was close to the biological activity of the
training set. The whole group of compounds was split into a training set (37 compounds)
and a test set (17 compounds) in a 70/30% ratio. Using the 37 aligned training set molecules,
a 3D-QSAR model was established. The potential power of the developed 3D-QSAR model
depended (Table S5) on the ability to evaluate the pICsg values of the training set.

A preliminary analysis was conducted to determine the relative significance of each
field and its impact on the TLR7 antagonistic activity. The steric and electrostatic field
contributions for individual compounds were determined as independent variables in the
developed 3D-QSAR model. The subsequent studies were conducted with the potential
steric and electrostatic fields measured simultaneously at each grid point to predict and
interpret the TLR7 inhibitory activities of the different molecular scaffolds. A partial least
square analysis was performed for all the individual training set and test set molecules to
linearly correlate the experimental and estimated activities.
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2.3.2. 3D-QSAR Model Validation

Different combinations of electrostatic and Van der Waals (steric) fields were utilized
to construct the various 3D-QSAR models for comparative molecular field analysis. The
effectiveness of a QSAR model depends on its ability to accurately and reliably predict the
activity of the newly designed compounds. The molecular fields were linearly correlated to
the inhibitory activities using a partial least square approach. External validation of the
3D-QSAR model was achieved by predicting the activity of TLR7 inhibitors reported in the
external test set (Table S5).

The collected independent variables from the training set were subjected to a cross-
validated PLS analysis against the external test set to determine the significance of Q% et I
the generated 3D-QSAR model (0.515 for two components), whereas the noncross-validated
PLS model depicted a Q?est value of 0.84. The thrainmg correlation coefficient between
the predicted and experimental activities of the training set was 0.95, indicating that the
developed 3D-QSAR model was a significant model for investigating the molecular field
effect of the 54 TLRY inhibitors. Figure 9 indicates a strong correlation between the expected
and experimental pICs( values for both the test and training sets. As a result, this generated
3D-QSAR model was reliable and could be used to design new compounds and predict
their potential activities.

14 0.0
—— Training Set (R?=0.95) —— Test Set (R°=0.84)
0 .
2 g 703
O Q
Q-1 _;:).
j—g § -1 0_
3 27 3
a a
-1.57
_3—
-4 T T T 1 -2.0 T T T 1
-4 -2 -1 0 1 -3 -2 o | 0 1
Experimental pICs, Experimental pICs,

Figure 9. Plots of experimental TLR7 inhibitory activities versus predicted activities of (A) training
set and (B) test set molecules for the 3D-QSAR model.

2.3.3. Analysis of 3D-QSAR Contour Maps

The biggest benefit of 3D-QSAR methodologies is that a contour map can be used to
visualize the field effect on the target biological activities. Contour maps of 3D-QSAR mod-
els include information that can be applied to recognize significant areas in a 3-dimensional
space surrounding the molecules, where changes in the steric Van der Waals isosurface
(green and yellow grids) and electrostatic potential fields (blue and red grids) can have a
direct impact on TLR7 inhibitory activity (Figure 10). The results obtained from the 3D-
QSAR model served as a model for the development of new TLR7 inhibitory compounds.
Overall, the present 3D-QSAR research investigated the important structural characteristics
of several chemical classes of compounds that may be exploited to improve TLR7 inhibitory
action by modifying the structural features of the lead molecules.
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Figure 10. (A) 3D-QSAR model coefficients on electrostatic potential grids. Blue represents positive
coefficients; red represents negative coefficients. (B) 3D-QSAR model coefficients on Van der Waals
grids. Green represents positive coefficients; yellow represents negative coefficients.

On the electrostatic contour map (Figure 10A), areas around the red contours show
where high electron density was anticipated to improve the biological activity, while blue
contours identify regions where low electron density was expected to increase the biological
activity. The green isosurface marked on the steric contour maps (Figure 10B) denotes
where bulky groups were preferred for an increase in activity, while yellow indicates
a region where bulky groups were unfavorable. Among all the molecules of the entire
dataset, those having quinazoline and benzoxazole cores widely showed comparatively
more potent TLR7 antagonistic activities. Thus, the 3D-QSAR contour map interpretations
were restricted to those molecular cores that correlated the 3D-QSAR molecular field with
their activities for further structural exploration.

According to the molecular mappings, there were no sites for electrostatic potential
grids or Van der Waals grids for ring A and ring B of quinazoline core template molecule
14 (Figure 11), implying that those locations were beyond the scope of any further mod-
ifications in this work. The 3D-QSAR isogrids revealed that electrostatic (red contour)
and sterically (yellow) unfavorable groups enclosed the ortho and para positions of the
piperazine moiety (C ring) of template molecule 14, where less bulky substituents having
high electron density were needed to increase the activity (Figure 11). Apart from that, the
VDW and electrostatic grids confirmed that some electron-withdrawing, bulky substituents
were more favorable at the position of a flexible, three-carbon linker attached at the C7
position. The ortho position of the attached pyrrolidine moiety (D ring) could be replaced
with an electron-donating substituent due to the presence of a favorable electrostatic field
around it. Similar to the structure-based study, a more bulky group attachment instead of a
small dimethylamine group at the C2 position of the main quinazoline ring could be one of
the probable possibilities to increase antagonistic activities.

Apart from field analysis on the quinazoline core, we also interpreted an important
molecular field analysis of the benzoxazole scaffold based on template compound 32
(Figure 12). A negative coefficient on the electrostatic field, a positive steric contour map
surrounding the aromatic benzyl group (D ring), and a flexible, three-carbon linker group
(Figure 12) signified that bulky, electronegative groups at this position were favorable for
increasing inhibitory activities. The 3D-QSAR contour map also showed a small, electro-
statically favored, blue contour enclosing the dimethyl amine attached to the pyrrolidine
group (A ring) of the template molecule (compound 32), where more electron-donating
substituents were expected to increase activity. Another large, electrostatically unfavored
(red grid) but sterically favored contour (green grid) map (Figure 12) located near the nitro-
gen of the pyrrolidine group (A ring), along with the attached, flexible three-carbon linker
of template compound 32, suggested that more bulky, negatively charged groups at this
position were favorable to increase the inhibitory activities. The terminal dimethylamine
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group attached with pyrrolidine (A ring) could be replaced with a bulky, electron-donating
group to enhance activity.

Figure 11. Pictorial representation of the 3D-QSAR model coefficients on (A) electrostatic and (B) Van
der Waals grids mapping quinazoline core template molecule 14.

Ring A

Figure 12. Pictorial representation of the 3D-QSAR model coefficients on (A) electrostatic potential
and (B) Van der Waals (VDW) grid mapping benzoxazole core template molecule 32.

2.4. Design of New Compounds

The cumulative ligand-based pharmacophore and 3D-QSAR study using all 54 re-
ported molecules with diverse activities highlighted the importance of different electrostatic,
steric, and hydrophobic feature distributions of the molecular dataset with significant cor-
relation to their corresponding TLR7 inhibitory activities. Structural modification on the
3D-aligned quinazoline template molecule (compound 14) was initiated considering the
3D-QSAR field effects and retaining the pharmacophoric features. Moreover, for any sub-
stitution, structural insights indicated from the 2D-QSAR were also considered. The 2D
descriptor values of the designed quinazoline molecules were also found to follow the
2D-QSAR model equation (Table 54). The designed molecules were also found to be located
properly within the applicability domain of the 2D-QSAR model. This was evident from
the Insubria plot (a variation of a Williams Plot to predict results for chemicals that have no
experimental data available, replacing the standardized residual with the predicted value
on the y-axis) [62,63], which established the validity of the designed molecules within the
domain of the 2D-QSAR model (Figure 13).
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Figure 13. Insubria plot (plot of leverage hat values vs. predicted activity) of all data points. h*
represents the threshold leverage value.

Thus, we combined the steric and electrostatic field effects (derived from 3D-QSAR),
as well as the hydrophobic features (from pharmacophore) of quinazoline core compound
14, for the designing of new compounds with improved antagonistic activity, as shown in
Figure 14.

Less Bulky

.°°e group

" Nucleophilic
¢ group need
L[]

Nucleophilic .'
group

Hydrogen Bond

E j Acceptor
o® ° :

Less Bulky Electrophlllc‘ -N

group needed group 4 Electrophilic group

e O needed
e N \ N o®® eeqe, .
Rlng . - : C )I\ A/ e o -ve Electrostatic ® o Positive
Aromatic N 2N 70 Ionizable
.
% o tve VIlW
More Bu"(y' "*° Hydrophobic Nycleophilic ** %%,
group needed Aromatic group ¢

Figure 14. Distribution of structural attributes on quinazoline scaffold of compound 14 obtained
from ligand-based drug design.
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We started by employing various substitutions at the C2 and C7 positions of the
quinazoline ring, as this scaffold aligned with the pharmacophoric RA and HYA features
(Figure 15 and Figure S4) and is important for hydrophobic 77— interactions with the
Tyr356* and Phe408* (* represents the residues of chain B of the homodimeric protein)
residues in the proposed binding model [41]. We retained the piperazine moiety as a useful
surrogate at the C4 position of the quinazoline ring because the terminal nitrogen atom
of piperazine, being prone to protonation, acted as a hydrogen bond donor. We installed
various less bulky, electron-donating aromatic substituents on the piperazine moiety in
compounds T55, T56, T57, and T58 to reach the sterically unfavored positive electrostatic
field around them (Figure 14), which resulted in a predicted IC5p < 2 uM (in both 3D-QSAR
and Pharmacophore) (Table 4).

Figure 15. Alignment of six representatives of newly designed molecules on pharmacophore Hypol:
(A) T55, (B) T57, (C) T58, (D) T60, (E) T62, and (F) T64.

Since these TLRs are expressed in the acidic (pH 5.5-6.5) endosomal compartment, the
molecules must access the target receptor protein located inside the endosomal compart-
ment through their protonated state. We preserved the lipophilic, flexible, three-carbon
linker at the C7 position to enhance the extent of the molecules across the hydrophobic
pocket and the weak basic amine substituent, which in turn was protonated to engage the
positive ionizable feature of the pharmacophore (Figure 15 and Figure S4) [29,41,64]. Thus,
we first incorporated electron-donating amino groups on the propylpyrrolidine moiety with
lysosomotropic properties, implicating a positive electrostatic potential field (blue grid)
that led to compound T63, which probably exhibited significant predicted TLR7 inhibitory
activities (Pred_ICsp: 1 pM) (Table 4). Moreover, we incorporated more electropositive
groups on the bulky, flexible propylpiperidine moiety with lysosomotropic effects at the C7
position to satisfy the surrounding low-electron-density contour map (blue grid) in com-
pounds T59, T60, T61, and T62 (Figure 14). They showed better antagonistic activities with
predictive ICsg values of 1.57 uM, 1.25 uM, 0.94 uM, and 1.21 uM, respectively (Table 4).
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Table 4. Structures of newly designed molecules and their predicted activities based on 2D and
3D-QSAR models.

R4
. o]
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— R
Ry, 2 N 70 3
2D-QSAR 3D-QSAR Pharmacophore
Comp. R1 R2 R3 pICso ICsp pICso ICso ICs
(uM) (uM) (uM) (uM) (uM)
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?NC/N \ Q/
F
/
T56 4N }{\A"D ~0.19 155 ~0.08 1.20 1.97
%’N/_\N \
_/
\
° /
T57 4N }‘LMD ~0.24 1.73 0.01 0.98 1.51
/\ \
NN
_/
/
T58 — 4N :%N/\D —048 3.04 ~0.03 1.07 1.73
NN \
/ AN
T59 W 4N & NQ\/ 0.20 0.63 ~0.20 1.58 1.78
_/ \
C T
T60 Ly -%-N\ N 0.20 0.63 ~0.10 1.25 1.50
_/ H
/ }{\/\N
Té61 — 4N 0.16 0.69 0.03 0.94 1.65
NN \ OH
/ }{\/\N
T62 L\ 4N 0.16 0.69 —0.08 121 142
§ s \ F
/ 3?1/\/\N
T63 — 4N \}NHZ —0.42 2.62 0.00 1.01 1.62
_E'N\_/N \
/ ?{\/\N
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2.5. Molecular Docking of the Newly Designed Compounds

A molecular docking study was performed to visualize the reason behind the TLR7

inhibitory activity of newly designed compounds with minor structural changes. We
already built and validated a homology model structure of human TLR7 [41] and performed
a binding analysis of those 12 compounds on their antagonistic binding sites using the
Discovery Studio v18.1 client LibDock module. We developed a binding model of the
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diverse molecular library of TLR7 antagonist compounds with quinazoline, benzoxazole,
chromenoimidazolone, and imidazopyridazine groups that could correlate minor structural
modifications with corresponding inhibitory activities [41]. The electrostatic structure of
the receptor-ligand interaction map revealed the significance of three hydrophobic pockets
(pockets 1, 2, and 3) and two small grooves (grooves 1 and 2) on the binding site domain
for TLR7 antagonistic activities (Figure 16) [41].

09 09 27 45

HYDROPHOBICITY SCALE

Figure 16. The binding pocket of TLR7 protein. The blue color represents low hydrophobicity, and the
yellow areas represent highly hydrophobic regions with intermediates indicated in grey. * represents
the residues of chain B of the homodimeric protein.

The docking analysis of all newly designed quinazoline compounds revealed that the
quinazoline core was stabilized in the central cavity by establishing conventional hydrogen
bond interactions between the core nitrogen, N1, and GIn354* (after protonation at pH
5.5-6.5) (Table 5). The quinazoline core in all the compounds, except compounds T57, T58,
T60, and Té4, also established a hydrophobic 77— stacking interaction with Tyr356* on
the central cavity of the binding domain (Figure 17 and Figure S5). Compounds T55, T56,
T57, and T58 had an aromatic-substituted piperazine group at the C4 position that was
orientated towards pocket 3, where the aromatic-substituted part protruded into groove 2
(Figure 17 and Figure S5). However, adding a bulky, aromatic substituent to the piperazine
group in compounds T55, T56, T57, and T58 prevented the piperazine nitrogen from
protonation, which in turn made it unable to create a hydrogen bond with Thr525. Instead,
the fluorine atom attached to the aromatic part in compounds T55 and T56, making a
conventional hydrogen bond interaction and halogen-bonding with Lys432* and Ser523,
respectively (Table 5 and Figure 17), whereas the aromatic substituent attached to the
piperazine moiety in compound T57 participated in building a hydrophobic 77—t stacking
interaction with Phe500.
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Table 5. Binding analysis of newly designed small-molecule TLR7 antagonists.
Com Antagonist Interacting Hydrogen Bond H-Bond Docking Score
p- Structure Residue Formed Distance (A) (kcal/mol)
F
[N] Lys432%, B:Lys432:HZ2-
N | GIn324, F38:155
T55 N o) Gly577, H44: 2.02 123.23
»e Tyr356*, T550:GIn354:B
N"N ?\L Ser523 T55:H600:Gly577:A
N
O
pe
N
[ ] Glnasa® B:Lys432:HZ2F38:
N ! Val355* 156
T56 NS o] Gl 577’ T56:H420:GIn354:B 1.77 124.08
1 L Sy432; T56:H420:Val355:B
\rlq N OKL Y T56:H580:Gly577:A
O
[N] T57:H43-
N GIn354*, 0:GIn354:B
l Val355*, T57:H43-
T57 NlJﬁo Glys77, ONAL35 B 1.85 114.97
NN~ Phe500 T57:H59—
| H\ O:Gly577:A
O
N
[ ] T58:H41-
N | Gln354%, OT:%TSZ{B
T58 N o Val355%, 1ARE. 1.81 110.54
| Glv577 O:Val355:B
~ )\ ~ Y . a_
N° N (o] T58:H57
H\ O:Gly577:A
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Table 5. Cont.
Com Antagonist Interacting Hydrogen Bond H-Bond Docking Score
p- Structure Residue Formed Distance (A) (kcal/mol)
N T59:H42—
[ ] OE1:GIn354:B
N | Thr525, T59:H42-
fo) GIn354*, 0:GIn354:B
T59 )Nl\)j\/:[ Thr579, T59:1138.. 1.81 115.88
SNTON (o] Tyr356* OG1:Thr579:A
| T59:H77—
OG1:Thr525:A
o
N
[ ] T60:H42—
N . .
o T
T60 o Thr525, o 2.53 133.30
NN o Gly577 OG1:Thr525:A
| T60:H89-
O:Gly577:A
gt
N/
H
N
[ ] T6l:H41-
N I GIn354*, 0:GIn354:B
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NS ’
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KL O:Gly577:A
1@
OH
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Table 5. Cont.
Com Antagonist Interacting Hydrogen Bond H-Bond Docking Score
p- Structure Residue Formed Distance (A) (kcal/mol)
N
] T63:H40-
N | GIn354*, B:GIn354:0
o) Thr525, T63:H61-
T63 )NI\)\//C[ Gly577, A:Thr525:0G1 216 108.50
NN o Tyr356* T63:H85-
: KL A:Gly577:0
N
[ j T64:H40-
N | GIn354*, Thr525, Ofgfﬁg‘é?
T64 N 0 Gly577, ’ 2.98 110.24
NP Tyr356* O:Gly577:A
l,‘l N (o) T64:H61-
KL OG1:Thr525:A
0
N
[ N ] | T65:H40-
fo) GIn354*, Thr525, 0:GIn354:B
T65 )Nl\/ﬁ/\:[ Tyr356*, Thrd06* T65:H61- 1.82 1245
SN N7 o OG1:Thr525:A
| KL
O
N
[ ] T66:H40-
N | GIn354*, Gly577, Ol
T66 N 0 Thr525, v 2.47 116.22
i Tyvr356* O:GLY577:A
\N)\N/ o y T66:H63-
| KL A:Thr525:0G1

* represents the residues of chain B of the homodimeric protein.
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Figure 17. (A-F). Binding poses of compounds T60, T56, T55, T66, T59, and T58, respectively, into
the proposed active site. Hydrogen bonds are indicated with black dotted lines, whereas purple
dotted lines mean 71—7t hydrophobic interactions, and cyan dotted lines indicate halogen bonds.

The molecular docking analysis of the quinazoline molecules (compounds T59, T60,
T61, T62, T63, T64, and T65) with a flexible, three-carbon linker at the C7 position showed
a favorable binding conformation by orienting toward tunnel-shaped, hydrophobic pocket
1 (Figure 17 and Figure S5). The protonated nitrogen atom in the piperidine moiety
attached to the flexible chain at the C7 position of compounds T59, T62, and T64 served
as a hydrogen bond donor to interact with Gly577 (Table 5) by, preferably, entering into
hydrophobic pocket 1 (Figure 17 and Figure S5). However, in the case of molecules T60,
T61, T63, and T65, the substituent group attached to the piperidine ring participated in
hydrogen bond interactions with Gly577 after satisfactorily occupying pocket 1. However,
in molecule T65, the substituent fluorine atom on the pyrrolidine ring formed a halogen
bond with Thr406* (Table 5). The docking study indicated that the nature and type of
substitution patterns presented on the designed quinazoline group of compounds were
adequate to engage the distinct pockets and grooves explored and abided by the binding
model proposed.

2.6. In Silico Pharmacokinetics Predictions

Dropouts of lead compounds during preclinical and clinical studies are frequently due
to poor pharmacokinetic profiles and toxicity problems. It would be highly beneficial to
the drug discovery process if these challenges could be traced early on. In light of these
considerations, the use of in silico methods to predict ADMET characteristics is intended
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as a first step toward analyzing novel chemical entities to avoid wasting time on lead
molecules that are toxic or metabolized by the body into an inactive form that cannot cross
membranes [65,66]. Thus, the pharmacokinetic profiles of all 12 designed compounds were
subjected to evaluation using six predeveloped and prevalidated ADMET models offered
by the Discovery Studio v18.1 client program. The pharmacokinetic profiles of the designed
compounds are summarized in Table 6 with a biplot (Figure 18). The biplot represents the
two similar 95% and 99% confidence ellipses for the HIA and BBB models, respectively. The
polar surface area (PSA) was shown to have an inverse relationship with the percentage of
human intestinal absorption and cell membrane permeability [67].

Table 6. In silico ADMET prediction of newly designed compounds and the most potent template

molecule.
Absorption BBB s Solubilit Hepato- CYP2D6
Comp. Lovil AlogP98 PSA BBB Level Solubility R 0" Toxli’city CYP2D6  probability
14 0 5.091 53.79 0.57 1.00 —5.71 2 False —-1.98 False
T55 1 5.861 53.79 0.81 0.00 —6.00 1 False —-0.78 False
T56 0 5.634 53.79 0.74 0.00 —5.94 2 False —0.81 False
T57 0 5.303 62.72 0.49 1.00 —5.49 2 False 0.52 True
T58 0 5.32 53.79 0.64 1.00 —5.79 2 False 1.32 True
T59 1 6.256 53.79 - 4.00 —6.31 1 False —3.40 False
T60 0 4.205 66.60 0.09 1.00 —4.89 2 False —1.58 False
Te1l 0 4.063 74.61 —0.08 2.00 —4.45 2 False —2.75 False
Te62 0 5.003 53.79 0.54 1.00 —5.44 2 False —2.28 False
T63 0 3.711 80.33 —0.28 2.00 —5.18 2 False —2.64 False
Te4 0 5.548 53.79 0.71 0.00 —6.01 1 False —1.26 False
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Figure 18. ADMET biplot curve showing ellipses having 95% and 99% confidence limits correspond-
ing to the blood-brain barrier and intestinal absorption models.

The molecules with good absorption profiles were most likely to be found within
the ellipses having confidence levels of 95% and 99% (Figure 18). The upper limit of
the PSA_2D value for the 95% confidence ellipsoid was 131.62, while the upper limit
of the PSA_2D value for the 99% confidence ellipsoid was 148.12. As per the model,
the molecule should satisfy the criteria of (PSA < 140 A? and AlogP98 < 5) for optimal
cell permeability [68]. Therefore, all the newly designed compounds here exhibited polar
surface areas (PSAs) < 140 A2, but some of the compounds also experienced higher AlogP98
values.
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Compounds T55 and T59, among all the others, showed comparatively greater logP
values, indicating moderate intestinal absorption (level 1), and compound T59 was also
unable to penetrate the blood-brain barrier (Table 6 and Figure 18). The bioavailability of
potential medicines is influenced by their water solubility. However, the majority of the
compounds experienced moderate aqueous solubility levels, as referred to in Table S6, with
the exception of compounds T55, T59, T64, and T66, which had low aqueous solubility
issues (calculated for water at 25 °C). One of the most significant enzymes involved in
drug metabolism is CYP2D6. All the molecules except T57 and T58 were discovered to be
non-inhibitors of cytochrome P450 2D6 (Table 6), implying that all the newly designed TLR7
inhibitors were well-metabolized in phase I metabolism. Furthermore, no hepatotoxicity
was observed for any of the substances; thus, they were subjected to a substantial first-pass
effect. Moreover, the drug-likeness properties of the proposed molecules are indicated their
oral bioavailability in Table 7.

Table 7. Drug-likeness properties of newly designed inhibitors and the most potent template
molecule.

Molecule Molecular LogP H-Bond H-Bond Number of Polar Surface

Weight (g/mol) Donors Acceptors Rotatable Bond Area
14 496.69 5.09 0 8 10 57.2
T55 568.70 5.86 0 8 10 57.2
T56 536.68 5.63 0 8 10 57.2
T57 548.72 5.30 0 9 11 66.43
T58 518.69 5.32 0 8 10 57.2
T59 538.77 6.26 0 8 11 57.2
T60 539.76 421 1 9 11 69.23
Te61 526.71 4.06 1 9 10 77.43
T62 528.71 5.00 0 8 10 57.2
T63 511.70 3.71 1 9 10 83.22
To4 510.72 5.55 0 8 10 57.2
T65 514.68 4.94 0 8 10 57.2
T66 510.72 5.47 0 8 10 57.2

2.7. Toxicity Risk Assessment Screening

Apart from pharmacokinetic profiling, potent TLR7 antagonist compounds were
further evaluated for their toxicity profiling using the DS_TOPKAT module. Various
toxicity modules of the compounds are listed in Table 8. The toxicity risk assessment
results showed that all the potent compounds were non-carcinogenic against both male
and female mice (Table 8). Similarly, FDA carcinogenicity prediction was also conducted on
male and female rats, where all the compounds exhibited their non-carcinogenic properties
against both rats. Ames mutagenicity tests against all six potential hits exhibited their
non-mutagenic behavior (Table 8). However, compounds T59, T60, T61, T62, T63, and
T65 showed mild skin irritancy. All the compounds were non-biodegradable (Table 8).
This predictive drug toxicity profiling can guide the further development of potent TLR7
antagonists.
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Table 8. Toxicity results of the newly designed inhibitors and the most potent template molecule.

FDA FDA
Com Carcinogenicity Carcinogenicity AMES Rat oral LDs, Skin Probability of
P: Male Female Male Female Mutagenicity (mg/kg) Irritation Biodegradability
Mouse Mouse Rat Rat

14 Non- Non- Non- Non- Non- 81.63 None Non-
carcinogen carcinogen carcinogen carcinogen mutagen degradable

s Nor- Nor- Nor- Nor- Nor- 070 None Nor-
carcinogen carcinogen carcinogen carcinogen mutagen degradable

T56 Non- Non- Non- Non- Non- 53.89 None Non-
carcinogen carcinogen carcinogen carcinogen mutagen degradable

T57 Non- Non- Non- Non- Non- 171.96 None Non-
carcinogen carcinogen carcinogen carcinogen mutagen degradable

T58 Non- Non- Non- Non- Non- 73.78 None Non-
carcinogen carcinogen carcinogen carcinogen mutagen degradable

T59 Non- Non- Non- Non- Non- 65.11 Mild Non-
carcinogen carcinogen carcinogen carcinogen mutagen degradable

T60 Non- Non- Non- Non- Non- 36.50 Mild Non-
carcinogen carcinogen carcinogen carcinogen mutagen degradable

T61 Non- Non- Non- Non- Non- 79.04 Mild Non-
carcinogen carcinogen carcinogen carcinogen mutagen degradable

T62 Non- Non- Non- Non- Non- 17.71 Mild Non-
carcinogen carcinogen carcinogen carcinogen mutagen degradable

T63 Non- Non- Non- Non- Non- 44.17 Mild Non-
carcinogen carcinogen carcinogen carcinogen mutagen degradable

T64 Non- Non- Non- Non- Non- 101.52 None Non-
carcinogen carcinogen carcinogen carcinogen mutagen degradable

T65 Non- Non- Non- Non- Non- 13.12 Mild Non-
carcinogen carcinogen carcinogen carcinogen mutagen degradable

T66 Non- Non- Non- Non- Non- 42.90 None Non-

carcinogen carcinogen carcinogen carcinogen mutagen degradable
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2.8. Molecular Dynamics Simulation

The protein-ligand complex system was simulated in Gromacs 5.1.5 on an Intel(R)
Xeon(R) Silver 4214R CPU cluster to evaluate the stability of the ligand in the binding
domain on the TLR7 homodimeric interface. All the atoms” MD simulations were per-
formed to further evaluate the stability of the three selected TLR7 antagonist molecules,
T55, T56, and T66, with favorable pharmacokinetic profiles on their hydrophobic binding
cavities. Their corresponding RMSD, RMSF, and radius of gyration (Rg) curves revealed
that ligand-binding remained stable across the 10 ns trajectory. Cx atoms of the TLR7
protein backbone were fixed by fixing translational and rotational spinning to the corre-
sponding initial structure for molecular dynamics runs during the RMSD calculations of
the complex protein [69]. Upon the selected antagonists” bindings to the homodimeric
interface of the TLR7 ectodomain region, the RMSD curve deviated slightly (Figure 19A) for
compound T56, resulting in conformational changes [41]. However, the RMSD patterns of
both the native TLR7 protein and the inhibitor—protein complex remained highly consistent
throughout the 10 ns MD simulation runs, indicating that the native TLR7 homodimeric
protein did not change its backbone structure after the antagonist bindings (Figure 19A).

A B

RMSD versus Time (ns) Radius of Gyration
3 T T T T T T T T T 4.05 v T I T I T I !
- - 1 3 — Protein
25k — Protein | 4 — Protein-Compound T55 | _|
- - Prnlc!n-Compnund Ts5 Protein-Compound T56
r Protein-Compound T56 | = i — Protein-Compound T66 |
2k — Protein-Compound T66 (| =
9} 1.5 1 &
> s
& Z
S 3
3
[~
375 L | I | L | I | I
0

Time (ns) Time (ns)

Figure 19. (A) Root mean square deviation plot and (B) radius of gyration plot of native TLR7 protein
and protein-ligand complex over the 10 ns simulation.

Additionally, the compactness of the protein and its change in folding behavior over
the trajectories after the ligand binding was demonstrated by the radius of gyration (Rg)
curves (Figure 19B). Throughout the simulation run, TLR7 antagonists T55, T56, and T66
maintained a comparatively constant Rg value of approximately 3.87 nm, which represented
the conserved interactions between the active residues and ligands that mediated the
protein to fold more steadily. The ligand-free TLR7 protein had slightly higher Rg values
(Figure 19B), which indicated that the protein backbone was less compact. The loop regions
of protein backbones adopted the most stable folded conformations as the antagonists
bound to them.

Moreover, the fluctuation of complex protein residues was compared to the unliganded
native TLR7 protein, which acted as a reference structure, with a least square fitting method
over a 10 ns trajectory run. The RMSF curve had two strong peaks on the first monomeric
chains between the 440-450 residues for compound T66 and the C-terminal regions of the
second monomeric chain for compound T56, respectively (Figure 20). The fluctuations were
mainly experienced in Z-loop regions due to proteolytic cleavage and in C-terminal loop
regions due to cutting with the TIR domain regions. Compared to the native protein, the
majority of the atoms in the complex structure had similar or lower fluctuations, indicating
that the protein was more stable after ligand binding (Figure 20).
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over 10 ns simulation run. * represents the residues of chain B of the homodimeric protein.

3. Materials and Methods
3.1. Dataset Selection

A broadly populated molecular dataset was selected with a library of 54 structurally
diverse reported molecules (Figure 1) having TLR7 inhibitory activities against the HEK293
reporter cell line [29,32,33,35,41]. The compound dataset was arranged into four orders
of magnitudes, named as most active, active, moderately active, and inactive classes of
compounds. The most active set of compounds had ICs values <2 uM, followed by the
active set with ICsg values from 2 uM to 10 pM, and the moderately active set with values
from 10 uM to 20 uM, while the remaining molecules were kept in the inactive set.

3.2. 2D-QSAR
3.2.1. 2D-QSAR Model Generation

Data on 54 TLR7 antagonist compounds, along with their biological activities, were
collected from the previous literature [29,32,33,35,41]. Experimental activity (ICsp) was
uniformly maintained to the micromolar unit (uM) and converted to the logarithmic unit
(pICsp) [70]. The molecules were subsequently aligned, energy-minimized through a con-
sistent forcefield (CFF), and subjected to compute the 2D molecular descriptors using the
AlvaDesc v2.0.4 tool via an online chemical database v4.2.131 (https://ochem.eu, accessed
on 7 February 2022) [42] to eliminate the complexity of various 3D conformational spaces.
In the beginning, 4369 descriptors were computed, including constitutional indices, topo-
logical indices, connectivity indices, 2D-matrix-based descriptors, edge adjacency indices,
Burden eigenvalues, functional Group counts, P_VSA-like descriptors, pharmacophore
descriptors, 2D atom pairs, molecular properties, etc., which were significant to describe
the physicochemical properties and structural attributes of the dataset compounds. The
descriptors having over-fitting biases and high correlations were excluded from the calcu-
lation according to the exclusion criteria of similarity > 80% and inter-correlation > 95%
in QSARINS v2.2.4 [71,72]. After this progression, 639 descriptors were taken as selected
descriptors for the advancement of the QSAR model. The 54-molecule dataset was divided
into a training set (for model development) and a test set (for external validation) using a
sorted response in QSARINS, where all the molecules were ordered by increasing activity.
Apart from the most and least active compounds incorporated into the training set, two of
every three remaining molecules were assigned to the training set and all others to the test
set, keeping a ratio of 70:30%, respectively (Figure 21) [62].
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Figure 21. Distribution of different categories of compounds in training and test sets for 2D-QSAR
study.

The selected molecular descriptors were further subjected to a genetic algorithm-
variable subset selection (GA-VSS) module [73] for selecting the significant subset variables
with significance levels < 0.05 and 10,000 generations per size (up to 5 descriptors) for the
robust QSAR model development. The selected subsets were adopted for the development
of statistically significant and robust models with multiple linear regression (MLR) using
an ordinary least square (OLS) model method [62,73] for all the training set data points in
QSARINS v2.2.4 software.

3.2.2. 2D-QSAR Model Validation

Following the OECD principles for QSAR validation [74], the developed models were
first assessed for their fit values with a correlation coefficient (R?), adjusted R? (Rzadj), lack
of fit (LOF), concordance correlation coefficient (CCC), and other measures of uncertainties
(RMSE, MAE, etc.) Through internal validation, the robustness of the model was assessed
using the leave-one-out (LOO) technique [75]. Additionally, with increased perturbation,
the leave-many-out (LMO) technique was employed, which iteratively excluded 30% of the
training compounds each time and generated random models that were close to the selected
robust model [50]. To evaluate the true relation among the dataset dimensions, its structural
heterogenicity, and the modelled response, a y-randomization test was performed where
the biological activity values were shuffled randomly with 2000 scrambling iterations while
the values of the descriptors were left unchanged, generating several random models [51].
The average squared correlation coefficient of the randomized model (R?Y¢er) should,
therefore, be smaller than the squared correlation coefficient (R?) of the selected model to
nullify the doubt of chance correlation [76]. External validation was performed by applying
the developed model equation to the training set. Apart from the general correlation
coefficient (R%ey;) and the measured Q%g; [52,53], as proposed by OECD, other external
validation parameters, such as Q?p; and Q23 [55,77], were also measured. As mentioned
by Chirico et al., these parameters could seem contradictory in cases, so additionally, a
simpler criterion of CCCeyt (concordance correlation coefficient) was also considered [56].

3.2.3. Interpretation of Descriptors of the Developed 2D-QSAR Model

e  VES3sign_D/Dt, the first descriptor of the 2D-QSAR model equation, is expressed as
a negative coefficient. It represents the logarithmic coefficient sum of the last eigenvector
from the distance—detour matrix [43] and is expressed as the following equation:

VE3sign_D/Dt = 1% log ?)

n
2l
i=1
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where [; represents the coefficient of the eigenvector associated with the largest nega-
tive eigenvalue calculated on the distance-detour matrix [78]. The distance—detour
matrix is a square symmetric matrix comprising the ratio between the shortest and
the longest topological distances between two atoms in the constitutional molecular
graph [79,80]. It is evident that this is a geometrical descriptor and does not draw
any impact from the properties of the atoms. Thus, decreasing the number of detour
or cyclic components (retaining at least some of them) in the molecular topology
increased the value of this descriptor, which was favorable for activity. It was evident
in compounds 36, 38, and 39, which had high descriptor values, where the aliphatic
straight chain was abundant, and the structure followed an overall linear connection.
SpMin2_Bh(s) bears the largest coefficient value with a positive sign. It represents the
second-smallest eigenvalue of the Burden Matrix of the H-filled molecular graph weighted by
intrinsic state [43,81]. It is a square symmetric matrix expressed as:

w;, ifi=j
B(w)], = { /T, +0.001, if iand jare connected and one is a teminal atom 3)
i /T, if i and j are connected
0.001, if i and j are not connected

where 713, is the bond order (1 for single, 2 for double, 3 for triple, and 1.5 for aromatic
bonds) [43,82]; w is the intrinsic value; an electrotopological index (I) of the atom is

. 2/N)%s0+1 .
elucidated as I = [(/)(>7~U+]; dv and ¢ are the counts of valence and sigma electrons,

respectively; and N is the principal quantum number [81]. Atoms in groups such
as halogens, amines, and azide hydroxyl have comparatively high intrinsic values.
Also, the number of unsaturation, especially connected terminal unsaturation, can
contribute to the overall increase in the component values of the matrix. These aspects
can have an impact on the descriptor being a positive contributor. Because the I-state
was higher for electron-withdrawing groups (=N-: 3.00, >N-: 2.00, -O-: 3.50) [81], it
was reflected in compound 37 with the highest descriptor value, which had several
occurrences of such atoms.

P_VSA_logP_5, the third parameter of the model, is a lipophilicity-based descriptor
representing the P_VSA-like on LogP, bin 5, that is the sum of the Van der Waals
surface area of atoms with logP values in the range of 0 to 0.25. This descriptor
can also positively influence the activity, having a positively signed coefficient, and
it is presented by both the size and hydrophobicity values of the atoms [45]. The
Alvascience user manual [43] lists the individual octanol-water partition coefficient
values of 115 atom-centered fragments, in which groups such as CR2X2, =CR2, =CX2,
R:CR:R,R... O... R, and R-O-C=X specifically bear logP values ranging from 0 to
0.25 [83,84]. The atoms belonging to these and having larger atomic Van der Waals
surface areas can be beneficially incorporated to enhance activity.

2_ (R, —d.:)?
VSA-:47TR2—7TR-H§LZ-- M 4)
l 1 g5 dij
j=

where R; is the atomic Van der Waals radius of the atom i, nAT is the number of atoms,
a;; are the elements of the adjacency matrix, and d;; = min{max{IR; — R; |, b;;}, (R; +
Rj). In addition, bj; is the bond length between i and j (b;; = 1i; — c;); 1;; is the reference
bond length; and ¢jis0,0.1,0.2, and 0.3 for single, aromatic, double, and triple bonds,
respectively [43].

Eig02_EA(dm), or the second eigenvalue from the edge adjacency matrix weighted by the
dipole moment [43,46], is a negative contributor with a significant coefficient value,
which emphasizes that adjacent bonds with large dipole moments are likely to decrease
activity. It indicates that the substituent groups having greater charge distributions
inflicted by electronegative atoms can have a negative influence if the involved bond
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is branched and connected to several other components in the H-depleted molecular
connection map.

o CATS2D_09_AA is the number of hydrogen bond acceptors at an in-between topological
distance of 9 bonds [43,47] and points out the frequency of such occurrences as a negative
contributor to activity. Although the central core bears several nitrogen atoms that can
be potential hydrogen bond acceptors, a topological distance of 9 bonds is not very
frequent. However, as in the case of molecule 3, the symmetric pattern of the carbonyl
oxygen atoms, piperazine ring, and fused pyrimidine contributed to the large value of
this descriptor.

3.2.4. Applicability Domain

To identify the region of chemical space where the QSAR could effectively predict the
new compounds, the applicability domain was calculated [57]. The leverage threshold, h*,
was determined using the following equation: h* =3 x (k + 1)/n) [85,86], where n is the
number of compounds in the training set, and k is the number of selected descriptors.

3.3. Pharmacophore Model Generation

All the molecular modelling and the 3D-QSAR studies discussed here were carried
out on Intel Xeon workstations with the Discovery Studio v18.1 client molecular modelling
program [87]. The 54 reported compounds were divided into a training set and a test set in
a 70:30 ratio, respectively. For construction and validation of the pharmacophore model, a
training set was formulated with 37 antagonist molecules with experimental activities rang-
ing from 0.43 uM to 684 uM. The remaining 17 molecules with a similar activity spectrum
(ICs50: 0.46 uM to 660 uM) constituted the test set for validation purposes. Both the training
and test sets were equally diverse and contained almost the same percentage of molecules
belonging to different predefined activity categories (Figure 22). The same biological assays
and assessment protocols were followed for the collection of the experimental activities of
the antagonist molecules. The biological activity data for all compounds were collected
after evaluation against a single cell line with the same bioassay condition. For all the
individual training set molecules, a maximum of 255 different conformational positions
was generated using the CAESAR conformational method within an energy cut-off of
20 kcal/mol above the global energy minimum [65,66,88].
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Figure 22. Distribution of different categories of compounds in training and test sets for pharma-
cophore modeling.

3.3.1. Generation of Pharmacophore Hypothesis with 3D-QSAR Pharmacophore
Generation (Hypogen)

3D-QSAR pharmacophore methodologies were employed using the Hypogen algo-
rithm, which could correlate the important chemical features present among the active
molecules. The uncertainty value for all the molecules was set at 2 for both the training
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and test sets, which meant that the biological activity could be two times higher or lower
than the actual values [89]. The roles of different chemical features in imparting differ-
ential antagonistic activities for the training set molecules were identified using feature
mapping protocols in Biovia Discovery Studio v18.1 client [87]. The distribution of these
significant chemical features on important training set compounds was determined with
the 3D-fingerprints protocol. These features included the hydrogen bond acceptor (HBA),
hydrophobicity (HY), hydrophobic aromaticity (HYA), positive ionizable (PI), and ring
aromaticity (RA) features, which were considered important, and the corresponding exper-
imental ICs5) was referred to as an active property [90]. Minimum interfeature distances
were restricted to 2 A [91,92]. The least root mean square deviation (RMSD) value, the
highest correlation value, and the lowest total cost were set as three significant parameters
for the selection of the final pharmacophore from the 10 different generated hypotheses.

3.3.2. Pharmacophore Validation

The resultant pharmacophore was validated to evaluate the quality of the generated
model by using cost analysis [59,93], test set analysis, and Fischer’s randomization [59,61].
Fixed cost, total cost, and null cost, which were the three significant cost parameters
calculated in the bits unit, dictated the quality of the model [94]. Null cost indicated
that there was no correlation between the representative features and experimental data,
which approximated the activity of the training set as average. Fixed cost reflected the
cost of a simple, ideal model that could predict all the data perfectly. The total cost of the
individual hypothesis was summarized over error cost, weight cost, and configuration
cost [92]. The total cost should be close to the fixed cost and more distant from the null cost
to develop a significant pharmacophore model. If the cost difference values between null
cost and total cost were greater than 60 bits, there was a high probability of true correlation
between the experimental and predictive activities. If the cost difference was less than
a 40 to 60 bit range, the model should have a 70-90% predictability range [95]. In the
test set validation method, the selected pharmacophore hypothesis was investigated to
predict the biological activities of the previously segregated 17 test set molecules to assess
how close the predicted antagonistic activity values were to the experimentally validated
biological activity values. The generated pharmacophore estimated the activities of the test
set compounds by mapping the ligand with the pharmacophore.

3.4. 3D-QSAR Model Generation

The 3D-QSAR methodology built regression models by utilizing whole molecular
steric and electrostatic potential grids as an independent field for predicting activity and
for visualizing favorable and unfavorable interactions.

3.4.1. Molecular Alignment

The resulting 3D-QSAR model was always responsive to the specific alignment scheme,
where structural alignment was probably the most subjective but crucial phase in the 3D-
QSAR analysis [96]. The lowest energy conformation (minimized through CFF) of the most
active compound (32, ICsp: 0.43 uM) is usually used as a reference. The dataset was aligned
using the common core of the active molecule as a reference template by using a field fit
method based on the combination of steric and electrostatic fields available in Discovery
Studio v18.1 client [70]. The alignment had a major impact on the prediction accuracy
and statistical efficiency of the 3D-QSAR models. The proposed alignment and common
substructure are depicted in Figure 23 [97].
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Figure 23. (A) Template quinazoline and (B) benzoxazole core of TLR7 inhibitors. (C) The alignment
results of 54 TLR7 inhibitors was based on a field fit method.

3.4.2. 3D-QSAR Model Development and Validation

The “random method” of the “Generate Training and Test Data” protocol in Discovery
Studio v18.1 client was used to develop the training set and test set compounds. Seventy
percent (37 compounds) of the compounds were utilized as a training set to construct the
3D-QSAR model, and the remaining thirty percent (17 compounds) was used as an external
test set (Figure 24) to cross-validate the predictive potential of the developed 3D-QSAR
model. The inhibitory activity of the compounds, IC5y (umol/L), was first converted to
a negative logarithmic value [pICsy (nmol/L)], which was then used as the dependent
variable in the 3D-QSAR study. A CFF was implemented on individual molecules. In
Discovery Studio v18.1 client, the Van der Waals potential and the electrostatic potential
were treated as separate individual descriptors for the building of two separate 3D-QSAR
models. When the dielectric constant was compared to distance to simulate the influence
of solvent, a positive point charge was employed as the electrostatic potential probe. The
Van der Waals potential was measured using a carbon atom with a radius of 1.73 A as a
probe [98]. The 3D-QSAR models were created using the “Create 3D QSAR Model” protocol
in Discovery Studio v18.1 client, and they used energy grids as signifiers to construct a
partial least squares model. The grid spacing was normally fixed at 1.4 A. The bounding
box of all the ligands, plus a few angstroms of extension, was used as the extent of the grid.
CFF was then used to quantify the energy potentials at each grid position. The generated
model was validated by using a leave-one-out (LOO) approach in the cross-validation
study [99,100] for internal validation and by employing the test set for external validation.
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Figure 24. Distribution of different categories of compounds in training and test sets for 3D-QSAR
study.
3.5. Molecular Docking

In Discovery Studio v18.1 client, the LibDock package was used to perform molecular
docking studies of the newly designed potent TLR7 antagonist compounds on the binding
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site domain, maintaining an RMSD cut-off of 0.25A. After removing all additives from the
protein, hydrogen atoms were introduced by maintaining a CHARMM force field. A pH
of 5.5 was used to replicate the endosomal protonation environment. The homodimeric
hTLR7protein has two active site domains: one for small-molecule binding (binding site 1)
and the other for ssRNA binding (binding site 2) [12,41]. These are found to be present at
the intersection of two dimerized TLR7chains [101]. For the docking calculations, binding
site 1 was used, comprising a sphere with a 9.5 A radius, centering the binding area and
encompassing all the critical regions for binding residues. A CAESAR conformational
approach was used to dock the energy-minimized ligands, which allowed for a maximum
of 255 conformations per compound within a 20-kcal/mol energy range above the global
energy minimum threshold. During the docking program, a genetic algorithm was used to
encrypt information about hydrogen bonding and hydrophobic 77—7 interactions into the
binding sites of the hTLR7 homodimeric cavity, along with their plausible ligand-binding
conformations.

3.6. ADMET and Toxicity Prediction

All twelve newly designed TLR7 antagonist compounds were employed for the
estimation of their absorption, distribution, metabolism, elimination, and toxicity (ADMET)
properties in Discovery Studio v18.1 client [87] to exclude compounds with unfavorable
ADMET properties as soon as possible. The ADMET module utilized six mathematical
models to quantitatively estimate the pharmacokinetic properties using a set of rules and
keys (Table S6) [65] that defined the threshold of the ADMET characteristics for the given
quinazoline molecules. These models included human intestinal absorption (HIA), aqueous
solubility, blood-brain barrier penetration (BBB), cytochrome P450 2D6 inhibition, and
hepatotoxicity.

The absorption levels of the HIA model were specified by 95% and 99% confidence
ellipses between the ADMET PSA 2D and ADMET AlogP98 surfaces [68]. The water
solubility of each molecule at 25 °C was estimated using the ADMET aqueous solubility
model [102]. This BBB model was derived from a quantitative linear regression model for
the prediction of blood-brain penetration after oral administration, as well as 95% and 99%
confidence ellipses in the ADMET_PSA_2D and ADMET_AlogP98 plane [103]. CYP2D6
predictions of the designed TLR7 antagonist compounds indicated whether the given
molecules were capable of inhibiting the cytochrome P450 2D6 enzyme, which constitutes a
drug-drug interaction [104]. The potential hepatotoxicity of the wide range of structurally
diverse compounds was evaluated using ADMET hepatotoxicity.

Thereafter, the designed TLR7 antagonist molecules were subjected to various toxicity
screening models, e.g., toxicity for carcinogenicity, developmental toxicity, mutagenicity,
and skin irritancy or sensitization, using the DS_TOPKAT module of Discovery Studio
v18.1 client [87]. These estimations assisted in the optimization of therapeutic ratios of the
lead compound for the further development and analysis of any possible safety concerns.

3.7. MD Simulation

MD simulation of the docked conformations of the potent antagonists in the complex
with the TLR7 protein homology model was performed using GROMACS 5.1.5 software
on an Intel(R) Xeon(R) Silver 4214R CPU cluster [105,106]. The subsequent protein-ligand
complex system was prepared as an initial structure using the pdb2gmx module in Gromacs.
A Gromacs AMBER99SB force field [107] was applied for parameterization and topology
generation of the native TLR7 protein. An AnteChamber Python Parser interface (ACPYPE)
with GAFF parameters was applied to parameterize the required topologies, atomic types,
and charges of ligands due to the presence of heteroatoms [94,108]. The complex was
put in the center of a cubic box (9.3 x 9.3 x 9.3 nm?) filled with 285516 SPC/E water
molecules to solvate the entire system [109,110]. Under physiological conditions (NaCl
0.15 M), the genion module in Gromacs was used to neutralize the whole system with a
salt ion environment, followed by preserving electrical neutrality for the entire system.



Molecules 2022, 27, 4026

34 of 40

Finally, 27 C1~ ions were incorporated into the system by replacing the water molecules to
neutralize the whole system.

Energy minimization was used for 0.1 ns with a maximum force of 10.0 kJ/mol [111]
to achieve the stable-state of the simulation system by eliminating discrepancies in atomic
position or structural disputes, such as bond length and bond angle, as well as structural
clashes between the positions of water molecules, ions, and protein complexes [109]. The
energy minimization curve (Figure S6) revealed the quality of the energy-minimized
structure. The equilibration of the protein-ligand complex system was carried out in two
steps of a sequential process: (a) employing isothermal and isochoric ensemble (NVT)
programs at a constant 300 K temperature and (b) using the NPT ensemble system at a
stabilized zero bar pressure. Both ensembles executed 50,000 steps, which was equivalent
to 0.1 ns. Finally, the temperature- and pressure-stabilized complex system was released for
position restraining, where the solvent molecules in the cubic box were dissolved fully with
the protein-ligand complex system. Subsequently, a position-restrained complex system
was deposited for a 10 ns production MD simulation run in the presence of 310 K (V-rescale
thermostat) temperature and atmospheric NPT ensemble pressure (Parrinello-Rahman
barostat) and periodic boundary conditions with integrator time steps of 0.002 ps utilizing
leap-frog algorithms. The LINC technique was used throughout the entire equilibration
phase to restrict all hydrogen bonds [112,113], while a particle mesh Ewald (PME) module
with a Fourier grid spacing of 0.16 was used to calculate long-range ionic interactions [114].
The whole trajectories were collected at a 2 fs timestep rate during the simulation for further
investigation.

4. Conclusions

In the present work, we identified the detailed structural features present in the
reported TLR7 antagonist compounds responsible for imparting their antagonistic activities,
as well as the specific binding pattern against the endosomal TLR7 target protein. To
identify significant chemical features responsible for TLR7 antagonism for further drug
development, we intended to focus on developing ligand-based quantitative 2D and 3D-
QSAR models and pharmacophore models. The top-ranked, best pharmacophore, Hypol,
was selected from ten developed pharmacophores. The 2D-QSAR study of the reported
compounds presented the correlation of simple 2D physico-chemical descriptors with
their inhibitory activities against TLR7 protein. This robust study involved 54 training
set molecules based on an MLR algorithm with 2D descriptors selected using a genetic
algorithm (GA) approach. Standard statistical metrics were used to validate the proposed
model, both internally and externally. The generated 2D-QSAR model equation (R?= 0.8644)
showed that the model was robust and effective and could be used to describe the TLR7
antagonistic activity of a wide range of compounds. The standard coefficient of the MLR
equation reflected the significance of the edge-adjacency-based descriptor, Eig02_EA (dm),
and pharmacophore descriptorCATS2D_09_AA negatively influencing the potent activity
of the compounds.

Apart from that, a ligand-based quantitative 3D-QSAR pharmacophore model was
developed based on 37 training set compounds with high diversity in terms of both chem-
ical structures and biological activities. The significant chemical features responsible for
TLR7 antagonism were identified using the best pharmacophore model, Hypol, which was
selected based on various parameters, such as cost difference, correlation coefficient, and
other validation results. Hypol was created with one HBA feature, two positive ionizable
(PI) features, and one hydrophobic aromatic (HYA) feature, with a cost difference of 91.917
bits. The predictive potential of the Hypol model was assessed using 17 test set molecules
with a resulting correlation between predicted and biological activities of 0.9154 for the
test set compounds, while for the training set compounds, the correlation was 0.9417.
Apart from the pharmacophore model, another ligand-based 3D-QSAR study on a series of
reported TLR7 small-molecule inhibitors yielded robust and statistically relevant predictive
models, as demonstrated by moderate to high cross-correlation coefficients. Thus, the
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internal and external predictive powers of the obtained 3D-QSAR models were evaluated
concerning the corresponding correlation coefficients (R?) between the estimated and ex-
perimental activities of the training set and test set compounds, which were 0.956 and 0.838,
respectively. The developed contour maps of the 3D-QSAR models accurately indicated
the contribution of combined electrostatic and steric molecular fields on corresponding
TLR7 antagonistic activities.

The information-guided collective ligand-based drug design strategy including 2D-
QSAR, 3D-QSAR, and pharmacophore models was utilized for the designing of novel
TLR7 antagonist molecules. The combination of hydrophobic and hydrogen bond acceptor
features, along with electrostatic and steric molecular field analyses, was used as a ligand-
based strategy for the further designing of twelve new antagonists (T55-T66) by modifying
the best quinazoline scaffold-based active template compound, 14. Structural insights
obtained from the 2D-QSAR model were taken into account for every substitution upon
compound 14. The activities of all twelve antagonist compounds were predicted through
the 2D and 3D-QSAR models and pharmacophore model approaches.

A structure-based molecular docking study of the newly designed quinazoline scaffold
compounds showed desired binding into the proposed hydrophobic pockets (pocket 1 and
pocket 3), grooves (groove 1 and groove 2), and central cavity by maintaining hydrogen
bond interactions with essential residues Thr525, Gly577, and GIn354*. The binding stability
of the selected three compounds was evaluated with a 10ns MD simulation run. The
RMSD, RMSE and radius of gyration (Rg) curves revealed the status of the ligand binding
inside the TLR7 protein. In silico ADMET assessments and drug-likeness properties of
the newly designed compounds represented those that had similar kinetic properties
compared to template compound 14. The combined ligand-based drug design approaches,
including 2D and 3D-QSAR studies and pharmacophore models, led to the design of new
quinazoline scaffold compounds with potent TLR7 antagonistic activities. The ligand-
receptor interaction model proposed in the manuscript can be used as a benchmark for
the development of a new generation of potent TLR7 antagonists of clinical significance in
various autoimmune diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /molecules27134026/s1, Table S1: 2D descriptor values of all
the training and test set compounds; Table S2: Selected descriptors by GA-VSS for final 2D-QSAR
models with a range of values and their interpretations; Table S3: The cost analysis and correlation
statistics of randomly prepared 19 spreadsheet pharmacophore; Table S4: 2D descriptor values of
the newly designed compounds; Table S5: Experimental TLR7 observed and predicted activities and
residuals of all compounds using the best 3D-QSAR model; Table S6: ADMET descriptors and their
rules and keys; Table S7: Experimental and predicted activities of all datasets and newly designed
compounds; Figure S1: Structure of 54 datasets of TLR7 antagonist compounds; Figure S2: Modeling
characterization by the standardized coefficients; Figure S3: Ligand pharmacophore mapping of test
set; (A) most active compound 31 (IC50: 0.46 uM), (B) most active compound 29 (IC50: 1.83 uM), and
(C) inactive compound 46 (IC50: 660 uM). The pharmacophoric features HBA, HYA, PI and RA are
signified with green, blue, red, and orange, respectively; Figure S4: Alignment of a few representative
designed molecules onto the pharmacophore Hypol. (A) T56, (B) T59, (C) T61, (D) T63, (E) T65, and
(F) T66; Figure S5: A, B, C, D, E, and F. Binding poses of compounds T57, T61, T62, T63, T64, and
T65, respectively into the proposed active site. Hydrogen bonds are indicated with black dotted
lines, whereas purple and cyan dotted lines indicate 7t— hydrophobic and halogen bond interactions,
respectively; Figure S6: Various parameter plots for TLR7 protein structure optimization during
simulation.
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