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Abstract
Nature is a prolific source of organic products with diverse scaffolds and biological activities. The process of natural product 
discovery has gradually become more challenging, and advances in novel strategic approaches are essential to evolve natural 
product chemistry. Our focus has been on surveying untouched marine resources and fermentation to enhance microbial 
productive performance. The first topic is the screening of marine natural products isolated from Indonesian marine organ-
isms for new types of bioactive compounds, such as antineoplastics, antimycobacterium substances, and inhibitors of protein 
tyrosine phosphatase 1B, sterol O-acyl-transferase, and bone morphogenetic protein-induced osteoblastic differentiation. 
The unique biological properties of marine organohalides are discussed herein and attempts to efficiently produce fungal 
halogenated metabolites are documented. This review presents an overview of our recent work accomplishments based on 
the MONOTORI study.
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Introduction

The search for bioactive natural products from plants and 
microorganisms followed by marine invertebrates is called 
“MONOTORI”, and has made a significant contribution to 
the discovery and development of various pharmaceutical 
applications for global health and care [1, 2].

Important research on two natural products won the 
2015 Nobel Prize in Physiology or Medicine [3]. One 
award winner was artemisinin, which was isolated from 
the Chinese folk medicinal plant Artemisia annua and is 
very effective against malaria [4]. Another award winner 
was avermectin produced by soil-derived Streptomyces 
avermitilis, and its dihydro-derivative, ivermectin, is clini-
cally used to treat roundworm parasites [5]. Over the past 
few decades, natural product chemists have shifted their 
focus to bioresources with access difficulties, and marine 
organisms have been in the spotlight as the next suppliers 
of highly diverse natural products in addition to terrestrial 

organisms [6–8]. Some marine substances have been in 
clinical trials for the treatment of cancers, and cytarabine 
(a pyrimidine nucleoside), trabectedin (ET743), eribulin 
(a synthetic derivative of halichondrin B), brentuximab 
vedotin (an antibody drug conjugate of monomethylau-
ristatin E), and plitidepsin (dehydrodidemnin B) have 
already been approved as anticancer agents [9]. These 
natural compounds introduced are “a splendid gift from 
the Earth” [10], and this research area will continuously 
provide exciting outcomes.

I and my collaborators have also been investigat-
ing MONOTORI studies aimed at marine organisms and 
microorganisms mainly collected in tropical and subtropi-
cal regions. We herein review the following findings of 
our recent studies: (i) bioactive compounds from Indo-
nesian marine invertebrates and microorganisms; (ii) the 
unique biological properties of the marine organohalogen; 
and (iii) the efficient production of microbial halogenated 
metabolites.
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The search for bioactive substances 
from Indonesian marine organisms

The Republic of Indonesia (commonly called Indonesia) is 
one of the Southeast Asian countries surrounding the Indian 
and Pacific oceans, and is the largest island country in the 
world, consisting of more than 10,000 islands, primarily 
Sumatra, Java, and Sulawesi.

Our research group has been collaborating with Sam Rat-
ulangi University (UNSRAT: Universitas Sam Ratulangi in 
Indonesia) located in Manado, North Sulawesi in Indonesia. 
North Sulawesi is an archipelagic area on the Minahasa Pen-
insula of Sulawesi Island that maintains numerous natural 
resources (Fig. 1a, b). Abundant coral reefs are well pre-
served over adjacent oceans in which widely diverse native 
marine organisms live without invasion by foreign species 
(Fig. 1c). Therefore, we conducted field work in the ocean 
of North Sulawesi to collect marine invertebrates (ascidians 
and marine sponges) and marine-derived microorganisms by 
scuba diving (Fig. 1d), and investigate chemical constituents 
for their structural and biological characteristics using vari-
ous bioassay screening techniques. We herein summarize the 
novel bioactive compounds (containing structurally known 
compounds) found during our search of marine bioresources 
in North Sulawesi that exhibit anticancer, antimycobacte-
rial, antidiabetes, antidyslipidemia, and antiosteoblastogenic 
activities.

Anticancer compounds

Some marine natural products have been approved as 
anticancer agents. Based on this background, we initially 
attempted to identify cytotoxic compounds and discovered 
two rare types of alkaloids with interesting features, lissocli-
badin 1 (1) and papuamine (2), as shown in Fig. 2 [11–14].

Lissoclibadins, novel dopamine-derived polysulfur alka-
loids, were initially isolated from the Indonesian colonial 
ascidian Lissoclinum cf. badium by our research group, and 
14 related congeners, lissoclibadins 1–14, were isolated by 
further efforts [15–20]. Among them, lissoclibadin 1 (1), 
a trimeric derivative with a ten-membered polysulfur ring 
(Fig. 2), exerted the most potent growth-inhibitory effects 
against four human solid cancer cell lines, HCT-15 (colon 
adenocarcinoma), HeLa-S3 (cervix adenocarcinoma), 
MCF-7 (breast adenocarcinoma), and NCI-H28 (mesothe-
lioma), in in vitro cytotoxicity assays. A flow cytometric 
study using HCT-15 cells stained by fluorescein isothiocy-
anate-conjugated Annexin V and propidium iodide in the 
presence or absence of caspase inhibitors (z-VAD-fmk, 
z-IETD-fmk, and z-LEHD-fmk) confirmed that compound 
1 promoted the induction of apoptosis, which was attributed 
to the intrinsic pathway of the caspase cascade, namely, the 
mitochondrial cytochrome c-dependent activation of cas-
pase-9 and caspase-3 in HCT-15 cells. Compound 1 sup-
pressed in vivo tumor growth in nude mice carrying HCT-15 

Fig. 1   a and b Rich natu-
ral environments in North 
Sulawesi; c coral reefs in the sea 
of North Sulawesi; d sampling 
of marine organisms by scuba 
diving (the diver in the picture 
is the author)
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cells by approximately 60% on day 28 at 25 mg/kg per day 
without any severe side effects or body weight changes.

Papuamine (2), an unusual pentacyclic diamine alkaloid, 
was originally isolated as a fungicide against Trichophy-
ton mentagrophytes from the Papua New Guinean marine 
sponge Haliclona sp. [21]. We also discovered the same 
alkaloid 2 in Indonesian Haliclona sp. (Fig. 2) and its potent 
cytotoxicity against the human solid cancer cell lines, MCF-
7, HCT-15, Caco-2 (colon adenocarcinoma), and LNCap 
(prostate adenocarcinoma) [12]. Further biochemical experi-
ments on the cytotoxic mechanism of 2 against MCF-7 cells 
revealed autophagosome vesicular formation by the detec-
tion of LC3, a typical marker of mammalian autophagy, and 
the release of cytochrome c coincided with the activation of 
c-Jun N-terminal kinase (JNK), indicating that compound 2 
induces an earlier onset of autophagy, followed by a reduc-
tion in cell survival through mitochondrial damage and the 
activation of JNK in MCF-7 cells [13]. Additionally, in our 
examination to evaluate synergistic effects with doxorubicin 
(DOX), a major chemotherapeutic reagent that activates 
JNK, the combination of 2 and DOX exhibited stronger cyto-
toxicity against MCF-7 cells, which did not involve changes 
in the cellular accumulation of DOX and appeared to reflect 
the additional activation of JNK phosphorylation [14].

Antimycobacterial substances

Infectious diseases are the greatest public health threat 
worldwide; however, since the discovery of penicillin in 
1928, several antibiotics have historically overcome epidem-
ics [2, 4, 5, 22]. In other words, natural product chemistry 
has made progress to combat infections. Therefore, research-
ers have continually explored new antiinfective candidates 
[23, 24]. We also investigated novel antiinfective leads 
against several pathogens [25–32].

Mycobacterium tuberculosis causes tuberculosis (TB), 
which is one of the three major infectious diseases, includ-
ing human immunodeficiency virus (HIV) and malaria, 
worldwide [33]. The treatment of TB is challenging due to 
the prevalence of multidrug resistance, the limited number 
of anti-TB agents, and long-term administration; therefore, 
the exploitation of new anti-TB drugs with novel modes of 
action globally is needed [34, 35]. Experiments using M. 
tuberculosis are tightly restricted by the requirement of a 
biosafety level 3 facility and time-consuming assays because 
of the pathogenicity and slow growth of M. tuberculosis, 
respectively. Our project to search for antimycobacterium 
activity has applied non-pathogenic and fast-growing M. 
smegmatis, the susceptibility of which to anti-TB drugs is 
consistent with that of M. tuberculosis [36], as an alternative 
test strain to detect antituberculous activity [37–42].

In this screening, we found that an ethanol (EtOH) extract 
of the Indonesian marine sponge Haliclona sp. exhibited 
antimycobacterial activity against M. smegmatis [37]. ODS 
and HPLC separation according to bioassays gave haliclo-
cyclamines A–C (3–5) and five known congeners, cyclostel-
lettamines A–C, E, and F [43]. The structures of 3–5 were 
elucidated as new dimeric 3-alkyl pyridinium alkaloids 
based on their NMR spectra in combination with ESI–MS/
MS analyses (Fig. 3). The inhibitory efficacies of 3–5 against 
the growth of M. smegmatis were assessed using the paper 
disc method [44]. Compound 3 exhibited the most potent 
activity, in a dose-dependent manner, with an inhibition zone 
of 17 mm at 10 μg/disc. Since anti-M. tuberculosis activity 
by cyclostellettamines, compounds related to 3–5, has been 
demonstrated [45], compounds 3–5 are also expected to be 
active against M. tuberculosis.

Leucettamol A (6), a known dimeric sphingolipid (Fig. 3), 
was isolated as an anti-M. smegmatis component from the 
Indonesian marine sponge Agelas sp. [38]. The isolation 
of 6 from the Bermudan marine sponge Leucetta microra-
phis and its antimicrobial activity were initially reported by 

Fig. 2   Structures of lissocliba-
din 1 (1) and papuamine (2) as 
anticancer compounds
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Kong and Faulkner [46], and the absolute configuration of 6 
was elucidated by Dalisay et al. [47] using a deconvolution 
exciton coupled circular dichroism (CD) spectrum. In our 
study, compound 6 exhibited moderate antimycobacterial 
activity against M. smegmatis with an inhibition zone of 
12 mm at 50 μg/disk, whereas its bis-TFA salt and N,N’-
diacetyl derivative showed smaller inhibition zones, sug-
gesting that the free amino groups in 6 are a key functional 
group for antimycobacterial activity. Although recent studies 
reported inhibitory effects on the Ubc13–Uev1A interaction 
and modulatory effects on TRPA1 and TRPM8 channels by 
6 [48, 49], we were the first to demonstrate that compound 
6 exhibited antimycobacterial activity.

Due to our continuous efforts, compound 2, described 
in the previous section, was rediscovered as an anti-M. 
smegmatis substance with an MIC value of 16 μg/mL from 
two marine sponges Halichondria panicea and Haliclona 
sp. collected at Iriomote Island in Okinawa, Japan [39, 
40]. With the isolation of 2 from Okinawan Haliclona sp., 
we also isolated new open-chain derivatives of 2, namely, 
halichondriamine C (7) and 1-epi-halichondriamine C (8), 
as shown in Fig. 3, and reported their antimycobacterium 
activities against M. smegmatis with MIC values of 8.0 and 
16 μg/mL, respectively [40]. Furthermore, alkaloids 7 and 8 
both inhibited the growth of M. bovis BCG as a slow grow-
ing strain similar to M. tuberculosis with the same efficacy 
(MIC = 0.5 μg/mL for 7 and 8), and were active against 

two more slowly growing mycobacterial strains, M. avium 
(MIC = 4.0 and 8.0 μg/mL for 7 and 8, respectively) and M. 
intracellulare (MIC = 0.50 μg/mL for 7 and 8), which are 
pathogens of M. avium complex (MAC) disease. MAC infec-
tion is an intractable pulmonary disease and its incidence 
has been increasing more than TB in developed countries. 
Anti-MAC drugs used clinically are limited and their thera-
peutic effects are insufficient [50, 51]. In our most recent 
study, we established an in vivo-mimic silkworm infection 
assay with MAC to efficiently screen anti-MAC antibiotics 
candidates with in vivo therapeutic efficacy [52] and, thus, a 
re-evaluation using this system is currently underway.

Protein tyrosine phosphatase 1B and sterol 
O‑acyl‑transferase inhibitors

Lifestyle-related diseases, including type 2 diabetes melli-
tus (T2DM) and lipid metabolism disorders, are caused by 
unfavorable daily habits, such as a fat-rich diet, inadequate 
exercise, stress, and drinking/smoking, in addition to genetic 
factors and aging, and are now an increasing global issue 
[53, 54]. This section describes inhibitors of protein tyrosine 
phosphatase 1B (PTP1B) [55–58] and sterol O-acyl-trans-
ferase (SOAT, also known as acyl-CoA: cholesterol acyl-
transferase) [59–61], which are potential molecular targets 
for the treatment and prevention of these diseases.

Fig. 3   Structures of marine anti-
mycobacterial substances 3–8 
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PTP1B is expressed in the brain, liver, muscles, and 
adipose tissue and is a key negative regulator of the insulin 
signaling pathway [55]. Moreover, this enzyme has been 
shown to control the leptin signaling cascade [56], and, 
thus, the application of PTP1B inhibitors as anti-T2DM 
and obesity agents is expected [57, 58]. Since their clinical 
use has not yet been achieved despite a number of discov-
eries of natural and synthetic inhibitors [62–71], structur-
ally novel types of drug candidates are in great demand.

An EtOH extract of the Indonesian marine sponge 
Hyattella sp. exhibited PTP1B inhibitory activity, and 
our bioactivity-guided separation led to the isolation of 
new hyattellactones A (9) and B (10), unique pentacyclic 
scalarane sesterterpenes possessing an α,β-unsaturated-γ-
lactone ring and C-ethyl group [72], together with two 
known related sesterterpenes, phyllofolactones F (11) 
and G (12) (Fig. 4) [73]. Despite reports of more than 60 
marine scalarane-type sesterterpenes with a C-ethyl group 
[74, 75], compounds 9 and 10 are the first examples to 
possess the ethyl group at the C-10 position. Compounds 
9/10 and 11/12 are epimers at each C-24 position, and 
the 24R-isomers, 9 and 11, exhibited more potent PTP1B 
inhibitory activity with IC50 values of 7.45 and 7.47 μM, 
respectively, than the 24S-isomers, 10 (42% inhibition at 
24.2 μM) and 12 (inactive by 24.2 μM).

The fungal strain Penicillium verruculosum TPU1311 was 
separated from the ascidian Polycarpa aurata, and strong 
PTP1B inhibitory activity was observed in an extract of the 
culture broth. Using purification monitoring of its bioactiv-
ity, we isolated two new merosesquiterpenes, verruculides 
A (13) and B (14) (Fig. 4) [76], together with three known 
congeners, chrodrimanins A, B, and H [77–79]. Compound 
14 had a linear sesquiterpene skeleton and may be a putative 
precursor before 13 is generated by the terpene cyclization 
reaction [80]. Although the absolute configuration of 14 at 
the C-10 position was not elucidated in our previous study, 
Gubiani and co-workers recently discovered 10S-14 assigned 
by the in situ dimolybdenum CD method from the culture 
broth of Phoma sp. nov. LG0217 with an epigenetic modifier 
[81]. Compound 13 showed an IC50 value of 8.4 μM against 
PTP1B activity, while compound 14 exhibited reduced activ-
ity (40% inhibition at 23.1 μM), suggesting that the linear 
framework of 14 is not favorable for inhibitory activity.

A culture broth of the fungus Cladosporium sp. TPU1507, 
isolated from an unidentified marine sponge, exhibited 
PTP1B inhibitory activity, and the broth extract was frac-
tionated with an ODS column and HPLC to give the new tri-
cyclic metabolite with a 5/6/6 ring system, cladosporamide 
A (15) (Fig. 4) [82], as well as known prenylflavanone, (2S)-
7,4′-dihydroxy-5-methoxy-8-(γ,γ-dimethylallyl)-flavanone 

Fig. 4   Structures of marine protein tyrosine phosphatase inhibitors 9–21 
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[83, 84]. Compound 15 exhibited modest PTP1B inhibitory 
activity with an IC50 value of 48 μM.

Insulin and leptin signaling pathways are generally sup-
pressed by other PTPs as well as PTP1B [55]. Among this 
family, the catalytic domains of T-cell PTP (TCPTP) and 
PTP1B share high homology; however, their biological 
functions markedly differ [85]. Accordingly, PTP1B/TCPTP 
selectivity is as important property, and TCPTP inhibitory 
activity by 15 was examined using an in vitro enzyme assay. 
Compound 15 inhibited TCPTP enzyme activity with an 
IC50 value of 54 μM; therefore, this compound is a dual 
inhibitor with equivalent potency against two PTPs, PTP1B 
and TCPTP. Previous studies using genetic techniques dem-
onstrated that TCPTP knockout mice (tcptp–/–) had serious 
abnormalities [86, 87]; however, recent studies showed that 
knockout mice with a one-copy deletion of PTP1B and 
TCPTP (ptp1B+/– or tcptp+/–) remained alive without any 
harmful phenotypes [88]. Therefore, the simultaneous inhi-
bition of PTP1B and TCPTP has potential as a promising 
therapeutic strategy for T2DM and obesity.

In addition to the novel compounds described above, our 
successive studies afforded known compounds from Indo-
nesian marine organisms as new types of PTP1B inhibitors.

Melophlin C (16), a known tetramic acid derivative, was 
isolated as the active constituent together with a new nor-
triterpenoid saponin, sarasinoside S, from the Indonesian 
marine sponge Petrosia sp. (Fig. 4) [89]. Compound 16 was 
initially obtained as a mixture of four diastereomers at the 
C-5 and C-10 positions from the Indonesian marine sponge 
Melophlus sarassinorum [90], and we also purified a similar 
isomeric mixture of 16. However, the new saponin was inac-
tive, whereas compound 16 inhibited PTP1B activity with an 
IC50 value of 14.6 μM and an inhibition of 16-like tetramic 
acids was the first finding.

Three known furanoterpenes from two marine sponges, 
(7E, 12E, 20Z, 18S)-variabilin (17) [91–95] and (12E, 20Z, 
18S)-8-hydroxyvariabilin (18) [94] from Ircinia sp. and furo-
spongin-1 (19) [95] from Spongia sp., were discovered as 
unprecedented PTP1B inhibitors (Fig. 4) [96]. Compounds 
17–19 exhibited PTP1B inhibitory activity with IC50 val-
ues of 1.5, 7.1, and 9.9 μM, respectively, and high cell 
viability. We previously identified the bicyclic furanoter-
pene, dehydroeuryspongin A as a new PTP1B inhibitor 
from the Okinawan marine sponge Euryspongia sp. [97, 
98]: however, this was the first demonstration of linear-type 
furanoterpenes, such as 17–19, inhibiting PTP1B activity. 
TCPTP inhibitory activities by 16 (IC50 of 0.8 μM versus 
1.5 μM) and 17 (IC50 of 3.7 μM versus 7.1 μM) were approx-
imately twofold as potent as that against PTP1B, whereas 
compound 19 showed equivalent IC50 values against TCPTP 
and PTP1B activities (9.6 μM versus 9.9 μM). Additionally, 
the selectivities of 17–19 over the other types of PTPs, CD45 
tyrosine phosphatase (CD45 as a receptor-like PTP) and 

vaccinia H-1-related phosphatase (VHR as a dual-specificity 
phosphatase), were confirmed, suggesting that compound 
17 exerted CD45 inhibitory effects (IC50 = 1.2 μM) similar 
to PTP1B, and its VHR inhibitory activity (IC50 = 6.0 μM) 
was four-fold less than that of PTP1B. Compound 18 non-
selectively inhibited CD45 and VHR activities (IC50 = 9.0 
and 9.4 μM, respectively), while compound 19 did not 
inhibit CD45 activity at 30 μM, but inhibited VHR activ-
ity with an IC50 value of 11 μM. These findings implied 
that the selective activities of the four PTPs were due to 
slight structural differences, carbon lengths, and modifica-
tions on 17–19. Furanoterpenes are one of the major groups 
in marine sponge-derived natural products, and a number 
of derivatives have been reported [6, 7]. Therefore, further 
studies on structure–activity relationships and selectivities 
are our future plan.

Monodictyphenone (20), a known benzophenone deriva-
tive reported from a culture broth of the marine algicolous 
fungus Monodictys putredinis [99], was obtained along 
with the new biphenyl ether derivative, 2-hydroxy-6-(2′-
hydroxy-3′-hydroxymethyl-5-methylphenoxy)-benzoic acid 
(21), by the fermentation of the fungus P. albobiverticillium 
TPU1432 isolated from an unidentified Indonesian ascidian 
(Fig. 4) [100]. PTP1B inhibitory activity in the broth was 
reproduced by 20 with an IC50 value of 36 μM. Compound 
21 moderately exerted CD45 selective inhibitory effects 
(IC50 = 43 μM) among four PTPs, PTP1B, TCPTP, CD45, 
and VHR. CD45 as a receptor-like PTP critically controls 
lymphocyte signaling, and has recently been proposed as a 
promising drug target for autoimmune diseases [55].

SOAT, an endoplasmic reticulum membrane protein, 
catalyzes intracellular esterification, which transfers long-
chain fatty acids generated by acyl-CoA to free cholesterol 
to biosynthesize the cholesteryl ester (CE) [59]. Therefore, 
this enzyme is a potential molecular target for the prevention 
of dyslipidemia, such as hypercholesterolemia and related 
diseases, caused by the excessive accumulation of CE [60, 
61]. Moreover, recent molecular biology studies revealed 
that SOAT has two SOAT isozymes, SOAT1 and SOAT2, 
the localization and functions of which markedly differ [59]. 
Since the selectivities of SOAT1 and SOAT2 are considered 
to be an important index [101], we have been evaluating 
SOAT inhibitory activity toward these two isozymes using 
African Green monkey-derived SOAT1 and SOAT2 gene-
expressing CHO cells (SOAT1-CHO and SOAT2-CHO 
cells) [102–107].

The screening study on SOAT1/SOAT2 inhibitors 
afforded an EtOH extract of the Indonesian marine 
sponge Callyspongia sp., and the separation process pro-
vided two new polychlorine-containing modified dipep-
tides, callyspongiamides A (22) and B (23) (Fig. 5) [108], 
together with the known congener, dysamide A [109]. 
The effects of 22 and 23 on the synthesis of CE through 
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the inhibition of SOAT1/SOAT2 isozymes were exam-
ined using SOAT1-CHO and SOAT2-CHO cell-based 
assays and the respective IC50 values over SOAT1 and 
SOAT2 were 0.78 and 2.8 μM for 22 and 1.2 and 2.4 μM 
for 23, respectively. To identify the molecules of 22 and 
23 inhibiting the accumulation of CE, their inhibitory 
activities against SOAT1/SOAT2 isozymes were also 
examined using an enzyme assay with microsomes pre-
pared from SOAT1-CHO and SOAT2-CHO cells, respec-
tively. Compounds 22 and 23 affected SOAT1/SOAT2 
enzyme activities with IC50 values of 0.23/0.86 μM for 
22 and 1.0/3.2 μM for 23, respectively, which were simi-
lar to inhibitory activities in the cell-based assay. Based 
on these findings, compounds 22 and 23 are dual-type 
SOAT1 and SOAT2 inhibitors.

We recently reported marine sesquiterpene hydro-
quinones, including three new derivatives, avapyran, 
17-O-acetylavarol, and 17-O-acetylneoavarol, from the 
marine sponge Dysidea sp. collected at Iriomote Island 
(Okinawa, Japan) [110]. Of these, avarol (24), which was 
initially isolated from the marine sponge Disidea avara 
[111], was identified as be a multifunctional inhibitor of 
PTP1B and SOAT1/2 (Fig. 6) [110, 112]. Compound 24 
had an IC50 value of 12 μM against PTP1B and blocked 
CE synthesis by inhibiting SOAT1/SOAT2 isozymes in 
SOAT1-CHO and SOAT2-CHO cells with IC50 values of 
14.2 and 14.8 μM, respectively. These findings proposed 
compound 24 as a multitarget-directed lead compound for 
the attenuation of metabolic syndromes.

Inhibitors of BMP‑induced osteoblastic 
differentiation

Bone morphogenetic protein (BMP), a member of the 
transforming growth factor-β superfamily, plays an impor-
tant role in the formation and repair of bone [113, 114]. 
Therefore, the disruption of BMP signaling causes several 
types of bone disorders.

Fibrodysplasia ossificans progressiva (FOP) is a rare 
congenital disorder caused by abnormal BMP signaling 
activated by a mutant BMP receptor [activin receptor-like 
kinase-2 (ALK2)], leading to progressive heterotopic ossi-
fication (HO) in soft tissues [115, 116]. Since BMP signal-
ing inhibitors are a promising strategy for the prevention 
of HO [117, 118], we started a screening program by mon-
itoring the BMP-induced osteoblastic differentiation of a 
C2C12 cell line stably expressing mutated ALK2(R206H) 
(C2C12(R206H) cells) [119, 120].

Approximately 200 Indonesian marine invertebrates, 
marine sponges and ascidians, have been screened using 
the C2C12(R206H) cell-based assay, and an EtOH extract 
of the marine sponge Lamellodysidea sp. (cf. L. herba-
cea) was found to inhibit the BMP-induced osteoblastic 
differentiation of C2C12(R206H) cells [121]. Bicyclola-
mellolactone A (25), a new sesquiterpene lactone with an 
unusual bicyclo[4.3.1]decane ring, was isolated together 
with two monocyclofarnesol-type sesquiterpenes, lamello-
lactones A (26) and B (27) [122], through bioactivity-
guided purification (Fig. 7). The planar structure of 25 
was elucidated based on spectroscopic data, including 
1D and 2D NMR spectra. The stereoconfiguration of 25 
was completely assigned by the calculation of electric 
CD (ECD) spectra and NOESY correlations. Compounds 
25–27 inhibited the BMP-induced osteoblastic differentia-
tion of C2C12(R206H) cells with IC50 values of 51, 4.6, 
and 20 μM, respectively, and no cytotoxic effects.

We originally discovered compounds 26 and 27 from 
another Lamellodysidea sp. marine sponge collected in 
Indonesia; however, their biological activities were not 
identified in a previous study [122]. Our sustained efforts 
enabled the rediscovery of 26 and 27 as BMP-induced 
osteoblastogenesis inhibitors.

Among the samples screened, an EtOH extract of the 
marine sponge Dysidea sp. also exerted potent inhibi-
tory effects on osteoblastogenesis, and repeated column 
purification based on this activity led to the isolation of 
three active constituents [123]: dysidenin (28) [124–126], 
herbasterol (29) [127], and stellettasterol (30) (Fig. 7) 
[128]. The inhibitory effects of 28–30 on the BMP-
induced osteoblastic differentiation of C2C12(R206H) 
cells showed IC50 values of 2.3, 4.3, and 4.2 μM, respec-
tively, with no cytotoxicity. Since the BMP signaling 

Fig. 5   Structures of callyspongiamides A (22) and B (23) as SOAT 
inhibitors

Fig. 6   Structure of avarol (24) 
as a multifunctional inhibitor 
against PTP1B and SOAT1/2
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pathway is transduced through the transcriptional factors 
Smad1/5 [116], a BMP-Smad-specific Id1WT4F-luciferase 
reporter assay was performed to examine the direct effects 
of 28–30 on cell signaling [129]. This reporter assay 
revealed that no compounds inhibited luciferase activity 
by 18.4–21.4 μM, indicating that the molecular targets of 
28–30 are downstream of the Smad transcriptional step in 
the BMP signaling cascade.

Our collaborative research covers terrestrial resources, 
and phytochemical studies have also been conducted to 
screen bioactive constituents from the Indonesian medicinal 
plants, Wedelia prostrata, Lantana camara, Rhinacanthus 
nasutus, Spilanthes paniculata, and Syzygium polyanthum 
[130–136]. If there is another opportunity, the details of 
these compounds will be reviewed elsewhere.

Marine‑derived organohalides

We have demonstrated that marine environments offer a 
structurally and biologically diverse range of natural prod-
ucts [6, 7]. Additionally, organisms living in the sea, includ-
ing marine sponges, ascidians, microorganisms, cyanobacte-
ria, algae, and mollusks, are a rich source of organohalides 
[6, 7, 137–139]. Halogenated natural products have been 
reported to exhibit various biological activities [6, 7, 140], 
and, for example, vancomycin as a clinical antibiotic is 
mainly used to treat methicillin‐resistant Staphylococcus 
aureus (MRSA) infection [141].

In the course of our screening study on marine resources, 
bromopyrrole alkaloids along with the new analog, 
5-bromophakelline (31), from the Indonesian marine sponge 
Agelas sp. [38], some known polybromodiphenyl ethers (32) 
from two Indonesian marine sponges Lamellodysidea spp. 

[122, 142], agelasine G (33), a known bromo-containing 
diterpene with N-methyladenine, from the Okinawan marine 
sponge Agelas nakamurai [143], and known tyramine deriv-
atives with rare iodine groups, 4-(2-aminoethyl)-2-iodophe-
nol (34) and 3,5-diiodo-4-methoxyphenethylamine (35), 
from an Indonesian assidian Didemnum sp. [144] have been 
isolated in addition to the chlorinated compounds 22, 23, 
and 28 (Fig. 8). Of these marine organohalogens, we herein 
introduce compound 33 with unique biological properties 
[145].

Agelasine G (33), which belongs to a large group of 
marine natural products, was originally isolated from the 
Okinawan marine sponge Agelas sp. by Kobayashi and co-
workers in 1992 and its structure comprises bromopyrrole, 
N-methyladeninium, and diterpene moieties [146]. In the 
process of screening anti-M. smegmatis substances from the 
marine sponge A. nakamurai collected at Iriomote Island 
(Okinawa, Japan), we isolated new antimycobacterial age-
lasine derivatives and discovered PTP1B inhibitory activ-
ity by 33 with an IC50 value of 15 μM for the first time, 
while ageline B (36) [147], a known debromo-derivative 
of 33 obtained from the same marine sponge, was inactive 
up to 19 μM. These findings indicated that a Br atom is 
responsible for the inhibition of PTP1B activity, which is 
supported by our previous findings showing that polybro-
modiphenyl ethers exhibited more potent PTP1B inhibitory 
activity than diphenyl ether derivatives without Br groups 
[100, 122, 142, 148]. As described in the section on PTP1B 
inhibitors, PTPs are composed of 107 members, including 
PTP1B as non-transmembrane PTPs, and regulate various 
cellular functions [55]. The inhibitory effects of 33 and 36 
toward three types of PTPs, TCPTP, CD4, and VHR, were 
evaluated using an in vitro enzyme assay. Compound 33 
was only active against VHR (IC50 = 13 μM) with a similar 

Fig. 7   Structures of marine 
osteoblastogenesis inhibitors 
25–30 
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potency to that against PTP1B, while compound 36 did not 
affect any PTPs by 19 μM.

To demonstrate their cellular effects, the phosphorylation 
levels of Akt (p-Akt), a key downstream molecule of the 
insulin signaling pathway starting from the insulin receptor, 
were measured by Western blotting using human hepatoma 
Huh-7 cells, in which PTP1B is mainly located. In this assay, 
compound 33 increased insulin-stimulated p-Akt levels in 
Huh-7 cells in a dose-dependent manner, suggesting that 
the inhibition of PTP1B activity by 33 activates the insu-
lin signaling pathway. On the other hand, compound 36, an 
inactive derivative, also moderately enhanced insulin-stim-
ulated p-Akt levels in a dose-dependent manner (Fig. 9a). 
These findings implied that compounds 33 and 36 have addi-
tional target molecule(s) that activate the cascade besides the 

inhibitory effects of PTP1B activity. Therefore, the effects of 
33 or 36 alone on the p-Akt level of the signaling pathway in 
Huh-7 cells were tested using the same experiments without 
the insulin stimulation. Although compounds 33 and 36 did 
not significantly increase p-Akt levels at 50 μM, slight dose-
dependent elevations in p-Akt levels were detected in Huh-7 
cells (Fig. 9b). These findings suggest that compounds 33 
and 36 exert insulin-like effects to activate insulin signaling 
at an upstream point instead of insulin.

Therefore, compounds 33 and 36 initially exert similar 
effects to insulin for signal transduction, and compound 33 
inhibited PTP1B activity to activate downstream of the sign-
aling pathway. Considering these compounds in terms of 
their chemical structures, the presence of a Br group is sig-
nificant for the inhibition of PTP1B, while the terpene and/

Fig. 8   Structures of marine 
organohalogens 31–35 and 
related compound 36 

Fig. 9   a Enhanced effects of 
agelasine G (33) and ageline B 
(36) on insulin-stimulated Akt 
phosphorylation levels in Huh-7 
cells. b Effects of 33 and 36 on 
Akt phosphorylation levels in 
Huh-7 cells. p-Akt/t-Akt levels 
were shown as a ratio of that 
in the control group. Data are 
expressed as the mean ± SE 
(n = 4). #P < 0.05, ##P < 0.01 vs 
the insulin treatment group

(a) (b)
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or adenine moieties may contribute to insulin-like effects. 
Many types of PTP1B inhibitors have been obtained from 
natural and synthetic origins; however, clinically efficient 
drugs have not yet been developed [57, 58, 62]. PTP1B 
inhibitors with insulin-like activity are extremely rare, and, 
thus, we are now investigating the optimal structures for 
these biological properties with the aim of developing can-
didate agents for the treatment of T2DM and obesity.

Efficient production of halogenated 
metabolites by fungal strains

From the above achievements, we were further interested 
in halogenated natural products that exhibit significant bio-
logical activity. Therefore, we attempted fermentation study 
with a focus on fungal strains to efficiently produce halogen-
containing metabolites [149–155].

In our trials, the Palauan marine-derived fungus Tricho-
derma sp. TPU199 (cf. T. brevicompactum) from an uniden-
tified red alga was found to possess objective productivity 
[151]. Under ordinary culture conditions using freshwater 
in our laboratory, this fungal strain produced the unique 
metabolites, gliovirin (37) [156, 157], pretrichodermamide 
A (38) [158], and trichodermamide A (39) (Fig. 10) [159]. 
Although compounds 37 and 38 were generally categorized 

into the epipolythiodiketopiperazine (ETP) family (also 
known as epipolythiodioxopiperazine), cyclic dipeptides 
with a sulfide bridge (–S–, –SS–, –SSS–, or –SSSS–) 
between the α-positions of two amino acid residues [160], 
ETPs 37 and 38 formed an unprecedented disulfide linkage 
between the α- and β-positions of two amino acids (called 
gliovirin-type ETP in our study [151]).

Since strain TPU199 is a marine-derived fungus, the 
next fermentation was performed using sterilized natural 
seawater medium. This condition reduced the production 
of 37 and newly gave two peaks (40 and 41) in a seawater 
concentration-dependent manner. The structures of 40 and 
41 isolated under the seawater condition were elucidated as 
the chlorinated derivatives of 38 and 39, DC1149B [161] 
and trichodermamide B [159], respectively, based on their 
spectroscopic data (Fig. 10), inferring that the Cl groups 
of 40 and 41 were incorporated from NaCl in the seawater 
medium. Subsequent conditions using 3.0% NaCl- or NaBr-
supplemented medium were examined and led to the produc-
tion of known halogenated gliovirin-type ETPs possessing 
the Cl and Br groups, DC1149B (40) and DC1149R (42), 
respectively (Fig. 10) [161].

Compound 42, a brominated derivative of 38, was docu-
mented in the same patent as 40 and was semisynthetically 
obtained from 37 by a reaction with HBr; however, the 1H 
and 13C NMR assignments of 42 have not been reported 

Fig. 10   Structures of 37–46 
from a culture broth of the 
Palauan marine-derived fungus 
Trichoderma sp. TPU199
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[161]. Therefore, we were the first to describe the isolation 
of 42 as a fungal fermentation product as well as the com-
plete assignment of 1H and 13C NMR spectroscopic data for 
42 [150].

NaI was supplemented into the culture medium in antici-
pation of the production of iodinated metabolites, and the 
HPLC chromatogram of the broth with 3.0% NaI displayed 
a new peak, corresponding to metabolite 43, with similar 
UV spectrum to those of 37, 38, 40, and 42. Newly emerg-
ing 43 was purified by an ODS column and HPLC from the 
broth extract and 1D and 2D NMR analyses revealed the 
structure of 43 to be a new iodinated derivative of 38, named 
iododithiobrevamide (Fig. 10) [151]. Various bromine-added 
metabolites were previously reported to be generated by 
fermentation with inorganic bromides [162–164]; however, 
obtaining the I derivative using the fermentation method 
with NaI is a rare and interesting finding.

Our precise purification of strain TPU199 on the NaI-
containing culture broth more recently resulted in the isola-
tion of two new gliovirin-type ETPs 44 and 45 [151], which 
were elucidated as 5-epi- and 5-epi-trithio-38, respectively 
(Fig. 10). An N-methyl derivative of 44, designed as pre-
trichodermamide F, was initially reported as a gliovirin-
type ETP with a 5α-oriented substituent [165], and, thus, 
our findings are the second documented report of these 
ETPs. Pretrichodermamide derivatives with the 5α-oriented 
substituent, 44 and 45, may be generated via nucleophilic 
substitution from iodinated gliovirin-type ETP, such as 43. 
NaI-supplemented cultivations represent a versatile method 
to yield structurally diversified metabolites, not only the 
production of iodinated metabolites, but also stereoisomers.

Furthermore, in the course of investigations on culture 
conditions, a seawater culture of the TPU199 strain with 
1.0% dimethyl sulfoxide (DMSO) provided a new gliovirin-
type ETP named chlorotrithiobrevamide (46), the structure 
of which was confirmed to be a trithio-derivative of 40 
(Fig. 10). In contrast to this condition, the production of 
46 was not detected by the addition of DMSO to a fresh-
water medium [152]. Compound 46 was the first example 
of a trithio-derivative in the gliovirin-type ETP, and recent 
studies added outovirin C and penicisulfuranol C produced 
by P. raciborskii TRT59 and P. janthinellum HDN13-309, 
respectively, as the second and third examples followed by 
45 in this series of ETPs [150, 166, 167].

The fungal strain Cladosporium sp. TMPU1621 iso-
lated from the leaves of Okinawan Achyranthes aspera var. 
rubrofusca was identified as the second producer with the 
productivity of organohalides [155]. The TMPU1621 strain 
produced a series of cladosporol derivatives [168–170], 
including a chlorinated congener under freshwater medium 
conditions, and the supplementation of 3.0% NaCl into the 
medium increased the production of chlorinated cladosporol. 
Therefore, we examined 3.0% NaBr-supplemented medium 

to induce the production of a new brominated derivative, 
and, as expected, obtained 2-bromo-cladosporol D (47) 
(Fig. 11). Compound 47 exhibited modest anti-MRSA activ-
ity with an MIC value of 25 μM, whereas the chlorinated 
congener was inactive by 50 μM. However, iodinated cla-
dosporols have not yet been isolated from the culture broth 
of the strain with NaI-containing medium. Since its HPLC 
chromatogram differs from those obtained under other cul-
ture conditions, further studies are warranted (unpublished 
data).

Although these culture methods are very simple and easy, 
the probability of discovering objective strains with the 
desired characteristics is still low due to the extremely poor 
growth of microorganisms in medium containing halide salts 
or DMSO. Therefore, our aim is to develop novel strategic 
approaches to produce halogenated microbial metabolites, 
and the data obtained will be published in the near future.

Conclusion

Countless bioactive products have historically been reported 
from plants and microbes, and notable examples, such as 
paclitaxel (antineoplastic), artemisinin (antimalarial drug), 
penicillin (antibiotic), lovastatin (antihyperlipidemic 
agent), tacrolimus (immune suppressant), and ivermectin 
(antiparasitic), have contributed to breakthroughs in mod-
ern medicine. However, it has become increasingly difficult 
to identify novel natural products with excellent biological 
activities, and, thus, unutilized natural resources (ocean or 
extreme environments) and innovative searching strategies 
are required to expand this research field.

We herein described various Indonesian marine biologi-
cal substances obtained by a collaborative screening pro-
gram with UNSRAT. Marine natural product chemistry has 
rapidly advanced in a short period of time and has already 
provided several clinical agents. Therefore, we expect our 
findings to serve as drug seed/lead compounds for clinical 

Fig. 11   Structure of 2-bromo-cladosporol D (47) from a culture 
broth of the Okinawan plant-associated fungus Cladosporium sp. 
TMPU1621
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applications to cancer, TB, T2DM, dyslipidemia, and FOP. 
This review also described the induced production of fungal 
organohalogens on which we started to work with inspiration 
based on the unique biological activities of marine halo-
genated products. The present methods may not be straight-
forward strategies, but simple techniques would enable 
researchers in chemical laboratories to access new com-
pounds. These findings will facilitate and accelerate drug 
discovery and development in natural product chemistry.
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