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BACKGROUND Multiple studies have reported on classification of
raw electrocardiograms (ECGs) using convolutional neural networks
(CNNs).

OBJECTIVE We investigated an application-specific CNN using a
custom ensemble of features designed based on characteristics of
the ECG during atrial fibrillation (AF) to reduce inappropriate AF de-
tections in implantable cardiac monitors (ICMs).

METHODS An ensemble of features was developed and combined to
form an input signal for the CNN. The features were based on the
morphological characteristics of AF, incoherence of RR intervals,
and the fact that AF begets more AF. A custom CNN model and
the RESNET18 model were trained using ICM-detected AF episodes
that were adjudicated to be true AF or false detections. The trained
models were evaluated using a test dataset from independent pa-
tients.

RESULTS The training and validation datasets consisted of 31,757
AF episodes (2516 patients) and 28,506 false episodes (2126 pa-
tients). The validation set (20% randomly chosen episodes of
each type) had an area under the curve of 0.996 for custom CNN
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(0.993 for RESNET18). Thresholds were chosen to obtain a relative
sensitivity and specificity of 99.2% and 92.8%, respectively
(99.2% and 87.9% for RESNET18, respectively). The performance
in the independent test set (4546 AF episodes from 418 patients;
5384 false episodes from 605 patients) showed an area under the
curve of 0.993 (0.991 for RESNET18) and relative sensitivity and
specificity of 98.7% and 91.4%, respectively, at chosen thresholds
(98.9% and 88.2% for RESNET18, respectively).

CONCLUSION An ensemble of features-based CNNs was developed
that reduced inappropriate AF detection in ICMs by over 90% while
preserving sensitivity.
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Introduction
Subcutaneous implantable cardiac monitors (ICMs) have
been used for automatic detection of cardiac arrhythmias
and patient symptom–triggered storage of loop-recorded
recent electrocardiograms (ECGs).1,2 ICMs have been used
for diagnosing the cause of unexplained syncope,3,4 for
monitoring of recurrent atrial fibrillation (AF) after ablation
of AF,5 and in patients with history of cryptogenic stroke.6

In most of these cases, the main objective is to deliver thera-
peutic interventions to patients in a timely manner to reduce
clinical morbidity associated with these clinical conditions in
a safe and cost efficient manner.4 While ICMs are very sen-
sitive to detecting AF, the high sensitivity comes at the cost
of reduced specificity. Multiple iterations of enhancement
of detection algorithms inside the ICM improved specificity
while preserving sensitivity. However, inappropriate AF de-
tections in these ICMs and the associated clinic burden for re-
view of these episodes are still some of the main concerns
related to broader use of ICMs for AF management.

Deep learning 2-dimensional (2D) convolutional neural
networks (CNNs) have been used extensively for image clas-
sification. Multiple studies have used 1D or 2D CNNs in
ECG classification problems.7–14 Further, application-
specific CNN has been used to reduce inappropriate AF
detection in ICMs while preserving sensitivity for AF detec-
tion.14 These techniques directly feed the raw ECG signal
into a CNN, which automatically derives features as it trains
the deep learning network over multiple iterations and
epochs. ECG during AF is characterized by atrial fibrillatory
waves or multiple P waves between 2 R waves, or the
absence of P waves. Further, ventricular response during
AF is primarily controlled by the atrioventricular node, which
leads to incoherence of the RR interval time series during AF.
ICMs measure a single lead ECG with a 4-cm dipole most
often implanted in the fourth intercostal space in a 45�
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KEY FINDINGS

- An ensemble of features-based custom convolutional
neural network was developed that reduced inappro-
priate atrial fibrillation detection in implantable car-
diac monitors by over 90% while preserving true atrial
fibrillation detection sensitivity.

- The novel approach incorporates features that were
constructed based on known electrocardiogram char-
acteristics during true atrial fibrillation and concate-
nated into a 2-dimensional array used as input to the
custom convolutional neural network.

- The small custom convolutional neural network per-
formed similarly to the widely used larger RESNET18
network when using the same ensemble of features-
based 2-dimensional images as input.
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orientation but may be implanted at different locations and
orientations. P-wave visibility during sinus rhythm depends
on the location and orientation of the ICM. The objective
of this study was to transform the ECG measured by ICM
and derive features that were specifically related to the
ICM-measured ECG characteristics during AF and to
develop an application-specific deep learning model to
reduce inappropriate AF detection in ICMs while preserving
sensitivity for AF detection.
Methods
AF detection in ICM
AF detection in ICMs is primarily based on looking for inco-
herence of RR intervals over a 2-minute period.15,16 Once AF
is detected, there are several additional layers of algorithms
that reduce inappropriate detection while preserving sensi-
tivity of AF detection. These include rejection of noise using
short interval counts (RR interval ,220 ms), bigeminy and
trigemini rejection using specific RR interval sequence logic,
ectopy with irregular coupling interval and sinus arrhythmia
rejection using detection of single P waves between R
waves,17,18 and a self-learning algorithm that personalizes
detection thresholds in each patient based on device-
detected RR irregularity and single P-wave incidences.19

Once an episode is detected by the ICM, the ECG from the
first 2 minutes of the detection period is stored in the device,
and a proportion of episode ECGs are transmitted to remote
monitoring systems for provider’s review. Device-based al-
gorithms are limited in computational complexity due to con-
straints of battery drain. To further reduce inappropriate
detection, advanced algorithms using cloud computing capa-
bilities are used in remote monitoring systems to filter out
inappropriately detected episodes prior to provider review.
Deep learning–based episode classification
The ECG recorded in a detected AF episode is transformed
into different features, each of which can be represented as
a 2D array (Figure 1). This includes the Lorenz plot encoding
RR interval incoherence (both scaled and nonscaled),
enhanced P-wave, P waves in long cycle and atrial rate infor-
mation encoding atrial components of ECG, and AF burden
and episode duration encoding the information that longer
episodes and episodes from high AF burden patients are
both more likely to be true. The features are concatenated
into a 2D array (or image) to form an ensemble of features.
The 2D image with an ensemble of features derived from
the ECG is used as an input to the deep learning network. Ex-
amples of images for AF episodes and non-AF episodes are
shown in Figure 2.

A basic sequential deep learning custom network was
trained with 6 blocks with each block including layers of
2D convolution, batch normalization, rectified linear unit,
max pooling, and dropout layers along with 1 fully connected
and softmax layer (Figure 3). Additionally, publicly available
residual neural network (RESNET18) architecture20,21 was
also trained using the dataset to serve as a comparison to a
widely used deep learning model. TheMATLAB (TheMath-
Works, Inc) deep learning toolbox (version 9.11 - R2021b)
was used to train the 2 networks.
Data cohort and data analysis
An annotated dataset was created from a real-world dataset of
AF episodes detected by the Reveal LINQ� ICM. The data
used in this retrospective analysis was derived from a de-
identified real-world dataset stored in the Medtronic Discov-
ery Link data warehouse. All patients provided consent to use
their de-identified device data for research purposes when
they signed up for Medtronic CareLink� Network. The cen-
ters that allowed use of their patient data for research pur-
poses then consented to storage of patient data in a de-
identified Medtronic Discovery Link data warehouse. The
Reveal LINQ ICM stored AF episodes were transmitted to
the CareLink network and then de-identified and stored in
this Discovery Link data warehouse for patients from centers
who had consented for deidentified data use. Institutional Re-
view Board evaluations for prior publications22 judged using
the de-identified Medtronic Discovery Link data warehouse
to fall into the category of nonhuman research; therefore,
no Institutional Review Board approval was indicated for
use of these deidentified data. This was a retrospective real-
world data analysis and not a clinical study and hence is
not registered in ClinicalTrials.gov.

Patients with AF ablation, AF management, cryptogenic
stroke, and unexplained syncope as reason for monitoring
were included. Over 60,000 ICM-detected AF episodes
from over 4000 patients were used to train the deep learning
networks. The episodes were adjudicated by a single
reviewer (S.S.) following a review process that was validated
in an earlier study.23Multiple randomized 80%–20% splits of
training and validation datasets were performed to estimate
the extent of potential generalization error. The model trained
with the most balanced result with respect to sensitivity and
specificity in the validation set was chosen as the final model.



Figure 1 The basic schematic of the formation of the ensemble of features-based 2-dimensional (2D) input array and the deep learning neural network. AF5
atrial fibrillation; ECG 5 electrocardiogram.
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The validation set comprised of 20% of independent episodes
but not necessarily from independent patients. Training pro-
cess for the custom network and RESNET18 network are
shown in Figure 4. A probability threshold was chosen to
classify AF vs non-AF in the validation set to obtain a sensi-
tivity above 99%. Additionally, an independent test dataset
was created from independent patients not included in the
training and validation datasets. This independent test dataset
included ICM-detected AF episodes from consecutive
patients who were implanted with an ICM for AF ablation,
AF management, and cryptogenic stroke as reason for moni-
toring and were not included in the training and validation
datasets. Classification accuracy as measured by sensitivity,
specificity, positive predictive value (PPV), negative predic-
tive value (NPV), and misclassification of true AF and false
AF is reported along with receiver-operating characteristic
Figure 2 Examples of the 2-dimensional image input in the case
curves. Generalized estimating equation (GEE) estimates
for sensitivity, specificity, PPV, and NPV are also reported
to adjust for multiple episodes per patient.
Results
A total of 60,263 detected AF episodes from 4007 patients
(31,757 true AF episodes from 2516 patients and 28,506 false
AF episodes from 2126 patients) were used to train the net-
works from initial random weights with a split of 80% of ep-
isodes used for training and 20% for validation. Transfer
learning was not used in the training process. The validation
set receiver-operating characteristic curve was used to choose
a probability threshold for classification into AF vs non-AF
episodes. For the custom network, an area under the curve
(AUC) of 0.996 was obtained, and a threshold of 0.95 was
of an atrial fibrillation (AF) episode and a non-AF episode.



Figure 3 The basic schematic of the custom network with 6 blocks of 2-dimensional convolution, rectified liner unit, batch normalization, and dropout layers.
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chosen for a sensitivity and specificity of 99.2% and 92.8%,
respectively. The threshold of 0.95 indicated the probability
of the episode being false being higher than 95%. For the RE-
SNET18 network, AUC was 0.993, and a threshold of 0.90
was chosen to obtain a sensitivity and specificity of 99.2%
and 87.9%, respectively.

The independent patient test dataset from 898 patients
included 4546 true AF episodes from 418 patients and
5384 false AF episodes from 605 patients. Sensitivity, spec-
ificity, PPV, and NPV derived using raw proportion of epi-
sodes in the independent patient test dataset as well as GEE
estimates for the custom CNN and the RESNET18 networks
are shown in Table 1. Figure 5 shows the sensitivity and spec-
ificity curve as a function of the probability threshold in this
independent patient test dataset. The AUC was 0.993 for the
custom network performance in the independent patient test
dataset (Figure 5A) and 0.991 for the RESNET18 network
(Figure 5B). As shown in Figure 6, at the chosen threshold
from the validation set, the custom network was able to accu-
rately classify 91.4% of inappropriate detections (ie, achieve
a specificity of 91.4%) in the independent patient test set
while also inaccurately misclassifying true AF in 1.3% of
the episodes (ie, achieve a sensitivity of 98.7%). For the RE-
SNET18 network, 88.2% of inappropriate detections were
reduced with loss of sensitivity of 1.1%. The GEE estimates,
adjusting for multiple episodes in patients, and the 95% con-
fidence intervals (Table 1) further confirmed that a signifi-
cantly improved specificity and marginal reduction in
sensitivity was obtained, as shown by metrics derived using
raw proportion of episodes.
Discussion
Deep learning CNNs were utilized to classify ICM-detected
AF episodes with an objective to reduce inappropriate AF de-
tections while preserving sensitivity for AF detection. Rather
than using the conventional method of feeding in the raw
ECG signal into a CNN, the ECG data were transformed
into an ensemble of features that emphasized ECG character-
istics during AF. An application-specific custom network
was designed that used the ensemble of features as a 2D input
and had only 6 convolution layers. The performance of the
custom network was compared with the publicly available
RESNET18 network. Both networks were able to reduce
inappropriate ICM-based AF detections by around 90%
while also reducing sensitivity for AF detection by around
1%. These performance results were similar or better than re-
sults seen using raw ECG as a 1D input into a larger (or
deeper) 1D CNN based on the RESNET50 architecture.24

Each method, the raw ECG method and the ensemble of fea-
tures method, has advantages and disadvantages, and combi-
nation using ensemble neural networks may lead to better
performance.

The feature selection for the creation of the 2D input was
primarily focused on the ECG characteristics during AF.
Also, these features were used to detect AF in the ICM in a
computationally simplified form. For example, the Lorenz
plot technique uses a simple indexing and counting operation
inside the ICM device, whereas in this CNN approach it is
used as a 2D numerical histogram, and the CNN can poten-
tially extract various advanced features within this 2D array.
Similarly, the ICM looks for the presence of single P-wave
between 2 R waves using simple difference operations inside
the device. In this CNN approach, the raw P-wave–enhanced
ECG segment prior to the R-wave was used as input, and thus
the CNN could identify various morphologic features in the P
waves to identify AF or atrial flutter. Additionally, AF is an
atrial arrhythmia, and the CNN was made to focus on the
atrial part of the ECG, rather than focusing on the R-wave
morphology, which has large changes but very little informa-
tion about AF. The incoherence of the RR interval sequence
was incorporated in multiple features to make the CNN focus
on those aspects of the ECG. Finally, the CNN focused on fil-
ters over a few samples, so the relationship between informa-
tion across larger samples was not inherently incorporated
into the network architecture. The P-wave enhanced ICM
ECG segments were arranged in a 2D format synchronized
to the R-wave location in such a way such that CNN filters
could compare morphology between multiple beats in the
second dimension.

The novel aspect of the methodology described in this
study is the method to generate the ensemble of features as
a 2D input to a single sequential 2D CNN network. A single
sequential CNN network will have the advantage of a small



Figure 4 The accuracy and loss function during the training process in the training (blue/red lines) and validation (black lines) datasets using the custom
network (A) and the RESNET18 network (B).
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Table 1 Performance metrics for the custom CNN and the RESNET18 models reported for the independent patient test dataset as raw
proportion of episodes and the GEE estimates adjusting for multiple episodes per patient

Custom CNN RESNET18

Raw GEE (95% CI) Raw GEE (95% CI)

Sensitivity 4486/4546 (98.7) 98.6 (97.8–99.1) 4496/4546 (98.9) 99.0 (98.2–99.4)
Specificity 4923/5384 (91.4) 90.0 (88.1–91.7) 4748/5384 (88.2) 87.8 (85.8–89.7)
PPV 4486/4947 (90.7) 81.3 (78.1–84.1) 4496/5132 (87.6) 76.5 (73.0–79.6)
NPV 4923/4983 (98.8) 98.1 (97.0–98.8) 4748/4798 (99.0) 98.4 (97.2–99.0)

Values are n/n (%), unless otherwise indicated.
CI 5 confidence interval; CNN 5 convolutional neural network; GEE 5 generalized estimating equation; NPV 5 negative predictive value; PPV 5 positive

predictive value.
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number of trainable parameters, thus reducing the risk of
overfitting, but provides less flexibility in terms of having
unique filters for specific features in the ensemble of input
features. The custom CNN used in this study only had
517,954 trainable parameters, compared with over 8.8
million for the RESNET18 architecture. Alternative ap-
proaches have been to use multiple inputs into separate
CNN networks and then concatenate the output of each indi-
vidual network into an ensemble network. The latter
approach does provide more flexibility, as the individual net-
works can be designed differently to tailor them to their
different input features. However, that likely would lead to
a larger network architecture and a larger number of trainable
parameters. Further, most published literature on ECG classi-
fication using deep learning networks has focused on classi-
fying all kinds of possible arrhythmia using a single trained
network. An application-specific approach, like classifying
only episodes detected by the AF detection algorithm resi-
dent in the device,15–20 significantly reduces the degrees of
freedom that the network will have to fit to, thereby
reducing the required size and depth of the network needed
to fit to the problem. This is verified by the fact that the
small custom network performed as well as a much larger
Figure 5 The sensitivity and specificity as a function of the probability output fro
the custom network (A) and the RESNET18 network (B).
RESNET18 network. The RESNET50 network was also
evaluated, but it ran into overfitting issues, and hence the
RESNET18 was evaluated in this study.

The performance of a deep learning network is dependent
on the consistency of the ICM ECG adjudication process. In
this study, a single reviewer was used to maintain the
consistency of the adjudication process. The process fol-
lowed by the adjudicator was validated against adjudications
done by electrophysiologists is a small subset of the data as
described previously.20 The adjudicator was found to have
,1% error compared with the electrophysiologist adjudica-
tions. It should be noted that about 10% of ICM-labeled
AF episodes are difficult to adjudicate, as has been found
in other smaller studies. Additionally, in the training and vali-
dation datasets, discordant analysis was performed multiple
times to evaluate reasons for mismatches between adjudica-
tion and CNN-predicted class labels. In some proportion of
mismatches in the training and validation datasets, erroneous
adjudications due to manual error were corrected. The inde-
pendent test set was independently adjudicated twice by the
same adjudicator and mismatches were reviewed a third
time to ascertain the final adjudication. Further, the larger
the size of the training dataset is, the more generalizable
m the deep learning neural network in the independent patient test dataset for



Figure 6 The classification of episodes as non–atrial fibrillation (AF) by the deep learning network showing the proportion of false episodes that are
correctly classified as false as well as the proportion of true AF episodes that are misclassified as non-AF episodes for the custom network (A) and the
RESNET18 network (B).
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the performance of any trained network is. Data augmenta-
tion was not used, and instead additional episodes that were
more likely to generate discordant results were included until
no further improvement in performance was observed in the
training/validation set.

The primary limitation of the study was that the deep
learning network was trained on ECG obtained by a specific
device with a single-lead ECG vector with electrodes sepa-
rated by 4 cm and implanted at various locations and orienta-
tions. Thus, the trained network is not generalizable to other
forms of ECGwith different electrode configurations, such as
12-lead ECG systems. However, the same methodology can
be used to train a similar network using data collected using
the monitoring mode of choice. As mentioned previously, the
network performance is only as good as the adjudications and
the generalizability of data used to train the network. Because
a single reviewer was used for this study, the artificial intel-
ligence was broadly trained to reflect that reviewer’s accu-
racy in interpretation of presence or absence of AF in the
ICM ECG.

Conclusion
A custom ensemble of features arranged as a 2D input to a
CNN network using a small number of 2D convolution layers
was able to reduce over 90% of inappropriate AF detections
while also reducing appropriate detections by a little over 1%.
The small custom network performed similarly compared
with the widely used larger RESNET18 network when using
the same ensemble of features-based 2D image as input.
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